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Abstract 
This work presented the gain scheduling based LQR for Quadrotor systems. From the original nonlinear model, the system 

is always controllable and observable in various equilibrium points. Moreover, the linearized systems have a unique property that 

is known as sparse system. Hence, in order to implement the most efficient state feedback controller, post-filter and pre-filter 

were introduced to transform the state coordinate to decrease coupling between states. Finally, the gain scheduling systems using 

these facts was proposed. The system behavior was tested using the proposed controller. The numerical studies showed the 

effectiveness of the controller to achieve desired altitude, attitude, and its ability during the disturbance. 

 

Keywords: quadcopters; sparse system; linearization; gain scheduling; pole-placement. 

 

I. INTRODUCTION 
Quadcopter is one of Unmanned Aerial 

Vehicles that become popular and having much 

attention recently, especially from the researchers 

and hobbyist in aeromodelling. Several factors 

that contribute to its popularity are its reliability 

in maneuvering, its ability to be flown indoors, 

and easier to model and control [1], [2]. 

One of the most important problem on the 

quadcopter stems comes from the fact that 

quadcopter is essentially not a stable system, both 

in stabilization and trajectory following. 

Therefore, special considerations are needed in 

designing the control system for stabilizing or 

maneuvering. Existing control theories in 

controlling quadcopter are widely varied. The 

most commonly used is the conventional PID 

control [3], mainly due to its simple structure that 

is easy enough to be designed and implemented 

in varied systems, including quadcopter [1]. 

The drawback of PID controller is the gain 

that set for optimum in some specific conditions. 

In order to get the better results, the controller 

has to be adaptive so that it can adjust the 

controller gain to adapt to the position and 

attitude change of the quadrotor. Many people 

have tried to design this adaptive control such as 

Gaikwad [4] with auto-tuning PID Loop Shaping 

and Liu [5] who design self-adaptive PID based 

on the least-square method. Another approach is 

proposed to control a quadcopter using PD 

controller equipped with active force control to 

reject uncertainty disturbance by estimating 

disturbance torque value [6]. 

One of the challenges in designing controller 

for quadrotor is that the system is non-linear, a 

very common to linearize first. The basic 

limitation of the controller design via standard 

linearization is the fact that the control is 

guaranteed to work only in the neighborhood of a 

single equilibrium point. Gain scheduling is a 

technique to design a controller of non-linear 

system by linearization the system at several 

equilibrium points, designing the controller at 

each point, and implementing the family of linear 

controllers as a single controller with varying 

gain or parameter [7]. 

This paper also present the linearization of the 

simplified model of quadrotor based on [1] using 
* Corresponding Author.Tel: +6281804092541 
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the gain scheduling linearization at some 

equilibrium points. Then, the controllability and 

observability of the system for various 

equilibrium points is proposed. After that, using 

the linearized state equations, the state feedback 

controllers is obtained and applied to control the 

altitude and attitude of the quadrotor non-linear 

model. For implementation purpose, a controller 

that focused on improvement of pole placement 

method is proposed by restructuring the state 

variable of linearized quadcopter dynamics to its 

Jordan form to emphasize the sparseness of the 

dynamics. 

 

II. SYSTEM OVERVIEW 

 

A. Notation Explanation 

This section consists of explanation on the 

derivation of state-space equations of quadcopter 

system. The linearization is performed to 

formulate the transfer function of the quadcopter 

plant. The model is shown in Figure 1. 12 states 

are used for this state-space model. The position 

in world frame is denoted as = [x y z], while 

the roll, pitch, yaw angles denoted as  = 

[]. The velocity due to x-axis, y-axis, z-

axis denoted as  = [ẋ ẏ ż], and the angular 

velocity due to x-axis, y-axis, z-axis denoted as 

 = [ṗ q̇ ṙ]. The state variable and its system 

input is set as x = [









], and u = 

[









]. Hence it was set that x = [ x1, 

. . .  , x12 ]
T
 and u = [ u1, . . .  , u4 ]

T
 

 

B. Translational and Rotational Analysis 

Based on Newton’s second law of 

translational motion, this equation is obtained: 

𝐹 = 𝑚𝑣 + (𝜔 × 𝑚𝑣)  

where 4 and v = 3. From Figure 1, the 

forces which is worked on the quadcopter is 

obtained as: 

