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Abstract 
Electroencephalogram (EEG) recordings signal provide an important function of brain-computer 

communication, but the accuracy of their classification is very limited in unforeseeable signal variations relating to 
artifacts. In this paper, we propose a classification method entailing time-series EEG-P300 signals using 
backpropagation neural networks to predict the qualitative properties of a subject’s mental tasks by extracting useful 
information from the highly multivariate non-invasive recordings of brain activity. To test the improvement in the 
EEG-P300 classification performance (i.e., classification accuracy and transfer rate) with the proposed method, 
comparative experiments were conducted using Bayesian Linear Discriminant Analysis (BLDA). Finally, the result 
of the experiment showed that the average of the classification accuracy was 97% and the maximum improvement 
of the average transfer rate is 42.4%, indicating the considerable potential of the using of EEG-P300 for the 
continuous classification of mental tasks.  

 
Keywords: EEG-P300 classification, backpropagation neural networks, BLDA, accuracy, transfer rate. 

 
I. INTRODUCTION 

For several years, people have sought for a 
non muscular channel between the brain and the 
out world so that they can control peripherals by 
thinking. With the production of advanced bio-
instruments for recording and amplifying the 
signals as well as cheap and powerful personal 
computers, this dream was realized and Brain-
Computer Interface (BCI) was developed. 
Signals from the brain are acquired by electrodes 
on the scalp and be processed to extract specific 
features that reflect the user’s intentions. The 
BCI must select and extract features that can be 
controlled by the user and translate those features 
into device commands correctly and efficiently. 
For this purpose, brain activity must be 
monitored. Today there existed various 
techniques to accomplish these problems [1–8]. 
Among these methods, almost all BCIs reported 
the data having been based on EEG. There are 
two main approaches to detect the user’s 
commands from EEG. In the first approach the 

subject concentrates on a few mental tasks. The 
different concentration on each mental task will 
produce a different EEG pattern. The BCI 
(especially the classifier) can then be trained to 
classify those patterns. Several BCIs system (e.g. 
[1, 9-14]) are based on the type of the pattern 
recognition approach. In the second approach the 
user has to learn the self-regulation of his or her 
EEG responses, for example to change the-
rhythm amplitude [12]. 

There are various properties in EEG that can 
be used as a base for BCI such as rhythmic brain 
activity (i.e., delta, theta, alpha, and beta) [7], 
event-related potentials (ERPs), event-related 
desynchronization (ERD) and event-related 
synchronization (ERS) [1, 9, 13]. However, the 
present study is focused on the using of ERP 
properties. The ERP most commonly utilized is 
P300. P300, as noted in the journal Science, was 
discovered originally by Samuel Sutton, et al. 
[15], and represented the unpredictable stimuli 
presented in an oddball paradigm, in which low-
probability targets were mixed with high-
probability ones. For this paradigm, the subject is * Corresponding Author. Phone: +62-22-2503053, Fax: +62-22-

2504577 E-mail: jujhin@gmail.com 
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told to respond a rare stimulus that occurs 
randomly and infrequently among other, frequent 
stimuli [7]. The presence, magnitude, 
topography, and time of the response signal are 
often used as metrics of cognitive function in the 
decision of making processes. In this paper we 
propose a classification method for time series 
EEG signals that incorporates with a 
backpropagation neural network (BPNN), which 
has been well developed in the field of speech 
recognition. In order to examine the performance 
(i.e., accuracy and transfer rate) improvements of 
the proposed EEG classification method, 
comparative experiments were conducted using 
Bayesian Linear Discriminant Analysis (BLDA).  

The structure of the paper is as follows. In 
Section 2, the subject population, the experiments 
that were conducted, and the methods used for 
data preprocessing are described. Classification 
using the BPNN model is explained in Section 3. 
Results and discussions are presented in Section 
4. Conclusions are drawn in Section 5. 

