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Abstract 

The stability analysis of a DC-DC buck converter is a challenging problem due to the hybrid systems characteristic of its 
dynamics. Such a challenge arises from the buck converter operation which depends upon the ON/OFF logical transitions of its 
electronic switch component to correspondingly activate different continuous vector fields of the converter’s temporal 
dynamics. This paper presents a sum of squares (SOS) polynomial optimization approach for stability analysis of a hybrid 
model of buck converter which explicitly takes into account the converter’s electronic switching behavior. The proposed 
method first transforms the converter’s hybrid dynamics model into an equivalent polynomial differential algebraic equation 
(DAE) model. An SOS programming algorithm is then proposed to computationally prove the stability of the obtained DAE 
model using Lyapunov’s stability concept. Based on simulation results, it was found that the proposed method requires only 
8.5 seconds for proving the stability of a buck converter model. In contrast, exhaustive simulations based on numerical 
integration scheme require 15.6 seconds to evaluate the stability of the same model. These results thus show the effectiveness 
of the proposed method as it can prove the converter stability in shorter computational times without requiring exhaustive 
simulations using numerical integration. 

Copyright ©2023 National Research and Innovation Agency. This is an open access article under the CC BY-NC-SA license 
(https://creativecommons.org/licenses/by-nc-sa/4.0/).  

Keywords: DC-DC buck converter; switched hybrid systems; Lyapunov method; dissipation inequality; SOS programming. 

 
 

I. Introduction 

A DC-DC converter is an electronic device which 
transfers electric power from a DC voltage source to 
the loads [1]. Such a transfer is achieved through the 
activation/inactivation of an electronic switch which 
causes the electric power to be transmitted from the 
source to power storage devices when the switch is 
activated (ON) and then subsequently transferred 
from the storage device to the load when the switch 
is inactivated (OFF). The electronic switch is typically 
made of transistor and/or diode while the power 
storage devices usually consist of capacitor and/or 

inductor. The result of these power transfer 
processes is the converters output voltage whose 
value is proportional to the ratio of the durations of 
the ON and OFF states of the switch [2]. In practice, 
there are two types of converters that are used in 
electronic applications, namely the step down (or 
buck) and step up (boost) converters. For a given 
source voltage value, the buck converter produces a 
lower output voltage while the boost converter 
generates a higher one. In this paper, our focus is to 
study and analyze the dynamics of a buck converter 
due to its frequent and widespread uses in 
household and industrial electronic devices which 
range from simple motor control [3] to the design of 
photovoltaic power systems [4] and electric 
vehicles [5]. 
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Based on its working principle, the buck 
converter can be viewed and modeled as switched 
hybrid systems (SHS) whose dynamics may 
switch/jump from one discrete mode/state of 
operation into another in accordance to the ON/OFF 
mode or state of its switch [6][7]. In particular, 
during the activation of either ON or OFF mode, the 
converter state variables (e.g. current or voltage) 
evolve continuously in time according to the vector 
fields which define these states trajectories. The 
hybrid characteristics of a buck converter often give 
rise to nonlinear behaviors that are complex and at 
times difficult to characterize [8]. As a result, much 
of prior analysis works on buck converter dynamics 
were often done using their so-called averaged 
model for which the switching behaviors can simply 
be neglected [9]. While the use of this averaged 
model has so far resulted in various stability analysis 
and control synthesis methods, the fact that the 
construction of such a model essentially relies on the 
linearization/approximation methods limits their 
applicability to relatively small operational regions 
[10]. These suggest that more works remain needed 
to better understand the hybrid dynamics of buck 
converters [11][12]. 

This paper proposes the use of a computational 
method based on SOS programming techniques [13] 
for analyzing the stability of a hybrid buck converter 
model. In the proposed method, the converter 
dynamics are first modeled as a two-mode SHS in 
which the activation of each mode is triggered by 
the ON/OFF state of the switch. The stability of the 
obtained SHS model is analyzed using sufficient 
stability conditions in the form of a dissipation 
inequality [14]. An SOS program to find a Lyapunov 
function which satisfies the formulated dissipation 
inequality (thus certifies the SHS stability) is then 
formulated [15]. Numerical simulation results which 
illustrate the effectiveness of the proposed 
computational method are then presented. 