𝐹 = 𝐹𝑔 − 𝐹thrust  

𝐹 =  0 0 𝑚𝑔 𝑇+𝑤𝑅𝐵 0 0 𝑇 𝑇  

Therefore, equation 3 can be expressed as: 

𝑣 =  
1

𝑚
 
0
0
1
 − 𝑅  

0
0
𝑇
 𝐵

𝑊  −  
𝑝 
𝑞 
𝑟 
 ×  

𝑥 
𝑦 
𝑧 
   

where m is the mass of quadcopter, T is vertical 

thrust of quadcopter against gravity and 
W

RB is 

the rotation matrix from body-frame to world-

frame or inertial-frame, where: 

𝑊𝑅𝐵 =  

𝑐𝜃𝑐𝜓 𝑠𝜙𝑠𝜃𝑐𝜓 − 𝑐𝜙𝑠𝜓 𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜙𝑠𝜓

𝑐𝜃𝑠𝜓 𝑠𝜙𝑠𝜃𝑠𝜓 + 𝑐𝜙𝑐𝜓 𝑐𝜙𝑠𝜃𝑠𝜓 − 𝑠𝜙𝑐𝜓

𝑠𝜃 𝑠𝜙𝑐𝜃 𝑐𝜙𝑐𝜃

 

 

𝑣 =  
1

𝑚
 

−𝑇(𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜙𝑠𝜓 )

−𝑇(𝑐𝜙𝑠𝜃𝑠𝜓 − 𝑠𝜙𝑐𝜓 )

𝑚𝑔 − 𝑇𝑐𝜙𝑐𝜃

 − 𝑅  

𝑞 𝑧 − 𝑟 𝑦 
𝑟 𝑥 − 𝑝 𝑧 
𝑝 𝑦 − 𝑞 𝑥 

 𝐵
𝑊    

Assumed that ṗ, q̇, ṙ, ẋ, ẏ, ż equal to zero, then: 

𝑥 = −
1

𝑚
𝑇(𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜙𝑠𝜓 ) 

𝑦 = −
1

𝑚
𝑇(𝑐𝜙𝑠𝜃𝑠𝜓 − 𝑠𝜙𝑐𝜓 ) 

𝑧 = 𝑔 −
1

𝑚
𝑇𝑐𝜙𝑐𝜃  

Using rigid body rotational law, 𝛤 is: 

𝛤 = 𝐼𝜔 + (𝜔 × 𝐼𝜔)  

where, I is moment of inertia of quadcopter as: 

𝐼 =  

𝐼𝑥 0 0
0 𝐼𝑦 0

0 0 𝐼𝑧

  

Then, equation 10 can be written as: 

𝐼𝜔 =  

𝜏𝑥

𝜏𝑦

𝜏𝑧

 −   
𝑝 
𝑞 
𝑟 
 ×  

𝐼𝑥𝑝 
𝐼𝑦𝑞 

𝐼𝑧𝑟 
    

and 

𝜏𝑥 = 𝑑𝑏 𝜔4
2 − 𝜔2

2   

𝜏𝑦 = 𝑑𝑏 𝜔1
2 − 𝜔3

2   

𝜏𝑧 = 𝑘 𝜔1
2 − 𝜔2

2 + 𝜔3
2−𝜔4

2   

𝑇 = 𝑏(𝜔1
2 + 𝜔2

2 + 𝜔3
2+𝜔4

2)  

Thus, these equations for angular acceleration of 

quadcopter is: 

𝑝 =
𝑑𝑏

𝐼𝑥
(𝜔4

2 − 𝜔2
2) −

𝐼𝑧−𝐼𝑦

𝐼𝑥
𝑞 𝑟  

𝑞 =
𝑑𝑏

𝐼𝑦
(𝜔1

2 − 𝜔3
2) −

𝐼𝑥−𝐼𝑧

𝐼𝑦
𝑝 𝑟  

𝑟 =
𝑘

𝐼𝑧
(𝜔1

2 − 𝜔2
2 + 𝜔3

2−𝜔4
2) −

𝐼𝑦−𝐼𝑥

𝐼𝑧
𝑝 𝑞   

Figure 1. Quadcopter axis 
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The roll, pitch and yaw (RPY) rates which is a 

function of angular velocity were derived using 

inverted Jacobian matrix, denoted as: 