 
II. METHODS 

The data set used in this study was obtained 
from the website of the EPFL BCI group 
(http://bci.epfl.ch/p300) [6]. The data have been 
recorded according to the 10-20 international 
standards from the 32 electrode configurations 
[13]. Each recorded signal has a length of 820 
samples with a sampling rate of 2048 Hz. A six-
choice signal paradigm was tested using a 
population of five disable- and four able-bodied 
subjects. The subjects were asked to count 
silently the number of times a prescribed image 
flashed on a screen. Four seconds after a warning 
tone, six different images (a television, a 
telephone, a lamp, a door, a window, and a radio) 
were flashed in a random order [6]. Each of the 
image flash lasted for 100 ms, and for the 
following 300 ms no image was flashed (i.e., the 
inter-stimulus interval was 400 ms). Each subject 
completed four recording sessions. Each of the 
sessions consisted of six runs with one run for 
each of the six images. The duration of one run 
was approximately one minute and the duration 
of one session, including set up of electrodes and 
short breaks between runs, was approximately 30 
min. Our goal is to discriminate all possible 
combinations of the pairs of mental tasks from 
each other using the corresponding EEG signals. 

Before the classification and validation are 
performed, several preprocessing operations, 
including down sampling, windsorizing, scaling, 
feature vector construction, and desired output 
construction, were applied to the data. The EEG 
was down sampled from 2048 Hz to 32 Hz by 

selecting each 64th sample from the band pass-
filtered data. Not all of the measured EEG signals 
are electrical activity of the brain. Many potential 
changes detected in EEG are from other sources. 
These changes are called artifacts, and their 
sources can be the equipment or the subject. The 
data sets consist of the data matrix, events matrix, 
stimuli, targets, and targets counted. The data 
matrix contained the raw EEG. The events matrix 
contained the time-points at when the flashes 
(events) occurred. The stimulus is an array 
containing a sequence of flashes. The entries had 
value between 1 and 6, and each entry 
corresponded to a flash of one image on the 
screen. The variable target contained the index of 
the image in which the user focusing on. For 
example, if a target equaled three, the user 
counted the number of the flashes of the lamp. 
Together with the number of events, this variable 
can be used to determine if the user was actually 
concentrating. The extracted features then were 
fed into the recurrent multilayered perceptro 
neural networks with decent optimization 
algorithm. For the test, the hold out method was 
used, in which 75% of the data is used for 
training and 25% for test. 

It is difficult to compare the performances of 
the BCI systems, because the pertinent studies 
present the results in different ways. However, in 
the present study, the comparison is made based 
on the accuracy and the transfer rate. Perhaps, 
accuracy is the most important aspect in any BCI. 
If a BCI will be used in control applications, the 
accuracy is obviously crucial. Furthermore, the 
transfer rate is also very important. The speed of 
a particular BCI is affected by the trial length, 
how long one selection will take. This time 
should be short to enhance a BCI’s 
communication effectiveness. The amount of 
information communicated per time unit (the 
transfer rate) is a standard measure of a 
communication system. The transfer rate depends 
on both the speed and the accuracy of the 
selection. If a trial has N possible selections and 
each selection has the same probability to be the 
desired selection, and if P denotes the probability 
that the desired choice is actually selected, the 
probability for the remaining (undesired) 
selections being selected will be (1-P)/(N-1). The 
bit rate (bits/trial) of each selection then can be 
expressed as [6, 12, 14, 16]: 

𝑏𝑏 = 𝑙𝑙𝑙𝑙𝑙𝑙2 (𝑁𝑁) +  𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙2(𝑃𝑃) +  (1 −
𝑃𝑃𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙2 1−𝑃𝑃𝑁𝑁−1 (1) 

The transfer rate (bits per minute) is equal to b 
multiplied by the average speed of selection S 
(trial per minute, which is equal to the reciprocal 
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of the average time required for one selection). 
Therefore, based on the data sets information, the 
desired output signal is developed. In the present 
study, the algorithm developed using the BPNN 
model was used for classification. For four of the 
disabled subjects and four of the able-bodied 
subjects, classification accuracies and transfer 
rates obtained are significantly beyond those 
reported previously by Hoffmann, Vesin, and 
Ebrahimi [6], Sellers, et al. [12], and Wolpaw, et 
al. [14]. 
 
