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Abstract
Despite many cultural, methodological, and technical improvements, one of the major obstacle to results repro-
ducibility remains the pervasive low statistical power. In response to this problem, a lot of attention has recently
been drawn to sequential analyses. This type of procedure has been shown to be more efficient (to require less obser-
vations and therefore less resources) than classical fixed-N procedures. However, these procedures are submitted to
both intrapersonal and interpersonal biases during data collection and data analysis. In this tutorial, we explain how
automation can be used to prevent these biases. We show how to synchronise open and free experiment software
programs with the Open Science Framework and how to automate sequential data analyses in R. This tutorial is
intended to researchers with beginner experience with R but no previous experience with sequential analyses is
required.
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On reproducibility

It may be referred to as a crisis, a revolution, or a
renaissance, but Psychology has undeniably known a
decade of unparalleled methodological reflection and

reform (for an overview, see Fidler & Wilcox, 2018; Nel-
son et al., 2018). Although many of the practices that
are currently recognised as part of the problem (e.g.,
poor understanding of statistical methods, questionable
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research practices) have long been acknowledged (e.g.,
Babbage, 1830),1 recently introduced practices have
brought considerable improvements to the reliability of
findings in psychological science (e.g., see Smaldino et
al., 2019).

There are many ways to define what reproducibility
is, and it is often unclear what is meant by the terms of
reproducibility, replicability, repeatability, or reliability.
To avoid these confusions, we adopt the terminology
suggested by Goodman et al. (2016). When discussing
research reproducibility, we make a distinction between
i) methods reproducibility: the ability to reproduce, as
closely as possible, the methodological procedures de-
veloped by a certain team (i.e., what is usually meant
by reproducibility), ii) results reproducibility: the ability
to reproduce a certain result in a given methodologi-
cal settings (i.e., what is usually meant by replicability),
and iii) inferential reproducibility: the ability (for an in-
dependent team) to replicate an inferential conclusion,
that is, to arrive at the same conclusion.

Whereas results reproducibility concerns the out-
come of a computational or experimental procedure,
methods reproducibility is a property of the methods be-
ing used to produce this particular outcome. As put by
Meehl (1990), a scientific study is akin to a recipe, and
a good methods description should allow other cooks
to prepare the same kind of cake as the person that
wrote the recipe did. As such, methods reproducibility
is essential to results reproducibility. Fortunately, recent
technical developments have made the task far easier
than it used to be. Key components of a modern repro-
ducible workflow may include:

• Transparency: exhaustive and intelligible descrip-
tion and sharing of all materials, scripts, etc. (for
a practical introduction, see Klein et al., 2018)

• Self-containment: writing reproducible docu-
ments in LaTeX or RMarkdown (e.g., see
the R package papaja, Aust & Barth, 2018)
and sharing self-contained code (e.g., see
https://codeocean.com)

• Version control: using Git and Github (or Gitlab)
to track changes in working documents (for an in-
troduction, see Vuorre & Curley, 2018)

• Automation: minimising mistakes by automatis-
ing as many steps of the research process as pos-
sible (e.g., Rouder, 2016; Rouder et al., 2018;
Yarkoni et al., 2019)

Although methods reproducibility is essential to re-
sults reproducibility, it is not sufficient. Despite having

a long history of scrutiny in Psychology, one of the ma-
jor threats to results reproducibility remains statistical
power, where power can be broadly defined as the prob-
ability of achieving a certain goal, given that a suspected
underlying state of the world is true (Kruschke, 2015).
We know that a low powered result has (all other things
being equal) a lower probability to replicate, the initial
result being attached with a higher probability of erro-
neous inference (e.g., type-M or type-S errors, Gelman
& Carlin, 2014). Even though there are many ways to
increase statistical power (e.g., see Hansen & Collins,
1994), we focus here on sequential testing, that is, the
continuous analysis of data during its collection. This
procedure has been shown to optimise the amount of
resources (e.g., money and time) to be spent in order
to attain a certain goal, as compared to classical a priori
power analyses strategies (Lakens, 2014; Schönbrodt et
al., 2017).

We turn now to a brief presentation of several se-
quential analyses procedures, followed by a discussion
of the methodological precautions that need to be un-
dertaken to ensure the validity of these procedures. Fi-
nally, we outline the core aspects of a "born-open" (fol-
lowing the terminology of Rouder, 2016), fully auto-
mated, and reproducible workflow for sequential anal-
yses.

A brief introduction to sequential analyses
procedures

In this section, we briefly introduce three sequential
analysis procedures that address three distinct goals.
More precisely, these procedures permit to either i) ac-
cumulate relative evidence for a hypothesis (the sequen-
tial Bayes factor procedure) or ii) efficiently accept or
reject a value or range of values for a parameter (the
sequential HDI+ROPE procedure) or iii) sample obser-
vations until a desired level of estimation precision is
reached.

Sequential Bayes factor

Schönbrodt et al. (2017) presented an alternative to
null-hypothesis significance testing with a priori power
analysis (NHST-PA) by introducing the Sequential Bayes
Factor (SBF) procedure. The SBF procedure uses Bayes
factors (BFs) to iteratively examine the relative eviden-
tial support for a hypothesis during data collection.2

1Where the same could be said for recently proposed so-
lutions like preregistration or radical transparency (e.g., de
Groot, 2014).