II. Materials and Methods 

A. System description and model 

Consider the schematic of a DC-DC buck 
converter in Figure 1 [1]. In this figure, 𝑉𝑔  is the 
voltage source whose value needs to be decreased to 
meet the desired output voltage value at the resistor 
load R. Both the inductor L and the capacitor C serve 
as temporary power storage elements for the input 

voltage from 𝑉𝑔  before being subsequently 
transferred to the load R as an output voltage. An 
additional resistor 𝑟𝐿 as shown in the schematic is 
added to describe parasitic electrical current/voltage 
which may occurs in the converter circuitry. The 
transfer of electrical power from the input 𝑉𝑔 to the 
output R which occurs in two subsequent modes is 
controlled by the sequence of activation of the 
electronic switches 𝑆1 and 𝑆2 as discussed below. 

In the first mode (denoted as mode 0), switch 𝑆1 
is activated (ON) while switch 𝑆2 is deactivated (OFF). 
In this case, the voltage source (𝑉𝑔 ), the storage 
elements (L and C) and the load (R) are connected 
and form two electrical loops. To model the 
dynamics in this mode, define a vector of state 
variables 𝑥 = [𝑖𝐿, 𝑣𝐶]𝑇 which consists of the current 
that passes through the inductor L and the voltage 
across the capacitor C. Using Kirchoff's laws, it can be 
shown that the dynamics of the converters state 
variables satisfy the following equation (1) [2], 

�̇�(𝑡) = 𝐴0𝑥(𝑡) + 𝐵0𝑢(𝑡) 

       = �− 𝑟𝐿 𝐶⁄ −1/𝐿
1/𝐶 −1/𝑅𝐶� 𝑥(𝑡) + �1/𝐿

0 � 𝑢(𝑡) (1) 

where �̇�(𝑡) = 𝑑𝑑(𝑡)
𝑑𝑡

 denotes the time derivative of the 
state variables (no unit), 𝐴0 and 𝐵0 are constant state 
and input matrices (no units), 𝑟𝐿  is the parasitic 
resistance (ohm) in the circuit,  𝑢(𝑡) = 𝑉𝑔 has been 
defined as the system’s input. In the second mode 
(denoted as mode 1), switch 𝑆2  is activated (ON) 
whereas switch 𝑆1 is deactivated (OFF). In this case, 
the voltage source (𝑉𝑔) is disconnected from both the 
power storage components (L and C) and the load (R). 
This implies that the two loops in mode 0 no longer 
include 𝑉𝑔  as their elements. As a result, the 
dynamics of the converter's state variables in mode 
1 is simply governed by equation (2), 

�̇�(𝑡) = 𝐴1𝑥(𝑡) + 𝐵1𝑢(𝑡) 

       = �− 𝑟𝐿 𝐶⁄ −1/𝐿
1/𝐶 −1/𝑅𝐶� 𝑥(𝑡) (2) 

where 𝐵1 = [0, 0]𝑇 by the mode definition. 
Based on the above two operational modes, the 

buck converter dynamics may be modeled as an SHS 
model of the form equation (3) [16], 

𝑥(𝑡) = 𝐴𝜎(𝑡)𝑥(𝑡) + 𝐵𝜎(𝑡)𝑢(𝑡) (3) 

where 𝑥(𝑡) ∈ ℜ2 is the vector of state variables, 𝐴𝜎(𝑡) 
and 𝐵𝜎(𝑡) are the values of the constant state and 

 
Figure 1. The schematic of a DC-DC buck converter 
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input matrices (no units) of the SHS at switching 
signal value 𝜎(𝑡) , u(t) is the (control) input and 
𝜎(𝑡): 𝑡 → {0, 1} is a switching signal which controls 
the mode that should be activated for a certain 
duration of time. It is thus clear that the SHS in 
equation (3) consists of two modes with similar state 
variables such that it reduces to equation (1) if 
𝜎(𝑡) = 0 or simplifies to equation (2) when 𝜎(𝑡) = 1. 
In practice, the value of 𝜎(𝑡)  is usually regulated 
using a controller (e.g. pulse-width modulator) 
which sets the ratio of the time durations of the 
ON/OFF states of each switch in term of a duty ratio 
parameter [17]. 