III. BACKPROPAGATION NEURAL 

NETWORKS 
Artificial neural networks have been proposed 

in the fields of information and neural sciences 
following the research in the mechanisms and 
structures of the brain. This has led the 
development of new computational models for 
solving complex problems such as pattern 
recognition, rapid information processing, 
learning and adaptation, classification, 
identification and modeling, speech, vision and 
control systems [17-21]. The network 
architecture includes statistical and dynamical, 
single and multilayer as well as feedback 
(recurrent) networks has been presented. One of 
the most difficult problems that still take great 
scientists interest is learning. Special attention 
has been paid to the most efficient learning 
algorithm for multilayer networks, namely 
backpropagation. 

The backpropagation algorithm allows 
exponential acquisition of input-output mapping 
knowledge within multilayer networks. If a 
pattern is submitted and its classification is 
determined to be erroneous, the current least 
mean-square classification error is reduced. The 
error is expressed as [22]: 

𝐸𝐸𝑗𝑗 = 1
2
∑ �𝑑𝑑𝑗𝑗 − 𝑦𝑦𝑗𝑗  �𝑥𝑥𝑖𝑖 ,𝑤𝑤𝑖𝑖𝑗𝑗 ��

𝑇𝑇
𝑛𝑛
𝑖𝑖=1 �𝑑𝑑𝑗𝑗 −

 𝑦𝑦𝑗𝑗  𝑥𝑥𝑖𝑖 ,  𝑤𝑤𝑖𝑖𝑗𝑗 (2) 

Where 𝑑𝑑𝑗𝑗  denotes the desired output of node j 
corresponding to input 𝑥𝑥𝑖𝑖  ,𝑛𝑛 is the number of 
training patterns and 𝑦𝑦𝑗𝑗 �𝑥𝑥𝑖𝑖 ,𝑤𝑤𝑖𝑖𝑗𝑗 � denotes the 
vector output of the networks corresponding to 
input 𝑥𝑥𝑖𝑖  and weight matrix 𝑤𝑤 = �𝑤𝑤𝑖𝑖𝑗𝑗 �. During the 
association or classification phase, the trained 
neural network itself operates in a feed-forward 
manner. Therefore the error will be a function of 
the weights of the input and the output layers. 
The backpropagation algorithm is a gradient 
descent method minimizing the mean square 
error between the actual and target outputs of a 

multilayer perceptron. Using the sigmoid non 
linearity: 

𝑓𝑓(𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖) =  1
1−𝑛𝑛−𝑛𝑛𝑛𝑛𝑛𝑛

 (3) 

the backpropagation algorithm consists of some 
steps. First, initialize all weights and node offsets 
to small random values. Second, present 
continuous input vector 𝑥𝑥𝑖𝑖  and specify desired 
output 𝑑𝑑𝑗𝑗 . The output vector elements are set to 
zero values except for the vector that correspond 
to the class of the current input. Third, calculate 
the actual output vector y using the sigmoid non 
linearity. Fourth, adjust the weights by the 
following equation: 