2Technically speaking, the Bayes factor is a ratio of
marginal likelihoods (i.e., what is considered as evidence in
the Bayesian framework). Broadly, a BF can be interpreted



3

The first step of the SBF procedure is to pick thresh-
olds (one for each of the two hypotheses being com-
pared) that determine the end of data collection. These
thresholds should be selected to reflect the level of evi-
dence that the experimenter consider sufficient to stop
data collection, but should also be defined in consider-
ation of specific goals and costs-benefits analyses. In-
deed, more stringent thresholds require larger sample
sizes, but are associated with lower risks of misleading
inferences (false positive and false negative), all other
things being equal. Then, after picking the appropriate
prior distribution for the alternative hypothesis, a first
batch of observations is collected, during which no BF is
computed (to avoid misleading inferences due to early
terminations). Starting at nmin observations (the a pri-
ori defined minimum sample size), a BF is computed at
each stage (or each observation). The sampling proce-
dure goes on until the current BF reaches the a priori de-
fined threshold or until reaching nmax observations (the
a priori defined maximum sample size).

Schönbrodt et al. (2017) provided detailed simu-
lation results of this procedure when comparing the
means of two independent groups (the equivalent of a
two-samples t-test). They show that the error rates and
the average length of the procedure (i.e., how many
observations are needed to reach the threshold) are a
function of both the population effect size, the thresh-
old, and the prior for the alternative hypothesis. For
instance, when chasing a medium effect size (d = 0.5)
and when using a "medium scaled" prior for the alterna-
tive (r = 1), stopping data collection at BF = 6 instead
of BF = 3 results in a percentage of wrong inferences of
4.6% instead of 40% (see Table 1 in Schönbrodt et al.,
2017, p. 10).

Based on these results, it is possible to combine prior
guesses or expectations with the known properties of
the SBF procedure to design experiments. This strategy
is known as design analysis and includes the classical
power analyses of the NHST framework as a particu-
lar case. In this vein, Schönbrodt and Wagenmakers
(2018) introduced the Bayes Factor Design Analysis tool
and demonstrated how this strategy can help to design
more informative empirical studies (see also Stefan et
al., 2019).

The sequential HDI+ROPE procedure

Bayes factors are not the only available option to per-
form sequential testing. Whereas BFs quantify the ev-
idence in favour of an hypothesis (relative to another
hypothesis), each individual hypothesis can also be ex-
amined on its own. For instance, the hypothesis that the
group difference of some measured variable is equal to
zero might be assessed by looking directly at the pos-

terior distribution of the group difference.3 This dis-
tribution can be summarised via its mean and highest
density interval (HDI), an interval that contains the X%
most credible values for the parameter (Kruschke & Lid-
dell, 2018).4 The hypothesis according to which the
group difference is equal to zero can then be assessed
by checking whether the HDI includes zero as a credible
value. Alternatively, and more interestingly, the HDI can
be compared to a region of practical equivalence (ROPE,
Kruschke, 2018), defining the range of effect sizes that
we consider as negligible (i.e., equivalent to zero) for
practical purposes.

The comparison of HDI and ROPE can be summarised
by computing the proportion of the HDI that is included
in the ROPE, giving an idea of the extent to which the
hypothesis of no effect is supported. Alternatively, the
comparison of the HDI to the ROPE can result in three
categorical outcomes: i) the null hypothesis is rejected
(when the HDI falls completely outside the ROPE), ii)
the null hypothesis is accepted (when the HDI falls com-
pletely inside the ROPE), or iii) the data is said to be
inconclusive (when neither of the above applies).

When the goal of the analysis is to accept or reject
a reference value, it is then possible to stop data collec-
tion when the HDI does not include this reference value.
Thus, this procedure is similar to the SBF procedure,
except that the sampling procedure is terminated by a
(conclusive) comparison of a HDI to a ROPE, instead of
being terminated by a comparison of a BF value to some
threshold (for a detailed study of the characteristics of
this procedure, see Kruschke, 2015).

Aiming for precision

Because data collection stops when the accumulated
evidence reaches a certain threshold, sequential hy-
pothesis testing procedures (e.g., SBF or HDI+ROPE)
are known to be biased by extreme observations. In
other words, the data collection stops when the col-
lected data supports the hypothesis, preventing the op-
portunity of collecting contradictory data afterwards

as an updating factor, indicating how credibility should be
re-allocated from prior knowledge (what was known before
seeing the data) to posterior knowledge (what is known after
seeing the data).

3The posterior distribution is the result of any Bayesian
analysis. It is a probability distribution that allocates prob-
ability to parameter values, given the model (including the
priors) and the observed data.

4The HDI is a particular type of credible interval, the
Bayesian equivalent of the frequentist confidence interval. It
should be noted however that the interpretation of Bayesian
and frequentist intervals differ considerably (e.g., Morey et al.,
2016; Nalborczyk et al., 2019).
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(Kruschke, 2015). Performing sequential analysis un-
til a certain estimation precision is reached overcomes
this bias (Kruschke, 2015). In this procedure, the goal
is not to stop data analysis based on the rejection of
an hypothesis but rather to sample observations until a
predefined level of precision in a parameter (including
effect size) estimation is reached. The estimation pre-
cision can be quantified by the width of the HDI and
Kruschke (2015) proposes to stop data analysis when
the HDI width is less than 80% of the ROPE’s width.
For instance, if the smallest effect size of interest (SESOI,
Lakens et al., 2018) is δ = 0.2, we can define a ROPE
around 0 from δ = −0.1 to δ = 0.1. This means that
we will consider an effect as approximately null when
it is less than half our SESOI. Planing for precision, we
would therefore stop data collection when the width of
our HDI (on the estimate of the effect size) is inferior to
0.8 × 0.2 = 0.16 (Kruschke, 2018).