The presence of the switching signal 𝜎(𝑡) makes 
the analysis of the converter dynamics in equation 
(3) challenging. For instance, it is known that the 
overall dynamics of equation (3) can be unstable 
even if its subsystems are all stable. For this reason, 
considerable research efforts have been given in the 
last few decades to develop methods for analyzing 
the stability of SHS in equation (3) [18]. Currently, 
there are at least two main methods to do such 
analysis, i.e. using common Lyapunov function (CLF) 
[19] and multiple Lyapunov functions (MLF) [20] 
methods. Although theoretical basis for these 
methods have been established, their tractable 
computational implementations remain relatively 
unexplored. As in the case of standard Lyapunov-
based methods, this lack of computational 
implementation has mainly been caused by the 
difficulty in finding the corresponding CLF or MLF 
[21]. This difficulty arises due to the fact that these 
methods essentially boil down to a problem of 
finding a nonnegative function that satisfies a set of 
nonlinear inequalities/equalities [22]. Finding such a 
function is known to be a computationally hard 
problem because there currently does not exist 
provable algorithms with polynomial time 
complexity to solve it [23]. 

To address the above difficulty, this paper 
proposes the use of SOS optimization techniques for 
analyzing the stability of the SHS in equation (3). The 
proposed method first transforms the hybrid 
dynamics of the buck converter into an equivalent 
polynomial differential algebraic equation (DAE) 
model [24]. Using the obtained DAE, this paper 
adopts a method from [14] to derive a dissipation 
inequality which defines the stability conditions of 
the resulting DAE form. Finally, an SOS programming 
approach [25] for computing a Lyapunov function 
which satisfies such an inequality is formulated. 

B. DAE representation of switched hybrid systems 

We next describe a method to construct an 
equivalent DAE model to represent the SHS model in 
equation (3). Let ℜ+  and ℜ𝑛  denote the sets of 
nonnegative real numbers and n-dimensional 
Euclidean space, respectively. Consider a general SHS 
model in equation (4), 

�̇�(𝑡) = 𝑓𝜎(𝑡)(𝑥(𝑡),𝑢(𝑡)) (4) 

where 𝑥(𝑡) ∈ ℜ𝑛 and 𝑢(𝑡) ∈ ℜ𝑚 denote the state and 
control vectors of the SHS, respectively. 𝑓𝜎(𝑡)  is a 
nonlinear function describing the vector fields of the 
system (no unit) when the switching signal 𝜎(𝑡) 

occurs. The function 𝜎(𝑡): [0, 𝑡𝑓) → 𝛩 ∈ {0,1,⋯ , 𝑞} is 
the switching signal which is a piecewise constant 
function of time, and 𝑓𝑖(⋅) ∈ ℜ𝑛 × ℜ𝑚 × ℜ+ → ℜ𝑛 
denotes a nonlinear function of the system vector 
fields when mode  𝑖 ∈ 𝛩 is active. 

To define a DAE representation of equation (4), 
one first constructs a (row) drift vector 𝐹(𝑥,𝑢) 
consisting the SHS’s vector fields for all modes as in 
equation (5), 

𝐹(𝑥,𝑢): = [𝑓0(𝑥,𝑢) 𝑓1(𝑥,𝑢) ⋯ 𝑓𝑞(𝑥,𝑢)] (5) 

Next, let 𝛤(𝜎) be the quotient vector of the Lagrange 
polynomial interpolation of 𝐹(𝑥,𝑢) in equation (5) of 
the form equation (6), 

𝛤(𝜎): = [ℓ0(𝜎) ℓ1(𝜎) ⋯ ℓ𝑞(𝜎)] (6) 

where ℓ is the quotient Lagrange polynomial vector 
with elements ℓ𝑗  where 𝑗 = 0, … , 𝑞 , in which each 
element of 𝐿(𝜎) is defined in the switching variable 𝜎 
as equation (7), 

ℓ𝑗(𝜎) = ∏ (𝜎−𝑖)
(𝑗−𝑖)