𝑊−1 =
1

𝑐𝜃
 

𝑐𝜃 𝑠𝜙𝑠𝜃 𝑐𝜙𝑠𝜃

0 𝑐𝜙𝑐𝜃 −𝑠𝜙𝑐𝜃

0 𝑠𝜙 𝑐𝜙

   

and the relation between RPY rates and angular 

velocity is expressed by matrix: 

 

𝜙 

𝜃 

𝜓 
 = 𝑊−1  

𝑝 
𝑞 
𝑟 

   

So, the roll, pitch, yaw rates: 

𝜙 = 𝑝 + 𝑠𝜙 𝑡𝜃𝑞 + 𝑐𝜙𝑡𝜃𝑟 = 0 

𝜃 = 𝑐𝜙𝑞 + 𝑠𝜙𝑟 = 0  

ψ =
sϕ

cθ
q +

cϕ

cθ
r = 0 



C. Linearization 

The non-linear model of quadrotor will be 

linearized at the equilibrium points to make the 

system more amenable. In order to do the 

linearization, it is required to find the equilibrium 

point of the system, hence 0 = 𝑓(𝜒 𝛼, 𝛽, 𝛾, 𝛿 ). It 

is trivial that part of equibrium points are as 

follow: 

𝑥1 = 𝑥 = 𝑥7 = 0  

𝑥2 = 𝑥 = 𝑥8 = 0  

𝑥3 = 𝑥 = 𝑥9 = 0  

𝑥 4 = 𝜙 = 𝑥10 + 𝑠𝑥4
𝑡𝑥5

𝑥11 + 𝑐𝑥4
𝑡𝑥5

𝑥12 = 0  

𝑥 5 = 𝜃 = 𝑐𝑥4
𝑥11 + 𝑠𝑥4

𝑥12 = 0  

𝑥 6 = 𝜓 =
𝑠𝑥4

𝑐𝑥5

𝑥11 +
𝑐𝑥4

𝑐𝑥5

𝑥12 = 0  

𝑥 7 = 𝑥 = −
1

𝑚
𝑇(𝑐𝑥4

𝑠𝑥5
𝑐𝑥6

+ 𝑠𝑥4
𝑠𝑥6

) = 0  

𝑥 8 = 𝑦 = −
1

𝑚
𝑇(𝑐𝑥4

𝑠𝑥5
𝑠𝑥6

− 𝑠𝑥4
𝑐𝑥6

) = 0  

𝑥 9 = 𝑧 = 𝑔 −
1

𝑚
𝑇(𝑐𝑥4

𝑐𝑥5
) = 0  

𝑥 10 = 𝑝 =
𝑑𝑏

𝐼𝑥
 𝑢4 − 𝑢2 −

𝐼𝑧−𝐼𝑦

𝐼𝑥
𝑥11𝑥12 = 0  

𝑥 11 = 𝑞 =
𝑑𝑏

𝐼𝑦
(𝑢1 − 𝑢3) −

𝐼𝑥−𝐼𝑧

𝐼𝑦
𝑥10𝑥12  

𝑥 12 = 𝑟 =
𝑘

𝐼𝑧
(𝑢1 − 𝑢2 + 𝑢3 − 𝑢4) −

𝐼𝑦−𝐼𝑥

𝐼𝑧
𝑥10𝑥11

  

From equation (31) and (32), it was obtained: 

𝑠2𝑥5 + 𝑡2𝑥4 = 0  

The only solution for this equation is x4 = 0 

and x5 = 0. By combining the results with 

equation (28), (29), and (30) following state can 

be obtained as x10 = 0, x11 = 0 and x12 = 0. Using 

assumption that the equilibrium point is located 

at certain positions in Cartesian coordinate (x, y, 

z) and at some yaw angle positions is defined by 

x = y = , z = and = . So, the complete 

list of the state variables value in this 

equilibrium, X(), can be written as x1 = 

α, x2 = β, x3 = γ, x4 =0, x5 = 0, x6 = δ, x7= 0, x8 = 

0, x9 = 0, x10 = 0, x11= 0, and x12= 0. 

Remark 1. It can be noted that in the equilibrium, 

unless the arbitrary position and the yaw angle, 

all of the state are zeros. 

The state equation for the linearized state 

space model is represented by: 

𝑥 = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥 + 𝐷𝑢.

  

where the matrix A and B can be found by using 

following equation. 