Of course, there are other methods to determine the
desired level of precision. For instance, researchers can
base their SESOI on an effect of minimal clinical rele-
vance. In this context, the SESOI varies depending on
the costs and benefits of the treatment (Lakens et al.,
2018). We can also imagine other criteria to determine
precision on the basis of the ROPE. In any case, even
if one wants to check whether the HDI falls inside the
ROPE at the end of data collection, planing for precision
enables us to focus on parameter or effect size estima-
tion instead of hypothesis testing. If we decide to plan
for moderate precision, we will not need a large amount
of observations, but it is likely that the HDI will overlap
the ROPE. As a consequence, it will not be possible to
reach a categorical conclusion. If we plan for high preci-
sion, more observations will be needed to stop data col-
lection, but hypothesis testing will be improved as well
as precision. In most situations, planing for precision
will require more observations than hypothesis testing.

Whatever the procedure, the stopping rule should be
thought carefully by considering and balancing the costs
and benefits of collecting more observations. A small
number of observations is affordable but likely to lead
to biased conclusions. A large number of observations
can be expensive but likely to lead to more robust con-
clusions. Both frequentist and Bayesian methods have
their ways to deal with risks and errors in sequential
hypothesis testing. Criteria are modified for sequential
hypothesis testing so that "significant" p-values (e.g.,
.0294 instead of .05 for one interim analysis, Lakens,
2014) or Bayes factors (e.g., BF = 6 instead of BF =
3 depending on acceptable error rates, Schönbrodt et
al., 2017) are not the same as classical (non sequential)
hypothesis testing. This should also be considered in
sequential the HDI+ROPE procedure.

Some difficulties

The procedures previously described and discussed
in Schönbrodt et al. (2017) and Kruschke (2015, 2018)
offer an attractive perspective on data collection. How-
ever, some precautions need to be undertaken in order
to preserve a good precision or the long-term error rates
they provide. More precisely, we discuss two main cat-
egories of biases that need to be controlled. We call
the first category of biases intrapersonal biases, as bi-
ases that are expressed within individuals. These biases
mainly emerge during data analysis and data reporting.
We call the second category of biases interpersonal bi-
ases, as biases that are expressed between individuals.
These biases mainly emerge during data collection (e.g.,
when the researcher interacts with participants).

These biases can arise in any study but sequential
procedures present specific risks on both the intra and
interpersonal dimensions. We explain why in the next
section.

What could possibly go wrong?

Intrapersonal biases during sequential analyses

Most intrapersonal biases occur because of what
some would call the "researcher degrees of freedom"
(Simmons et al., 2011; Wicherts et al., 2016). Following
Wicherts et al. (2016)’ nomenclature, we identified the
following intrapersonal biases as having increased risks
in sequential procedures:

• C3: Correcting, coding, or discarding data during
data collection in a non-blinded manner.

• A1: Choosing between different options of deal-
ing with incomplete or missing data on ad hoc
grounds.

• A2: Specifying pre-processing of data (e.g., clean-
ing, normalization, smoothing, motion correc-
tion) in an ad hoc manner.

• A3: Deciding how to deal with violations of statis-
tical assumptions in an ad hoc manner.

• A4: Deciding on how to deal with outliers in an
ad hoc manner.

These degrees of freedom allow flexibility when pro-
cessing data before statistical inference. This flexibility
can be dangerous when incentives, cultural norms, or
previous practices influence data analysis, and where
there are few safeguards. Thus, the intrapersonal na-
ture of these biases does not refer to an absence of so-
cial influence, but rather to biases occurring at the point
where the researcher makes choices on her own. This
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can be the case when someone discards an outlier to
reach a significant result because it is easier to pub-
lish with significant results. This can also be the case
when one tries different data transformations to best
match their preferred hypothesis. Here the problem-
atic nature of the degrees of freedom is the researcher’s
subjectivity. Discarding an outlier or transforming data
is not necessarily the result of being an outlier or be-
ing skewed data, but can also be the result of what
the researcher wants to see because of economic, so-
cial (e.g., reputation pressure), cultural contexts. These
biases are not specific to sequential procedures but their
consequences might be amplified during sequential pro-
cedures because of the possible impact of each look at
the data. Indeed, the degrees of freedom can impact
data analysis at time t1 which can in turn impact data
collection in a self-perpetuating cycle. Data analysis at
time t2 is therefore likely to be biased by the degrees of
freedom at time t2 but also at time t1. Thus, errors ac-
cumulate because the effects of the degrees of freedom
are multiplied.