𝑤𝑤𝑖𝑖𝑗𝑗  (𝑛𝑛 +  1) =  𝑤𝑤𝑖𝑖𝑗𝑗  (𝑛𝑛) +  η δ j𝑥𝑥𝑖𝑖  (4) 

where 𝑑𝑑𝑗𝑗  is the sensitivity of node 𝑗𝑗. Fifth, repeat 
the steps from the second step. A better approach 
is a cross-validation technique, which stops 
training when the error on a separate validation 
set reaches a minimum. Figure 1 shows the 
structure of the BPNN-based classification 
algorithm. We observe records a vector of EEG 
signals 𝑥𝑥(𝑛𝑛) = [𝑥𝑥1(𝑛𝑛), 𝑥𝑥2(𝑛𝑛), … , 𝑥𝑥𝑚𝑚 (𝑛𝑛)]𝑇𝑇  from a 
multiple-input/multiple-output nonlinear 
dynamical system. The objective is to find an 
inverse system, termed a reconstruction system 
with backpropagation neural networks (BPNN), 
in order to estimate the primary input source of 
brain signals 𝑠𝑠(𝑛𝑛) = [𝑠𝑠1(𝑛𝑛), 𝑠𝑠2(𝑛𝑛), … , 𝑠𝑠𝑛𝑛 ]𝑇𝑇  
corresponding to particular stimulus, which are 
represented by 𝑦𝑦(𝑛𝑛) = [𝑦𝑦1(𝑛𝑛),𝑦𝑦2(𝑛𝑛), … ,𝑦𝑦𝑛𝑛(𝑛𝑛)]𝑇𝑇 . 

This program is used to train a set of 
prototypes from the recorded data. Each 
prototype corresponds to one particular stimulus. 
The classifier then will use these prototypes in 
the classification of the EEG signals. In order to 
train a new set of prototypes, the processed data 
of one recording is loaded into the program. The 
stimuli are labeled in the data. The data is then 
divided into training and validation sets in such a 
way that the three first sessions go to the training 
set and the one remaining session goes to the 
validation set. The thresholds will affect how 

 
 

Figure 1. Structure of BPNN-based classification 
algorithm 
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easily the signals (data sets) are classified as 
belonging to one of the stimuli and how easily 
they are rejected. The classifier computes 
probability values for a signal belonging to each 
of the stimuli included in the data set. Then the 
highest probability value is chosen, and this value 
is compared to the probability threshold. If the 
value exceeds the threshold, the sample is 
classified to the corresponding stimuli, otherwise 
it is rejected. After the number of the iterations 
and the thresholds are adjusted, the training of the 
new prototypes can begin. During the training, a 
new set of prototypes are trained in each 
iteration. After the training finished, the weight 
matrices corresponding to each iteration are 
reviewed. The best prototypes then can be saved 
to be used later in the validation set. 
 
IV. RESULT AND DISCUSSION 

The ability to measure and classify single-trial 
responses from specific brain regions has 
important theoretical and practical implications 
for both basic and applied research. For brain 
research, the ability to measure single-trial ERPs 
is one of the important steps toward the 
understanding of how the relative timing of 
neuronal activity can affect learning and how 
memory of a particular experience can be 
encoded rapidly with a single or very few 
exposures.  

In clinical applications, the ability to obtain 
such measures in a computationally efficient 
manner could allow functionally meaningful 
brain signals to be extracted and used to generate 
better input and feedback signals for brain 
computer interfaces. In the present study, a 
BPNN classifier was used. In order to cope with 
nonlinearly separable problems, additional layers 
of neurons placed between the input layer and the 
output neuron are needed, leading to the 
multilayer perceptron architecture. At the outset, 
the structure of the network is chosen, after the 
validation pattern appears in the graph window, 
and the network initialization values are 
introduced. Each subsequent layer has a weight 
coming from the previous layer. The performance 
is measured according to the specified 
performance function such as mean square error. 
The convergence of the mean square errors to 
zero, shown in Figure 2, verifies the performance 
of the network. The data sets for subject 5 were 
not included in the simulation since the subject 
misunderstood the instructions given before the 
experiment. Comparative plots of the 
classification accuracies and transfer rates 
(obtained with the BPNN and BLDA methods 
and averaged over four sessions based on the 