𝐴 =

 
 
 
 

𝜕𝑓1

𝜕𝑥1
|𝑋(𝛼, 𝛽, 𝛾, 𝛿) ⋯

𝜕𝑓1

𝜕𝑥12
|𝑋(𝛼, 𝛽, 𝛾, 𝛿)

⋮ ⋱ ⋮
𝜕𝑓12

𝜕𝑥1
|𝑋(𝛼, 𝛽, 𝛾, 𝛿) ⋯

𝜕𝑓12

𝜕𝑥12
|𝑋(𝛼, 𝛽, 𝛾, 𝛿) 

 
 
 
  

𝐵 =

 
 
 
 

𝜕𝑓1

𝜕𝑢1
|𝑋(𝛼, 𝛽, 𝛾, 𝛿) ⋯

𝜕𝑓1

𝜕𝑢12
|𝑋(𝛼, 𝛽, 𝛾, 𝛿)

⋮ ⋱ ⋮
𝜕𝑓12

𝜕𝑢1
|𝑋(𝛼, 𝛽, 𝛾, 𝛿) ⋯

𝜕𝑓12

𝜕𝑢12
|𝑋(𝛼, 𝛽, 𝛾, 𝛿) 

 
 
 
  

By careful calculation it was found that: 

𝐴(12×12) =  

𝑂 6×6 𝐼 6×6 

𝑂 2×2 𝑁 2×2 𝑂 2×1 𝐼 6×6 

𝑂 4×6 

   

and 

𝐵 12×4 =  
𝑂 8×4 

𝑀 4×4 
  (42) 

where O is zero matrix and I is identity matrix. 

While N and M can be defined as: 

𝑁 2×2 =  
−𝑔𝑠𝛿 −𝑔𝑐𝛿

𝑔𝑐𝛿 𝑔𝑠𝛿
   

𝑀 2×2 =

 
 
 
 
 
 
 −

𝑏

𝑚
−

𝑏

𝑚

0 −
𝑑𝑏

𝐼𝑥

−
𝑏

𝑚
−

𝑏

𝑚

0
𝑑𝑏

𝐼𝑥
𝑑𝑏

𝐼𝑦
0

𝑘

𝐼𝑧
−

𝑘

𝐼𝑧

−
𝑑𝑏

𝐼𝑦
0

𝑘

𝐼𝑧
−

𝑘

𝐼𝑧 
 
 
 
 
 
 

  

For simulation purpose, the constants which 

are going to be used is set as g = 9.81 m/s
2
, ix = 

0.0820 kg.m
2
, iy = 0.0845 kg.m

2
, iz = 0.1377 

kg.m
2
, b = 1.2953 x 10

-5
 kg.m, d = 0.165 m, k = 

1.0368 x 10
-7

 kg.m
2
, m = 4.34 kg. 

The output of this quadrotor model is defined 

by the vector y = [x y z ]
T
, so the matrix C can 

be written as: 
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𝐶 4×12 =  
𝐼 3×3 𝑂 3×9 

𝑂 1×3 𝐿 1×3 
   

where 

𝐿 4×12 = [0 0 1 0 0 0 0 0 0]  

Finally, the linearization model of this 

quadcopter is: 

𝑥 = 𝐴12×12𝑥 + 𝐵12×4𝑢  

𝑦 = 𝐶12×1𝑥  

Remark 2. It can be seen from equation (41) to 

(45) that most of the components of the 

linearized state space model are zero 

components.  

Remark 3. Here matrices A, B, and C as sparse 

matrices and the corresponding state equation is 

called by the systems with sparseness property.  

 

D. Controlability and Observability  

Before designing the controller or the 

observer, it has been checked the controllability 

and observability of the system. Define the 

controllability matrix as: 

𝑃𝑐 = [𝐵 𝐴𝐵 𝐴2𝐵 ⋯ 𝐴𝑛−1𝐵]  

where n defines the order of the system. In this 

case, the matrix can be written as: 

𝑃𝑐(12×48) = [𝐵 𝐴𝐵 𝐴2𝐵 ⋯ 𝐴11𝐵]  

𝑃𝑐 4×12 =  

𝑂 8×4 

𝑀 4×4 

 

𝑂 2×4 

𝑀 4×4 

𝑂 6×4 

 

𝑂 6×4 

𝑅 2×4 

𝑂 4×4 

 

𝑅 2×4 

𝑂 10×4 

𝑂 8×4 

 𝑂 12×36   (51) 

where 

𝑅 2×4 =  
−

𝑔𝑐𝛿𝑑𝑏

𝐼𝑦

𝑔𝑐𝛿𝑑𝑏

𝐼𝑥

−
𝑔𝑠𝛿𝑑𝑏

𝐼𝑦
−

𝑔𝑐𝛿𝑑𝑏

𝐼𝑥

𝑔𝑐𝛿𝑑𝑏

𝐼𝑦
−

𝑔𝑐𝛿𝑑𝑏

𝐼𝑥

𝑔𝑠𝛿𝑑𝑏

𝐼𝑦

𝑔𝑐𝛿𝑑𝑏

𝐼𝑥

   

From the above equation is concluded the 

following proposition. 