When a data analyst has expectations about what
should be observed, the data analysis is likely to
be biased by these expectations through confirma-
tion (favouring an hypothesis) or disconfirmation
(stronger scepticism toward data against the hypothesis
than toward data corroborating the hypothesis) biases
(MacCoun & Perlmutter, 2017). While continuously
analysing data, the data analyst is faced with many
choices about the best way to deal with incoming data.
Based on previous studies, they might have expectations
about the range of plausible values, or they might need
to use particular methods to process physiological sig-
nals, to recode or to transform data in a specific way,
and so on. We urge researchers to make these decisions
explicit before data collection.

The properties of sequential procedures have been
studied extensively via simulation (Kruschke, 2015;
Schönbrodt et al., 2017; Wagenmakers et al., 2017).
However, noise and irregularities in simulated data only
come from sampling variability, and not from practi-
cal problems that can be encountered during empirical
data collection (e.g., technical issues or experimenter
biases). When collecting data, researchers would like
to get as close as possible to the shape of simulated
data (i.e., we would like to minimise other sources of
errors than sampling variability). In order for the BF,
the HDI or the precision to be reliable stopping crite-
ria, they have to be computed on reliable data. We ac-
knowledge that what can be considered as reliable data
heavily depends on the type of study. As such, decisions
concerning the analysis workflow should be justified by
the existing literature as much as possible. However,

changing the criterion and methods for data prepara-
tion based on the state of the sequential procedure is
not acceptable. The result of an experiment cannot de-
termine the way it is itself defined. Real-time result-
hacking would jeopardise the confidence one can have
in this result.

Therefore, we propose that all the steps of the se-
quential procedure (i.e., data preparation and cleaning,
outliers detection, data transformation, model assump-
tions checks, and data analysis) should be automated
and performed in an incremental manner. The entire
dataset can be continually reanalysed, including former
outliers, so that the process follows the progressive in-
corporation of new observations. Put more formally,
such a procedure should be able to take into account
that an extreme observation at time t might not be ex-
treme anymore at time tn, and should therefore be re-
included in subsequent analyses.

The fact that this iterative procedure is automated
should prevent the data analyst from the hazards that
are commonly encountered during data manipulation
(see previous section). These hazards have particu-
larly important consequences in sequential procedures
in comparison to traditional (i.e. fixed-n) procedures
because of the incremental nature of evidence accumu-
lation. A specific preprocessing choice at time t can
influence inference criteria computation at time t+n
which can subsequently influence another preprocess-
ing choices and so on. With accumulated modifications
in preprocessing decisions, the inference criteria are not
only computed based on data but also on sequential and
incremental choices from the scientist. We propose that
these steps could instead be programmed and coded on
the basis of preregistered choices, before starting to col-
lect data. Preregistered automated data analysis would
therefore ensure conclusions based on empirical proce-
dures to be similar to the results (e.g., long-term er-
ror rates) provided by Schönbrodt et al. (2017) or Kr-
uschke (2015) using simulation, and explicitly fulfil the
requirements of transparency and reproducibility.

However, being able to define in advance the goal
and the criteria for success of these sequential proce-
dures requires i) to be well aware of the literature of
interest, ii) to know how data behave by manipulat-
ing data from very similar previous experiments or pre-
tests, iii) to be able to implement a procedure of data
preparation for model computation before seeing new
data. These three points might seem trivial but are even
more important for sequential analyses than classical
procedures in order to avoid intermediate influences in
data preparation based on known interim results.

In addition to these intermediate influences (i.e., in-
fluences between the collection of the first batch of data
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and the final data analysis) in data preparation, inter-
mediate influences can also be problematic during data
collection. These influences are what we call "interper-
sonal biases".

Interpersonal biases during sequential analyses

By interpersonal biases we refer to biases that might
occur when a researcher interacts with participants
during data collection. According to Wicherts et al.
(2016)’s nomenclature, the interpersonal bias with po-
tentially increased risks in sequential procedures is:

• C2: Insufficient blinding of participants and/or
experimenters.

When an experimenter has expectations about what
should be observed, data collection is likely to be bi-
ased by these expectations (Gilder & Heerey, 2018;
Klein et al., 2012; Orne, 1962; Rosenthal, 1963; Rosen-
thal, 1964; Rosenthal & Rubin, 1978; Zoble & Lehman,
1969). One solution to prevent this bias is to make sure
that experimenters are blind to the experimental condi-
tions.

Double blind5 designs are expected to minimise ex-
pectancy effects (Gilder & Heerey, 2018; Klein et al.,
2012). However, when the experimenter cannot be
blind, expectancy effects are to be expected. This bias
has been clearly identified by Lakens (2014) as a partic-
ularly strong risk (i.e. observer effects are likely to be
stronger in the context of sequential testing) in sequen-
tial analysis: "Experimenter bias is important to con-
sider when performing a study under normal circum-
stances [...] but becomes even more important to con-
sider when the experimenter has performed an interim
analysis."