eight electrode configurations) for the disable- 
(S1 - S4) and able-bodied subjects (S6 - S9) are 
respectively depicted in Figure 3 and Figure 4.  
All of the subjects (with BPNN), except the 
subjects 6 and 9, achieved an average 
classification accuracy of 100% after eight blocks 
of stimulus presentations are averaged (i.e., 19.2 
s). However, subject 9, compared with BLDA, 
still achieved an average classification accuracy 
of 100% after sixteen blocks of stimulus 
presentations are averaged. The reason for the 
poorer performance of subject 9 might be fatigue. 
Subject 6 reported that he accidentally 
concentrated on the wrong stimulus during one 
run in session 1 [6]. Shown alongside the 
classification accuracies using BPNN for all of 
the subjects, in Table 1, are the corresponding 
95% confidence intervals. According to the 
individual subject performances in Table 2, 
subject 1 had the best improvement (4.9%) of the 
average classification accuracy over all of the 
experiments. Moreover, this subject showed an 
improvement for all of the configurations. 
However, subject 8 had the worst improvement 
(0.3%) of average classification accuracy over all 
of the experiments (Table 2). 

The transfer rates corresponding to the 
classification accuracies for the different 
electrode configurations (i.e. consisting of 4, 8, 
16, and 32 electrodes) using both classification 
algorithms (BPNN and BLDA) combined, were 
tested. The results showed that a significant 
improvement in classification accuracy (for all of 
the configurations) and average transfer rate 
(except for configuration IV with 32 electrodes) 
was obtained. The maximum average transfer 
rate, mean transfer rate, and standard deviations 
for all of the combinations of classification 
algorithms and electrode configurations are listed 
in Table 3.  

 
Figure 2. Network’s performance according to mean 
squares errors 



A. Turnip and D. Soetraprawata / Mechatronics, Electrical Power, and Vehicular Technology 04 (2013) 81-88 
 

 

85 

Table 3 shows that the maximum average 
transfer rates for subjects 6 and 7 in configuration 
III, obtained with the BLDA algorithm, were 
better than those obtained with the BPNN 

algorithm. However, the maximum average 
transfer rates (i.e., S1-S4, S6-S9, and all of the 
subjects) obtained with the BPNN algorithm 
were better that those obtained with the BLDA 
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Figure 3. Comparison of classification accuracy and transfer rate plots (averaged over four sessions based on eight electrode 
configurations) obtained with BPNN and BLDA for disabled subjects (subjects 1- 4) 
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Figure 4. Comparison of classification accuracy and transfer rate plots (averaged over four sessions based on eight electrode 
configurations) obtained with BPNN and BLDA for able-bodied subjects (subjects 6- 9) 
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algorithm. These improvements can be seen in 
Table 4. In the work of Hoffmann, et al. (2008), 
the maximum average transfer rate was about 
15.9 bits/min for the disabled subjects and 29.3 
bits/min for the able-bodied subjects.  

In the present study, improvements of the 
maximum average transfer rates for the same 
electrode configurations are achieved (i.e. about 
21.4 bits/min for the disabled subjects and 35.9 
bits/min for the able-bodied subjects). 

Table 1. 
Average classification accuracy (%) 

Subject BPNN-4 BPNN-8 BPNN-16 BPNN-32 BLDA-4 BLDA-8 BLDA-16 BLDA-32 

S1 89.8 92.7 93.7 92.1 82.3 87.9 87.2 91.3 
S2 90.8 94.3 95.6 92.1 80.0 91.7 91.7 92.1 
S3 97.5 98.6 98.8 97.7 95.8 97.3 97.3 97.3 
S4 96.9 96.9 97.2 97.6 93.5 95.2 97.1 97.9 
S6 92.5 92.8 94.2 92.7 90.6 91.3 91.9 92.7 
S7 98.5 97.3 97.4 99.1 93.5 95.8 98.8 98.8 
S8 98.8 97.9 98.7 99.8 95.8 98.5 99.6 100 
S9 94.1 95.9 96.8 95.2 85.6 90.2 96.3 95.6 