Proposition 1. The linearized sytems with 

components in equation (41) to (45) are 

controllable regardless of the value of and 



Proof. The controllability matrix equation (51) 

has unique configuration of the matrix element. 

Only prove that the rank of the controllability 

matrix will always be full rank is needed, i.e., 

rank of 12, regardless of the value of and 

. Using standard reduced row escelon form, the 

systems should be converted into a perfect 

triangular matrix thus the prove that the system is 

controllable can be concluded. 
By the definition, the matrix observability can 

be written as: 

𝑃𝑜(48×12) =  𝐶 𝐶𝐴 𝐶𝐴2 ⋯ 𝐶𝐴11 𝑇   

𝑃𝑜(48×12) =

 
 
 
 
 
𝜒1 4×12 

𝜒2 4×12 

𝜒3 4×12 

𝜒4 4×12 

𝑂 32×12  
 
 
 
 
𝑇

  

where 

𝜒1 4×12 =  
𝐼 3×3 𝑂 3×9 

𝑂 1×3 𝐿 1×9 
   

𝜒2 4×12 =  
𝑂 4×6 𝐼 3×3 

𝑂 1×3 

𝑂 4×2 𝑍 4×1    

𝜒3 4×12 =  
𝑂 4×3 𝑁 2×2 𝑂 4×7 

𝑂 2×2 
  

𝜒4 4×12 =  
𝑂 2×9 𝑁 2×2 𝑂 4×1 

𝑂 2×2 
   

and 

𝑍 4×1 =  0 0 0 1 𝑇   

then the observability of the systems as 

summarized in the following preposition can also 

be concluded.  

Preposition 2. The above linearized system is 

also always observable regardless of the variation 

of the value of and . 

Proof. The proof is very similar with the proof of 

the first preposition, thus to save space, it is 

omited. 

Remark 4. What makes this result interesting is 

the fact that the controllability and observability 

depend on the equilibrium point in the beginning, 

which is at x = y = , z = and = 

Eventually, the property of matrix A and B 

depended only on the yaw angle value. 

From the above remark, the system can be 

controlled by more advanced adaptive controller 

technique such as gain scheduling without 

concerning the controllability and observability 

of the system. For gain scheduling, the controller 

matrix K will depend on the value of yaw angle 

and will be both controllable and observable 

for all . 
 

III. CONTROLLER IMPLEMENTATION 
Before discussing the gain scheduling that is 

going to explain in the next section, the novel 

method for implementing the controller is 

proposed. It can be observed from the derived 

model in the previous section that the linearized 

dynamics of the quadcopter are dominated by 

chain of integrator. The controller design strategy 

is based on exploiting this fact by restructuring 
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the state variable to its Jordan form to emphasize 

the sparseness of the dynamics [8]. From the 

restructured states, a pole placement controller is 

designed. Both of the designed controllers are 

then re-transformed to the original state space. 

The aim of controller design in this article is 

to formulate a gain matrix K for state-feedback 

controller, such that the eigen value of a matrix 

(A+BK) coincides with the desired dynamics 

pole. The method employed in this article is 

based on a notion of matrix similarity. A pair of 

matrix A and B are called similar if there is a 

similarity transformation P such that: 

𝐵 = 𝑃𝐴𝑃−1  

One of the interesting characteristics of 

similarity transforms is that the eigen value of the 

matrices are preserved under the similarity 

transformation. In this article, the transformed 

matrix of a matrix A is denoted as A. 
The similarity transform used in this article 

are the transformation matrix from the original 

state notation to a new state notation x composed 

of: 

𝒙′ = [𝜖𝑥 𝑥 𝑥 𝛼1𝜑𝑟 + 𝛼2𝜑𝑝 𝛼1𝜑 𝑟 + 𝛼2𝜑 𝑝 𝜖𝑦 𝑦 𝑦  
𝛼3𝜑𝑟 + 𝛼4𝜑𝑝 𝛼3𝜑 𝑟 + 𝛼4𝜑 𝑝 𝜖𝑧 𝑧 𝑧 𝜖𝑦 𝜑𝑦 𝜑 𝑦 ]𝑇

  

The matrix used for this similarity transform 

can be found on the appendix. 