What is the specific status of sequential testing con-
cerning analyst and observer expectancy effects? Ex-
pectancy effects arise when one has prior beliefs and/or
motivations about the outcome of an experiment and
involuntarily (we assume scientific honesty) influences
the results on the basis of these prior beliefs and motiva-
tions. The confidence in a hypothesis can be influenced
by previous results from the literature, naive representa-
tions about the studied phenomenon, and other sources
of information. These sources may deal with the studied
phenomenon but rarely with the ongoing study specif-
ically, and, as a consequence, the potential hypothesis
can be subject to uncertainty. When performing sequen-
tial testing, one has a direct access to the accumulation
of evidence concerning the ongoing study. Hence, the
prior information accumulated from sequential analy-
sis specifically reduces uncertainty about the potential
results of the ongoing experiment as compared to in-
formation gathered from previous studies or naive rep-

resentations. In other words, a bias toward a particu-
lar result may stem from previous literature or personal
beliefs. In the sequential analysis context, a bias to-
ward a particular result may also stem from observing
the accumulating data across the sequential procedure.
This could be particularly strong, because one can di-
rectly see the accumulated data as the sample size in-
creases in real time. Knowing about intermediate re-
sults can therefore increase the risk of falling into an
"evidence confirmation loop". In the previous section,
we proposed that this risk applies to confirmation and
disconfirmation biases (data analysis) where the intrap-
ersonal bias of data evaluation can inflate with accumu-
lated evidence. In this section, we propose that this loop
can also worsen experimenter expectancy effects during
data collection. The interpersonal bias of experimenter-
participant interactions can be seen as a self-fulfilling
prophecy amplified by feedback from previous data.

Clearly, it is very difficult to obtain robust results
concerning the effect size of analyst and observer ex-
pectancy effects. Indeed, one would have to carry out
experiments on experiments in order to study these bi-
ases. This "meta-science" problem is arduous because
these biases can apply at all levels of manipulation as
one experiment is included in another. For instance,
Barber (1978) suggested that expectancy biases can also
occur in the expectancy bias research. It can also be dif-
ficult to collect large observation samples by experimen-
tal conditions (e.g., Zoble & Lehman, 1969), although
recent work has shown that it was possible (Gilder &
Heerey, 2018). Thus, we can only draw attention to
these effects as a potential risk to consider rather than
as a precisely quantified danger to avoid.

When double blind designs are not practicable, in-
terpersonal biases seem obvious. However, when a
double blind design is set up, the existence of an in-
terpersonal bias is probably more questionable. How
could knowledge about previous data influence the out-
come of the experiment? It is possible that the exper-
imenter’s verbal and non-verbal motor cues impact on
the participant’s behaviour (Zoble & Lehman, 1969).
However, it is unlikely that only non-verbal cues un-
derlie the experimenter expectancy effect, at least in
simple or familiar tasks (Hazelrigg et al., 1991). What
we know today is that the experimenter expectancy ef-
fect can be inadvertent and can depend on the inter-
action between the experimenter and the participant
(Gilder & Heerey, 2018; Hazelrigg et al., 1991). Per-
sonality variables such as the need of social influence
(on the experimenter’s side) and the susceptibility to

5We use the "double blind" terminology according to the
classical definition, where both the participant and the exper-
imenter are blind to the experimental condition.
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social influence (on the participant’s side) can also in-
crease the expectancy bias (Hazelrigg et al., 1991). In
a double-blind design however, the experimenter can-
not influence the participant’s responses on the basis of
knowledge of the experimental condition. However, the
(de)motivation and the disappointment/satisfaction of
seeing the preferred hypothesis contradicted/confirmed
by the sequential testing procedure can possibly influ-
ence the participant.6 We cannot rule out the possi-
bility that the confidence in a hypothesis interacts with
experimental conditions and impacts the results of the
experiment in one way or another. Because the exper-
imenter is not aware of the experimental condition of
the participants, they will probably influence them more
uniformly than in a simple blind design. This means
that the behaviour of the experimenter can potentially
change the baseline value of a parameter in all partici-
pants. Also, we cannot exclude the possibility that the
effect of the experimental manipulation is biased by this
baseline value shift. More generally, "contextual vari-
ables, such as experimenters’ expectations, are a source
of error that obscures the process of interest" (Klein et
al., 2012).

What could be expected?

To the best of our knowledge, there is no experiment
reporting expectancy biases when the experimenter is
blind to the experimental condition. However, blinding
the experimenter from interim analysis is certainly rec-
ommended (Lakens, 2014) when blinding experimental
conditions is not possible. We suggest that blinding the
analysis should also be considered as a precaution, even
when the experimenter is blind.

In Table 1, we describe hypothetical observable con-
sequences of such biases on the SBF and HDI+ROPE
procedures. Importantly, expectation biases can emerge
in all combinations of a priori expectations and pop-
ulation effect sizes. Congruent observations are ex-
pected to increase the speed with which the threshold
is reached (H0+ and H1+), whereas incongruent ob-
servations are expected to slow down this process (H0-
and H1-) and to increase the number of false alarms.

Evidence is insufficient to conclude on the practical
significance of analyst and observer expectancy effects,
especially in double blind designs. If the necessary
methods to reduce bias were costly and the potential
benefits uncertain, then it would be reasonable to be
sceptical of our proposal. However, we will show in the
next section that the methods required to reduce bias
are easy to implement, and therefore costless to adopt.

We have presented how the knowledge of previous
data can bias the data collection process and have also

illustrated the predicted consequences of these biases
on the evolution of sequentially computed BFs. In the
next section, we focus on how to prevent these biases
from happening. We suggest two ways of implementing
analysis blinding as a precaution against experimenter
biases during sequential testing, and present a proof of
concept for an automated procedure that would ensure
objectivity.