Average (S1–S4) 93.8±4.0 95.6±2.6 96.3±2.2 94.9±3.2 87.9±7.9 93.0±4.1 93.3±4.8 94.6±3.5 
Average (S6-S9) 96.0±3.1 95.9±2.3 96.8±1.9 96.7±3.3 91.4±4.4 94.0±3.9 96.6±3.5 96.8±3.3 

Average (all) 94.9±3.5 95.8±2.3 96.5±1.9 95.8±3.2 89.7±6.2 93.5±3.8 95.0±4.3 95.7±3.3 
 
Table 2. 
Improvement of average classification accuracy (%) 

Subject/ Configuration I II III IV Average (I–IV) 
S1 7.5 4.8 6.5 0.8 4.9 
S2 10.8 2.6 3.9 0.0 4.3 
S3 1.7 1.3 1.5 0.4 1.2 
S4 3.4 1.7 0.1 -0.3 1.2 
S6 1.9 1.5 2.3 0.0 1.4 
S7 5.0 1.5 -1.4 0.3 1.4 
S8 3.0 -0.6 -0.9 -0.2 0.3 
S9 8.5 5.7 0.5 -0.4 3.6 

Average (S1–S4) 6.7 2.8 3.2 0.2 3.2 
Average (S6-S9) 5.0 2.2 0.1 -0.1 1.8 

Average (all) 5.8 2.5 1.6 0.1 2.5 
 
Table 3. 
Maximum average transfer rate 

Subject BPNN-4 BPNN-8 BPNN-16 BPNN-32 BLDA-4 BLDA-8 BLDA-16 BLDA-32 
S1 11.2 12.5 14.3 14.9 8.8 8.8 7.7 13.0 
S2 9.7 13.0 15.4 12.4 6.8 10.8 11.4 11.2 
S3 25.0 35.0 38.3 24.7 21.9 24.7 24.7 21.9 
S4 19.0 25.2 28.9 31.3 14.9 19.3 21.9 29.8 
S6 26.0 27.0 24.3 34.1 25.9 25.9 25.9 34.1 
S7 32.3 38.3 35.0 41.1 22.3 22.3 38.7 38.7 
S8 43.8 51.4 57.1 64.6 38.7 49.4 56.0 64.6 
S9 18.7 27.0 30.8 26.5 17.0 19.3 22.3 17.0 

Average 
(S1–S4) 16.2±7.2 21.4±10.8 24.2±11.5 20.8±8.8 13.1±6.8 15.9±7.5 16.4±8.2 19.0±8.6 

Average 
(S6-S9) 30.2±10.6 35.9±11.6 36.8±14.2 41.6±16.5 26.0±9.2 29.3±13.7 35.7±15.2 38.6±19.7 

Average 
(all) 23.2±11.2 28.7±13.0 30.5±13.7 31.2±16.5 19.5±10.2 22.6±12.5 26.1±15.3 28.8±17.6 
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V. CONCLUSIONS 
The results presented in this study show that, 

compared with the BLDA algorithm, a better 
extraction result can be obtained by using the 
backpropagation neural networks (BPNN) 
algorithm for single-trial ERPs based on the P300 
component from specific brain regions. With 
BPNN, the data indicate that a P300-based BCI 
system can communicate for the disable-and 
able-bodied subjects respectively at the rate of 
21.4 bits/min and 35.9 bits/min. The average of 
100% classification accuracy is achieved after 
eight blocks for disabled subjects and after five 
blocks for able-bodied subjects. These results 
indicate that the system allowed several disabled 
users to achieve transfer rates significantly 
beyond those reported previously in the 
literatures. However, if in the future many 
subjects are going to be tested and computation 
time is an issue, the BPNN model will appear to 
be the best choice. To improve our results, we are 
currently investigating the effect of averaging the 
output of the classifier over the consecutive 
windows as well as the effects of other 
preprocessing methods in artifact-effect 
reduction. 
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