The resulting matrix from this similarity 

transform is: 

𝐴′ =  

𝐻5×5 0 0
0
0
0

𝐻5×5

0
0

0
𝐻5×5

0

0
0
0

𝐻5×5

  

with Hn × n is an n × n matrix such that: 

𝐻𝑛×𝑛 =  
0 𝐼𝑛−1×𝑛−1

0 0
  

By changing the last row of H matrix with row 

vector [a1 . . . an] the H matrix become a 

controller canonical matrix with characteristics 

polynomial as: 

𝐻 𝑠 = 𝑎1 + 𝑎2𝑠
2 + ⋯ + 𝑎𝑛𝑠𝑛 + 𝑠𝑛+1 

The other interesting property of A is that by 

separation principle, the poles of each H can 

designed without regarding the poles of other 

blocks. This property permits to do pole 

placement of each H matrix separately. For a Hn × 

n matrix, n number of poles (p1 . . . pn) are 

selected. The desired characteristics polynomial is 

given by: 

𝐻𝑖𝑑  𝑠 =  (𝑠 − 𝑝𝑖)
𝑛
𝑖=1 = 𝑎1 + 𝑎2𝑠2 + ⋯ + 𝑎𝑛𝑠𝑛 +

𝑠𝑛+1 

The coefficients of the desired polynomial 

(a1 . . . an) are then inserted as [a1 . . . an] to 

the last row of H. Such the desired dynamics 

matrix of the systems is given by: 

𝐴𝑖𝑑
′ = 𝐴′ + (𝐵𝐾)′   

𝐵𝑖𝑑
′

 

The Bid is the collection of H blocks last rows 

that control the dynamics of the systems. By 

simple algebraic manipulation, the desired B and 

K can be derived from a Bid. The K are calculated 

as: 

𝐾 = 𝐵†(𝑃−1𝐵𝑖𝑑
′ 𝑃) 

The B
†
 matrix is defined such that for every 

vector v this relation hold: 

𝑣 = 𝐵†𝐵𝑣  

Matrix B has a special structure as: 

𝐵† = [𝑂4×8 𝐵𝑠𝑢𝑏
𝑇 𝑂4×4] 

then matrix B
†
 can be defined as: 

𝐵† = [𝑂4×8 𝐵𝑠𝑢𝑏
−1 𝑂4×4] 

The Bsub matrix has same structure with the 

Haar Wavelet Analysis matrix [9], these 

structures ensures that Bsub matrix are invertible as 

long the coefficients are not zero. 

 

A. Block Diagram of Controller 

In this work, the gain will be computed using 

LQR via gain scheduling. However, pole 

placement is used in this section for clarity. The 

naive implementation of the controller will need 

48 multiplication and addition. This stems from 

the fact that the designed gain matrix is not sparse 

under the original state base. The approach in 

implementing the designed controller is by using 

a pre-filter and post-filter before the controller to 

transform the signal between bases. 

The formula of gain as given in equation (67) 

can be divided as follows. 

𝐾 = 𝐵†𝑃−1   
𝑃𝑜𝑠𝑡 −𝑓𝑖𝑙𝑡𝑒𝑟

𝐵𝑖𝑑
′ 

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟

𝑃 
𝑃𝑟𝑒−𝑓𝑖𝑙𝑡𝑒𝑟

 

The value of B
†
 are fully parameterized by the 

physical construction of the quadcopter. Thus the 

gains of this part are static for each quadcopter 

type. This fact is reflected in designing the 

controller by only using static gain and adder for 

this part of post-filter. The P
-1

 part of the post-

filter would only permute the position of control 

signal, thus does not need any mathematical 

operation to be implemented. The block diagram 

of the implementation is shown in Figure 2. 
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The pre-filter part of the implementation is 

composed of permutation of state structure, eight 

multiplication blocks and four addition blocks. In 

the original gain-scheduling method in the next 

section, the entire gain has to be calculated for 

each yaw value. However, by using this 

implementation the equivalent process is 

achieved by changing the coefficient { a1, a2, a3, 

a4 }. The block diagram of the implementation is 

shown in Figure 3. The implementation for the 

controller with desired poles in -1 is shown in the 

block diagram in Figure 4. 