A fully automated, transparent, reproducible and
triple-blind protocol for sequential testing

Blinding is the procedure which hides the assigned
condition from people involved in the experiment. It
can notably be applied to participants, experimenters,
or data analysts (Schulz & Grimes, 2002). If possible, it
is preferable to apply blinding to anyone involved in the
experiment to avoid expectancy effects. Whereas partic-
ipant and experimenter blinding is often considered in
Psychology, much less attention has been given to anal-
ysis blinding, probably due to materials and time con-
straints. However, the use of analysis blinding would
help eliminate some of the biases identified in Wicherts
et al. (2016). Again, this has been well described by
Lakens (2014): "In large medical trials, tasks such as
data collection and statistical analysis are often assigned
to different individuals, and it is considered good prac-
tice to have a data and safety monitoring board that is
involved in planning the experiment and overseeing any
interim analyses. In psychology, such a division of labor
is rare, and it is much more common that researchers
work in isolation".

Analysis blinding can take two different forms in the
context of sequential analyses procedures. First, analy-
sis blinding can refer to a procedure ensuring that the
person analysing the data is blind to the hypotheses
(Miller & Stewart, 2011). This configuration minimises
intrapersonal biases because the analyst does not have
the information necessary to influence data analysis in
a specific direction (congruent or incongruent with the
hypothesis). Second (and more specifically to sequen-
tial testing procedures), analysis blinding can refer to
a procedure ensuring that the experimenter is blinded
to the data analysis. This configuration minimises inter-
personal biases because the experimenter does not have
the information necessary to influence data collection in
a specific direction (congruent or incongruent with the
hypothesis).

If the experimenter is not the data analyst, they can
be blind to the evolution of the intermediate results un-
til data collection stops. As a consequence, the specific

6Ideally, scientists should be interested in all possible re-
sults, whatever they are.
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Table 1
Possible interactions between the population value of the effect size and the a priori expectations of the experimenter
during a (non-blind) sequential testing procedure.

There is no difference in the population
(H0: δ = 0)

There is a difference in the population
(H1: δ , 0)

Researcher 1, believes in H0 H0+ (congruent) H1- (incongruent)
Researcher 2, believes in H1 H0- (incongruent) H1+ (congruent)

experimenter expectancy bias in the sequential proce-
dure is avoided. Another solution is to automate anal-
ysis blinding so that the data analyst and the experi-
menter (who can be the same person) are blind to in-
termediate results computed on previous sets of obser-
vations. To illustrate this idea, we describe below how
to perform transparent blind sequential analysis. We
propose an example for two independent-groups com-
parisons (as in Schönbrodt et al., 2017). This tutorial
covers all experimental steps from preregistration to re-
sults reporting. When several options are available for
a specific step, we detail one in the manuscript and
other possibilities in the supplementary materials.
We provide a functional example of the procedure on
the OSF (Open Science Framework) based on an emo-
tional Stroop experiment. In order to describe the pro-
cedure, we use the idea of Rouder (2016) who took the
perspective of his dog Kirby to explain Git and Github.
Here we take the perspective of Lisa Loud,7 who loves
carrying out experiments but has probably never used
automated sequential analysis before.

Prerequisites

• Lisa needs to have an Open Science Framework
(OSF, https://osf.io/register/) account.

• Lisa needs to have at least some basic knowledge
about how to use the OSF. See Soderberg (2018)
and https://help.osf.io/ for a practical introduc-
tion.

• Lisa needs to have R (R Core Team, 2019) and
RStudio (https://www.rstudio.com/) installed on
her computer.

• Lisa needs to have a recent version of OpenS-
esame (https://osdoc.cogsci.nl/) or PsychoPy
(https://www.PsychoPy.org/) installed on her
computer.

"Born-open" data

The aim of this this tutorial is not to discuss the the-
oretical work necessary before carrying out an experi-

ment. We will directly focus on the preparation of ma-
terials needed to collect data.

This tutorial mainly deals with computerised exper-
iments.8 In this situation, users need to program an
experiment to collect data. The logic proposed here
is compatible with experiments programmed with Psy-
choPy (Peirce, 2007, 2008; Peirce et al., 2019) or
OpenSesame (Mathôt et al., 2012). These software pro-
grams have the advantage of being free and able to com-
municate with the OSF. These two qualities are crucial
for transparent procedures and easy sharing.

We will use the possibility to link the software
program with the OSF in order to propose an intuitive
"born-open" data procedure (Rouder, 2016). Although
OSF synchronisation tools are generally easy to install
on Windows and Mac OS, it can be slightly more
"complicated" on other operating systems (OS) such
as Linux OS. Most users probably work on Windows
and Mac OS. However, because Linux OSs are free
and open we believe that they fit well with the open
science philosophy. Consequently, we will provide
minimal examples on how to use this tutorial on
Ubuntu as a popular and easy-to-use Linux distribution.

We propose a procedure using OpenSesame be-
low. Procedures with PsychoPy can be found in the
supplementary materials. OpenSesame probably
allows the simplest synchronisation with the OSF. How-
ever, it is less flexible than PsychoPy for programming
experiments because, unlike PsychoPy, it does not allow
to access to a coder view. Direct OSF synchronisation is
available with PsychoPy 2 but not with PsychoPy 3. The
example available on the OSF is based on PsychoPy 2
but has also been successfully tested with OpenSesame.
Table 2 proposes a summary of the main strengths and
weaknesses of each method.