𝑞
𝑖=0
𝑗=0

 (7) 

where ℓ𝑗  for 𝑗 = 0, … , 𝑞 is the element of the quotient 
Lagrange polynomial vector. The switching variable 
𝜎 in the quotient vector equation (6) is constrained 
to take only integer values using polynomial 
function constraint in equation (8), 

𝐷(𝜎): = ∏ (𝜎 − 𝑗)𝑞
𝑗=0 = 0 (8) 

where 𝐷(𝜎) is a polynomial function constraint for 
the quotient Lagrange polynomial of the switching 
function. In this regard, an equivalent representation 
of equation (3) in the form of polynomial DAE model 
can be constructed using 𝐹(𝑥,𝑢), 𝛤(𝜎), and 𝐷(𝜎) in 
equation (5), equation (6), and equation (8), 
respectively as equation (9) [13], 

�̇�(𝑡) = 𝐹(𝑥,𝑢)𝛤(𝜎) (9) 
    0 = 𝐷(𝜎) 

C. SOS programming 

SOS programming is a variant of convex 
relaxation techniques in the context of polynomial 
optimization methods. The main idea in SOS 
programming methods is the reformulation of 
equality/inequality constraints in the considered 
problem as SOS polynomial conditions. Let 𝛧+ be the 
set of nonnegative integers and consider a 
polynomial ring ℜ [𝑥]  with unknown variables 
𝑥 ∈ ℜ𝑛 and real-valued coefficients [26]. Recall that a 
polynomial function 𝑉(𝑥) ∈ ℜ [𝑥]  being an SOS 
polynomial implies that 𝑉(𝑥)  is also a positive 
definite (PD) function (i.e. 𝑉(𝑥) ≥ 0 for all 𝑥 ∈ ℜ𝑛 ). 
This implication in turn allows one to recast the 
determination of whether a polynomial function is 
SOS or not as semidefinite programming (SDP) 
problems. Specifically, a polynomial function 𝑉(𝑥) of 
degree 2d with 𝑑 ∈ 𝛧+ is an SOS polynomial if there 
exist a PD matrix 𝑄𝑠 and a vector of monomials 𝛹(𝑥) 
of degree ≤ 𝑑 such that 𝑉(𝑥) can be decomposed as 
in equation (10) [27], 

𝑉(𝑥) = 𝛹𝑇(𝑥)𝑄𝑆𝛹(𝑥) (10) 
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A key important point in equation (10) is that the 
construction of such a decomposition may be 
formulated and solved using SDP methods [28]. 
Specifically, by specifying the vector of finite degree 
monomials 𝛹(𝑥),  the construction of the 
decomposition in equation (10) boils down to the 
search for a positive definite matrix 𝑄𝑠 for which the 
equality in equation (10) holds [29]. This means 
various computational tools and solvers of 
semidefinite programming problems can be used to 
compute such a decomposition. 

The decomposition in equation (10) forms the 
basis for the formulation of an SOS program. For 
instance, equation (10) can be used to 
simultaneously (i) determine if a polynomial 𝑉(𝑥) is 
PD and (ii) compute a positive lower bound 𝛾 > 0 for 
𝑉(𝑥) using the SOS program in equation (11), 

𝑚𝑖𝑚      𝛾 (11) 
s.t.      𝑉(𝑥) − 𝛾 is SOS 

Note that if the solution 𝛾 in equation (11) is feasible, 
then the SOS property of 𝑉(𝑥)  guarantees that 
𝑉(𝑥) − 𝛾 ≥ 0 holds, which thus implies 𝑉(𝑥) is a PD 
function that is lower bounded by the constant 𝛾 > 0. 
Particularly, equation (11) is a convex SDP problem 
as it searches for a constant 𝛾 > 0 and a PD matrix 𝑄𝑠 
such that 𝑉(𝑥) − 𝛾 = 𝛹𝑇(𝑥)𝑄𝑠𝛹(𝑥)  holds. As such, 
various well-established computational tools in SDP 
methods can used to solve equation (11) [30]. 