 

B. Numerical Experiment 

The numerical experiment is conducted by 

using Quadrotor Model from Peter Corke’s 

Robotic Toolbox [1]. The controller is 

implemented using simulink block. There is two 

numerical experiment performed. The first 

experiment shows the ability of the controller to 

achieve desired height. The second experiment 

shows the ability of the controller to stabilize its 

height given a force impulse. 

Time constant for controller in Figure 5 is 

0.998, it closely resembles a linear system with 

corresponding poles in -1, while the time 

constant for controller in Figure 6 is 0.644. The 

controlled system also differs with the linear 

system by the existence of overshoot in both 

controllers. The second experiment is conducted 

by giving force impulse during the period of 7s to 

8s. This experiment is aimed to shows the ability 

of the controller to correct disturbance due to 

external forces. The experiment is conducted 

using a controller with poles in -2. The result of 

this experiment is shown in Figure 7. It is shown 

 

Figure 2. Block Diagram Implementation of post – filter 

 

Figure 3. Block Diagram Implementation of pre-filter 

 

Figure 4. Block Diagram Implementation of controller 

 

Figure 5. Step Response for controller with -1 poles 

 

Figure 6. Step Response for controller with -2 poles 

 

Figure 7. Controller Response to Disturbance 
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that the controller is able to correct the error due 

to force impulse. 

 

IV. CONTROL SYSTEM DESIGN 
Knowing the controllability and observability 

property that is independent of the position and 

yaw movement of the systems, the usage gain 

scheduling controller is opted. For simplicity, the 

gain in each of system’s structural changing due 

to the change of eign structure is going to be 

computed using LQR formalism. Moreover, in 

order to give more insight, hereby the controller 

directly was implemented into the original 

nonlinear system equation (7) to (23) using the 

series of numerical studies. 

 
A. Linear Quadratic Regulator 

Linear quadratic regulator is a control method 

using state feedback law u = Kx to minimize 

the cost function, defined as: 

𝐽(𝑢) =  𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢 𝑑𝑡
∞

0
  

where Q is weight matrix for state energy and R 

is weight matrix for input energy. The matrix K 

can be derived from equation (73). 

𝐾 = 𝑅−1 𝐵𝑇𝑆 + 𝑁𝑇   

while the matrix S is solution for the Riccati 

equation: 

𝐴𝑇𝑆 + 𝑆𝐴 −  𝑆𝐵 + 𝑁 𝑅−1 𝐵𝑇𝑆 + 𝑁𝑇 + 𝑄 = 0 

In order to solve matrix K, one have to give 

numerical value for  so that all numerical values 

of matrix A and B can be obtained. For 

simplicity, choose the weight matrix Q and R as     

Q = qI12×12, R = rI4×4, where q = 10,000,000,000 

and r = 0.0000000001. 

A small value for weight matrix R is chosen 

because of the minimal energy of input signal is 

desired. In order to make the quadrotor able to 

maintain its altitude, a great amount of energy for 

input signal is used. However, in order to include 

the effect of motor saturation, a maximum and 

minimum boundary of the motor’s rotational 

speed is also used (which is square root of the 

input signal) according to the [1], where i;max = 

1,000 rpm and i;min = 700 rpm for all i = {i : 1 ≤ 

i ≤ 4|i  Z }. 

Here, it was choosen the value for  = 0.5. 

The matrix K obtained from the LQR is: 

𝐾 4×12 = 𝜉 × [𝑈 4×4 𝑉 4×4 𝑊 4×4 ]  

where  is a constant, its value is 1.0 × 10
10

and 

𝑈 4×4 =  

−0.6205 −0.3390
0.3390 −0.6250

−0.5000 0.0000
−0.5000 −3.8392

0.6205 0.3390
−0.3390 0.6250

−0.5000 0.0000
−0.5000 3.8392

 , 

𝑉 4×4 =  

3.8392 0.5000
0.0000 −0.5000

−0.9007 −0.4921
0.4921 −0.9007

−3.8392 0.5000
0.0000 −0.5000

0.9007 0.4921
−0.4921 0.9007

  , 

𝑊 4×4 =  

−0.5000 0.0000
−0.5000 −0.7071

0.7071 0.5000
0.0000 −0.5000

−0.5000 0.0000
−0.5000 0.7071

−0.7071 0.5000
0.0000 −0.5000

   

Using the matrix, which has been mentioned 

above to produce input signal based on the state 

feedback law u = Kx and fed the input signal to 

then on-linear model of quadrotor. In this part, 

the result for non-linear model quadrotor attitude 

and altitude control using the state feedback 

controller that is obtained by using the linearized 

model property of quadrotor is presented. 