Programming the experiment for "born-open"
data. We present how to program an experiment al-

7https://theloudhouse.fandom.com/wiki/Lisa_Loud
8However, some parts of the proposed protocol can be

adapted to other kinds of experiments.

https://osf.io/register/
https://help.osf.io/
https://www.rstudio.com/
https://osdoc.cogsci.nl/
https://www.PsychoPy.org/
https://theloudhouse.fandom.com/wiki/Lisa_Loud
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Table 2
Global overview of open experiment programming software’s characteristics and synchronisation handling.

OpenSesame PsychoPy 2 PsychoPy 3

Synchronisation OSF OSF Pavlovia and Gitlab*
Automatic synchronisation ease + - - - -

Graphical interface for synchronisation ++ - ++
Synchronisation quality ++ + +++

Software flexibility - ++ ++
* Indirect synchronisation is possible with OSF because synchronisation is possible between OSF and Gitlab. Direct synchronisation
with OSF could also be possible but probably not straightforward.

lowing automatic "born-open" data with OpenSesame,
currently the easiest way to program automatic "born-
open" data. For more flexibility in experiment pro-
gramming, PsychoPy options are described in the
supplementary materials. OpenSesame is "a graphi-
cal experiment builder for the social sciences". It is free,
open-source, and cross-platform. It features "a compre-
hensive and intuitive graphical user interface and sup-
ports Python scripting for complex tasks." (Mathôt et al.,
2012). OSF integration is normally included by default
for Windows and Mac OS. If not (or for other OS like
Ubuntu for instance), the installation procedure is de-
scribed in the supplementary materials. If OSF in-
tegration is installed, the user should see the OSF icon
in OpenSesame (Figure 1). Click the OSF log-in but-
ton and sign in with your OSF account. More details
on OSF integration in OpenSesame can be found at
https://osdoc.cogsci.nl/3.1/manual/osf/. If Lisa reads
this part of the manual, she will know exactly what to
do in order to link data to the OSF.9 If she links data to
the OSF, each time that data has been collected (nor-
mally after every experimental session), this data is also
uploaded to the OSF. Lisa should follow the following
steps in order to do so:

• Lisa has to save the experiment on her computer.

• She then has to open the OSF explorer, right-click
on the folder that she wants the data to be up-
loaded to, and select "Sync data to this folder".
The OSF node that the data is linked to will be
shown at the top of the explorer.

• She finally needs to check "Always upload col-
lected data" and data files will be automatically
saved to OSF after they have been collected.

Script preparation and piloting

Performing sequential analyses requires strict exper-
iment programming and data analysis preparation. Be-

Figure 1. OSF log-in button in the main toolbar in
OpenSesame

cause data is continuously analysed during data collec-
tion, everything must be ready before collecting data.
This can be seen as a disadvantage because there is a
lot of work to be done before data collection. Indeed,
analysing data after data collection allows us to delay
several choices thus allowing to launch data collection
more quickly.10 However, this can also be considered as
a huge advantage because there are no unexpected sur-
prises after data collection. It is not possible to discover
that something has not been recorded or that data is
not in the appropriate format, or that data is more dif-
ficult to analyse than expected. Everything is thought
about upstream because everything must work for data
analysis which is performed during data collection. We
propose this 6-step procedure to prepare the analysis:

• Clearly define the variables involved in the study
9The following part is a reformulation of the manual for

the purpose of our tutorial.
10Here we do not say that preparation is specific to sequen-

tial testing. Preparation can be recommended for all designs,
but is not avoidable in sequential analysis.

https://osdoc.cogsci.nl/3.1/manual/osf/
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in order to program the experiment

• Carefully consider how to analyse the data to be
collected

• Program the experiment in keeping with the
planned data analysis

• Test the experiment to check that everything is
working as expected

• Prepare the scripts that will be used to analyse
data

• Run some pilots to test the procedure

These steps are necessary in order to launch the ac-
tual experiment. Otherwise, sequential analyses are
likely to fail at some point.

Preregistration

Let’s assume Lisa has successfully achieved script
preparation and piloting. When everything is ready,
she has everything she needs to preregister her study.
Preregistration is very important in sequential testing
because it forces Lisa to explicitly state her statistical
criteria of interest and therefore announce when data
collection will end. This is very useful in order to limit
biases due to Lisa’s degrees of freedom (Lakens, 2014;
Wicherts et al., 2016).

In addition to generic preregistration, the first impor-
tant thing to preregister is the sequential data clean-
ing procedure. In this part, Lisa should describe how
data will be handled before inferential statistical mod-
elling. This can include, physiological signal process-
ing, potential observation or participant removal crite-
ria or any other data manipulation happening between
data collection and modelling. After that, Lisa should
indicate the appropriate stopping statistics depending
on the procedure (e.g., SBF, HDI+ROPE, precision).
The stopping statistic should be described along with
a clear and detailed description of the model which is
computed to get this statistic. Finally, Lisa should also
specify a minimum sample size required to compute the
models, and a maximal sample size affordable for her,
which would determine the end of data collection, in-
dependently of the stopping statistic.