III. Results and Discussions 

A. DAE representation of buck converter model 

For the SHS model in equation (2), the 
polynomial DAE representation in equation (9) can 
be constructed by noting that the system mode has 
such that. Thus, the drift vector in equation (5) for 
this case is defined as 𝐹(𝑥,𝑢): = [𝐴0𝑥(𝑡) 𝐴1𝑥(𝑡)]. 

On the other hand, the elements of the quotient 
polynomial interpolation are defined as 

ℓ0(𝜎) = �
(𝜎 − 1)
(0 − 1)

1

𝑖=1
𝑗=0

= 1 − 𝜎,      ℓ1(𝜎) = �
(𝜎 − 0)
(1 − 0)

1

𝑖=0
𝑗=1

= 𝜎 

such that the polynomial function is defined as 
𝐷(𝑠): = ∏ (𝜎 − 𝑗)1

𝑗=0 = 𝜎(𝜎 − 1). 
As a result, an equivalent polynomial DAE 
representation of the SHS equation (2) is defined as 
equation (12), 

�̇�(𝑡) = [𝐴0𝑥(𝑡) + 𝐵0𝑢(𝑡)](1 − 𝜎) + 𝐴1𝑥(𝑡)𝜎 
 = (𝐴0(1 − 𝜎) + 𝐴1𝜎)𝑥(𝑡) + 𝐵0(1 − 𝜎)𝑢(𝑡) 

    0 = 𝜎(𝜎 − 1) (12) 

B. Stability analysis of DAE system using 
dissipation inequality 

This section describes an SOS programming 
formulation of a dissipation inequality which 
describes the sufficient stability conditions for the 
DAE representation in equation (10) of the SHS 
model in equation (3). In particular, this paper 
examines the use of Lyapunov’s stability analysis 
method for studying the dynamics and stability of 
the DAE system in equation (10). To begin with, 

consider a general model of nonlinear systems in 
equation (13), 

�̇�(𝑡) = 𝑓(𝑥(𝑡)) + 𝑔(𝑥(𝑡))𝑢(𝑡),              𝑥(0) = 𝑥0 (13) 

The equilibrium 𝑥∗ ≡ {𝑥|𝑓(𝑥) + 𝑔(𝑥)𝑢 = 0}  of 
equation (5) is said to be Lyapunov stable if there 
exists a function𝑉(𝑥):ℜ𝑛 → ℜ+  which satisfies: (i) 
𝑉(𝑥) ≥ 0  and (ii) (𝛻𝑑𝑉)[𝑓(𝑥) + 𝑔(𝑥)𝑢(𝑡)] < 0  for all 
𝑥 ∈ ℜ𝑛 in which (𝛻𝑑𝑉) = (𝜕𝑉(𝑥)/𝜕𝑥) [31]. For the DAE 
system of the form equation (10), Lyapunov stability 
analysis method may still be used through its 
reformulation in the form of a dissipation inequality. 
In this case, the system equilibrium vector [𝑥∗,𝜎]𝑇 
for a given u is defined as that for which conditions 
(i) 0 = [𝐴0𝑥∗ + 𝐵0𝑢(𝑇)](1 − 𝜎) + 𝐴1𝑥∗  and (ii) 
0 = 𝜎(𝜎 − 1) hold. The following theorem from [14] 
establishes a sufficient stability condition for system 
equation (12). 
Theorem 1 [14]: The equilibrium 𝑥∗of the DAE in 
equation (4) is asymptotically stable if there exist a 
function 𝑉(𝑥):ℜ𝑛 → ℜ+,  a scalar-valued function 
𝜆(𝑥,𝜎) > 0  and a function 𝛤(𝜎) = 0  such that the 
following dissipation inequality holds around 𝑥∗, 

(𝛻𝑑𝑉)[𝐴0𝑥 + 𝐵0𝑢](1 − 𝜎) + 𝐴1𝑥] < 𝜆(𝑥,𝜎)𝛤2(𝜎) (14) 

Theorem 1 essentially states that if a set of 
functions {𝑉(𝑥), 𝜆(𝑥,𝜎),𝛤(𝜎)}  which satisfy the 
inequality in equation (14) exist simultaneously, 
then the equilibrium of DAE in equation (12) is 
guaranteed to be asymptotically stable. 
Unfortunately, such a search is known to be a 
computationally hard problem. However, if 
𝑉(𝑥), 𝜆(𝑥,𝜎) , and (𝜎)  are polynomial functions, a 
tractable computation method for their search is 
available using techniques from SOS programming. 
Stability of SHS in equation (12) can be examined 
using SOS programming that corresponds to the 
result in Theorem 1. 