Figure 8 shows the quadrotor altitude with 

initial condition z = 0 to steady state condition z 

= 5. While, Figure 9, shows the quadrotor yaw 

angle with initial condition = 0 to steady state 

condition  = 0.5. As the picture shown, the state 

feedback controller obtained from the linearized 

model of the quadrotor can be concluded to 

works well. There is no overshoot seen and the 

system does not need much time to reach the 

stability. When changing the value of variable 

= 1, the result was got as seen in Figure 10 and 

 

Figure 9. Altitude yaw, for δ = 0.5 

 

Figure 8. Altitude Z, for δ = 0.5 
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Figure 11. Through this simulation, it can be 

concluded that proposed controller is effective. 

 

B. Observer 

To verify the observability of the system, 

linear feedback observer also known as 

Luenberger Observer is applied. The state space 

equation of the estimated state can be written as 

follow. 

𝑥  = 𝑓 𝑥  + 𝐿(𝑦 − 𝐶𝑥 )  

where L is the Luenberger matrix gain and f(x) is 

nonlinear function describing the quadrotor 

model as explained in equation (25) until (36). 

It can be determined that the matrix L using 

the pole placement strategy. The eigen value of 

matrix (A + LC) is designed to have value 1.5 

times the poles of the controller, which is the 

eigen value of matrix (A + KB). To make sure 

that the error of the observer, the difference 

between the real state and estimated state, is close 

to zero fast enough before the states value is 

forced to close to the desired value by the 

controller. The value of matrix L is: 

𝐿 12×4 = 𝜁 ×  𝑋 4×4 𝑌 4×4 𝑍 4×4  𝑇  

where 𝜁 is a constant, its value is 1.0 × 10
6
 and 

𝑋 4×4 =  

0.5319 −0.0475
−0.0475 0.0438

0.0081 0.0005
0.0319 −0.0091

0.0080 0.0319
−0.9690 0.1999

0.1124 −0.1307
0.0788 −0.0269

 , () 

𝑌 4×4 =  

−1.4502 0.0675
0.0005 −0.0091

−0.0730 0.0128
−0.1307 0.5135

4.3321 −0.3868
−0.3867 −0.3568

0.0656 0.0042
0.2596 −0.0741

  , () 

𝑍 4×4 =  

0.0121 0.0478
−1.0013 0.2066

0.1686 −0.1960
0.0814 −0.0278

−1.4986 0.0698
0.0008 −0.0136

−0.0754 0.0132
−0.1960 0.7702

  () 

In Figure 12 until 15, the real states drew can 

be seen in blue line and the estimated states in 

red line are convergent. For all the states, the 

observer seems to works well. Through this 

simulation, the observability of the linearized 

model of quadrotor has been approved. 

 

 

Figure 10. Altitude Z, for δ = 1 

 

Figure 11. Altitude yaw, for δ = 1 

 
Figure 12. State 1 to state 3 
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Figure 13. State 4 to state 6 

 
Figure 14. State 7 to state 9 

 
Figure 15. State 10 to state 12 
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V. CONCLUSION 
In this paper, the linearized model of 

quadrotor simplified model is obtained and show 

that the system is controllable and observable 

regardless of the value of reference position in 

Cartesian coordinate as well as the reference yaw 

angle. It is found from the linearization that the 

system has mostly zero components thus can be 

considered as a sparse system. By rearranging 

into its respective Jordan form finally via 

similarity transformation the number of 

components can be reduced from 48 to 8 plus one 

permutation and one addition blocks. A 

numerical study of the implementation said that 

the scenario worked well. Finally, the gain 

scheduling controller whose gains are designed 

via LQR approach is proposed. The simulation 

results said that the proposed controller that is 

implemented in the original system using the 

sparseness property was effective.  

 

APPENDIX 

The similarity matrix for transforming the 

states is given as: 
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