C. SOS programming algorithm for stability of 
DAE model 

Proposition 1 formulates an SOS program based 
on the result in Theorem 1. The main idea in this 
algorithm formulation is to relax the inequality 
constraints in equation (14) into SOS polynomial 
constraints. 
Proposition 1: The equilibrium of the SHS model in 
equation (12) is asymptotically stable if there exist a 
polynomial function 𝑉(𝑥) ∈ ℜ [𝑥]  SOS, polynomial 
functions 𝜆(⋅) ∈ ℜ [𝑥,𝜎] and 𝛤(⋅) ∈ ℜ [𝜎] such that the 
solution 𝛾 > 0 of the SOS program in equation (15) to 
equation (19) is feasible, 
min      γ 

s.t.      𝑉(𝑥) − 𝛾                                    is  SOS (15) 

Γ2(𝜎)𝜆(𝑥,𝜎) − (𝛻𝑑𝑉)�̇�(𝑡)               is  SOS (16) 

𝜆(𝑥,𝜎)                                                    is  SOS (17) 

Γ(𝜎)                                                        is  SOS (18) 

−Γ(𝜎)                                                     is  SOS (19) 

Proof: Assume the solution of equation (9) is feasible. 
Then there exists a constant 𝛾 > 0 which satisfies 
equation (15) to equation (19). Such a satisfaction 
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thus particularly implies the existence of functions 
𝜆(𝑥,𝜎) ≥ 0  and 𝛤(𝜎) = 0.  Moreover, the satisfaction 
of equation (15) implies the existence of a PD 
function 𝑉(𝑥) ≥ 𝛾 > 0 with a lower bound of 𝛾 > 0. 
Finally, the satisfaction of equation (16) implies 
𝜆(𝑥,𝜎)𝛤2(𝜎) − (𝛻𝑑𝑉)[𝐴0𝑥 + 𝐵0𝑢](1 − 𝜎) + 𝐴1𝑥] ≥ 0,  
which is essentially the condition in equation (14). 
By Theorem 1, we conclude that the equilibrium of 
the SHS equation (12) is asymptotically stable. The 
proof is thus completed. 

Algorithm 1 details a computational method for 
the implementation of Proposition 1. Notice in this 
algorithm that 𝛤(𝜎) = 𝜎(𝜎 − 1) is explicitly defined 
even though it may also be defined as an unknown 
polynomial function in variable 𝜎 that needs to be 
searched simultaneously with 𝑉(𝑥),  𝛾  and 𝜆(𝑥,𝜎) 
during the optimization’s iteration. This simply 
means that the decision variables of the 
optimization become larger. The explicit choice of 
𝛤(𝜎) = 𝜎(𝜎 − 1) in Algorithm 1 may thus be viewed 
as a way to reduce the computational load which 
otherwise may increase very fast when 𝛤(𝜎) is left as 
decision variable. Algorithm 1 can be implemented 
in SOS programming tools in conjunction with SDP 
solvers [32]. Section III.D illustrates an 
implementation of Algorithm 1 for the SHS model in 
equation (4). 

D. Simulation experiments 

This section reports the simulation results of the 
implementation of Algorithm 1 to analyze the 
stability of the SHS model in equation (4). In the 
simulation, the model parameters of 𝑉𝑔 = 12  volt, 
𝑅 = 50𝑘 𝛺,  𝑟𝐿 = 20.25 Ω,  𝐿 = 0.33𝑚Η and 𝐶 = 120 𝜇𝐹 
were used. The SHS model is assumed to operate 
with a duty cycle of 0.5. Algorithm 1 is implemented 
in MATLAB [33] programming platform using 
SOSTOOL [27] and MOSEK [34] software tools under 
a Core-i7, 4.2 GHz PC with 16 GB RAM. For the SHS 

model equation (4), Algorithm 1 was solved in 8.5 
seconds and gives a Lyapunov function 𝑉(𝑥)  of 
degree 𝑑𝑉 = 6 and an SOS function 𝜆(𝑥,𝜎) of degree 
𝑑𝜆 = 6. The existence of such functions thus certify 
the asymptotic stability of the SHS model in 
equation (10). For comparison, simulation 
experiments were also conducted for the dynamics 
of the SHS model in equation (1) and equation (12) 
using a direct numerical integration method, as well 
as the buck converter dynamics based on the 
physical circuit in Figure 1. 

The switching input signal is generated using a 
pulse width modulator (PWM) generator with a 
frequency of 𝑓𝑃𝑃𝑃 = 2𝐾𝐾𝐾. The measurable output of 
the system is assumed to be the output voltage 
across R. The simulations were conducted using 
MATLAB which is already integrated with SIMULINK 
and SIMSCAPE. Figure 2 shows the block diagram of 
the three buck converter models that are used in the 
simulation. 

For the assumed model parameter values, 
simulations result of these models were obtained in 
15.6 seconds which is longer than that required by 
the SOS programming method. As shown in Figure 3, 
the simulation results indicate similar stable 
behavior of the output voltages and reflect a 
resulting output voltage of 6 volts for the 12 volt 
input with 0.5 duty cycle. This thus verifies the 
stability property of the considered buck converter 
system as concluded by the existence of solution to 
the SOS Programming method in Algorithm 1. The 
main advantage of using SOS Programming method 
is that it essentially mimics the feature of 
Lyapunov’s stability analysis method whereby the 
stability of a system can be inferred/concluded based 
on the existence of Lyapunov function and without 
having to rely on exhaustive simulation based on 
numerical integration methods. 

 

Algorithm 1. 

SOS program formulation in Proposition 1 

SOS Program for Stability Analysis of SHS Model in equation (4) 

Input : Matrices ,0 1A A  and 1B  for the SHS model in equation (10) 

Output: Polynomial functions ( ),   ( )V x xλ  and a lower bound γ  

Initialization: 

1. Define the polynomial ( ) (1- )σ σ σΓ =  

2. Set u  to be a constant duty ratio input for the buck converter model 

SOS Program 

3. Define the vector of augmented decision variables [ , ]Tx x σ=  

4. Construct a polynomial function template ( )  V x c xdV
α

α α∑= ≤  of degree dV  

with unknown coefficients cα  in which α  is a multi-index 

5. Construct a polynomial function template ( )  x c xd
βλ β βλ

∑= ≤  of degree dλ  

with unknown coefficients cβ  in which β  is a multi-index 

6. Define a positive constant γ  as the decision variable of the problem in equation (8) 

7. Declare the SOS constraints (9b)–(9f) for the defined ( ),   ( )V x xλ  and ( )σΓ  

8. Solve the SOS program to find ( ),   ( )V x xλ  and γ  
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Figure 2. MATLAB SIMULINK/SIMSCAPE model used in simulation 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Figure 3. Output comparison of the state: (a) space; (b) DAE; and (c) physical models  
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IV. Conclusion 

This paper has presented a convex optimization 
approach for the analysis of an equivalent SHS 
representation of DC-DC buck converter model. The 
proposed method first transforms the hybrid 
dynamics of the buck converter into an equivalent 
polynomial differential algebraic equation (DAE) 
model. The method then formulates an SOS 
programming algorithm for searching a Lyapunov 
functions which satisfy a dissipation inequality 
condition on the obtained DAE model that is 
sufficiently required to guarantee the asymptotic 
stability of the equilibrium point of the SHS model. 
Numerical simulation results show that the 
proposed method can prove the stability of the 
system in a relatively shorter computational time 
without relying on exhaustive simulations of the 
systems’ dynamics. Future works will extend the 
proposed approach to synthesize stabilizing 
controller for the SHS method. Other possible 
directions include the implementation of other 
polynomial optimization approaches such as the 
method of moments for characterizing the stability 
property of SHS models as well as analyzing more 
complex and nonlinear hybrid model of switched 
hybrid power converters. 
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