Transparent data collection

When possible, making data openly available can im-
prove the quality of science (Klein et al., 2018). In the
context of sequential data analysis, it can be even more
important. As we explained above, sequential analyses
offer strong advantages but also increase Lisa’s degrees
of freedom. Making data open can reduce this bias. In

this perspective, born open data (Rouder, 2016) can be
even more efficient, especially in the context of sequen-
tial analysis. "Born-open" data is the procedure which
makes data automatically open as soon as it is collected.
This procedure has at least two huge interests for se-
quential analysis. First, the time course of data collec-
tion is transparent because data is necessarily sent on-
line and time-stamped just after being collected. This is
very important because in doing so, each choice made
by Lisa will be clear and justified. Second, "born-open"
data will facilitate real time online data analysis which
is very useful for sequential designs. automatic "born-
open" data is possible with OpenSesame or PsychoPy by
automatic publishing data on the OSF (or on Github or
Gitlab for instance).

Automated data cleaning

After collecting her first batch of data, Lisa might not
be able to directly fit the statistical model she is inter-
ested in. She probably needs a procedure of data clean-
ing in order to get her data ready for statistical infer-
ence. Data cleaning can include physiological signal
processing, artefacts removal, errors removal, dealing
with potential outliers, and everything needed to get
meaningful data from raw data. Lisa has to perform
data cleaning before statistical modelling. Because Lisa
is analysing data sequentially, she also has to clean data
sequentially.

For instance, in our example (the emotional Stroop
task), we decided to remove missing data and response
times (RT) below 100 ms. This is done each time
new data is incorporated (see lines 101 to 110 of the
sequential_analyses.R script). We could also have
chosen to analyse RT only for correct responses and/or
to remove observations based on a specific descriptive
statistic.

Automated blind data analysis

Because Lisa has prepared everything needed for her
procedure, she is able to automate data analysis and
therefore to be blind to the details of the analysis while
she is collecting data. Here is how she can proceed and
how we proceeded in our example.

We describe how Lisa can handle tasks-scheduling
on a UNIX system (macOS and Linux) in this para-
graph. Lisa can use the cronR package (Wijffels,
2018a) to schedule tasks in R. This package will be
useful in order to retrieve data from the OSF and to
analyse it. Lisa will have to create a task by run-
ning the appropriate script (main_script.R in our ex-
ample) once before collecting the first observation.
She will be able to decide how often she wants the
script to run automatically. Lisa could also apply
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the same procedure on a Windows system thanks
to the taskscheduleR package (Wijffels, 2018b). A
short description on how to use this package can
be found at: https://cran.r-project.org/web/packages/
taskscheduleR/vignettes/taskscheduleR.html.

If Lisa chooses that the script should auto-run each
hour, the main script will check data from the OSF each
hour. This will be done with the osfr package (Wolen
& Hartgerink, 2019). In our example (Line 106 to 143
in main_script.R), we check if new data is available
on the OSF and download it if it is the case. After some
data formatting (lines 145 to 197), the script will run
the sequential analysis (line 199 to 243). The main
script calls the sequential_analyses.R script which
contains the sequential analyses function. Lisa will
also have to specify some parameters depending on the
model she is interested in.

At the end of the analysis, Lisa will receive an email
telling her whether to stop or to continue data collec-
tion. This email will neither report the effect nor its di-
rection, but only the information to stop or to continue
the data collection. This means that Lisa will be able
to follow a sequential design without any information
about the results of data analysis, excepted the fact that
she has (not) reached her criterion. The mail will be
sent automatically in R thanks to the gmailR package
(Hester, 2016).

Reproducible reporting

Lisa will stop data collection when she reaches her
statistical criterion or her maximum affordable sample
size. She will then be able to write a report describing
her results. She can do it using RMarkdown (Allaire
et al., 2019; Xie et al., 2018) in order to incorporate her
results automatically from her R scripts into her report
(e.g., see Bauer, 2018). Lisa could for instance use the
R package papaja (Aust & Barth, 2018) which would
allow her to write a reproducible APA manuscript with
RMarkdown. Scientific writing with Rmarkdown has
important benefits for any type of research design but
would be even more valuable for sequential analyses.

Feasibility of the proposed protocol and limitations

A graphical summary of the procedure is depicted in
Figure 2.11 All the tools needed to set it up are available
for free to everyone. Using OpenSesame or PsychoPy
is relatively straightforward and does not necessarily
require coding skills. We proposed standard R scripts
in order to automate sequential analysis. However, we
concede that using this scripts requires minimal knowl-
edge of R. Hence, we also propose a Shiny applica-
tion available at https://barelysignificant.shinyapps.io/
blind_sequential_analyses/. With this application, Lisa

would just have to specify all the important details of
her analysis in boxes, from which the application gen-
erates the corresponding R script almost ready for se-
quential analysis. This application is meant to facilitate
the creation of R scripts. It automatically writes around
90% of the code Lisa would have to write to use such
a sequential analysis procedure. However, it is almost
certain that the produced R code would not work imme-
diately. It would require some minor tweaking from her,
such as checking the local path, making sure that the
scripts and the data are in the same repository, adapting
the data import step to specific properties of the data
under consideration, and so on.

The procedure proposed here only requires one com-
puter. Hence, the implementation cost is rather low.
This procedure is also well suited for multi-lab studies.
Indeed, an experiment can be run at different places
but data is automatically centralised on one platform
and can be analyse automatically and sequentially by
one single computer. The experiment we designed with
PsychoPy 2 (see the supplementary material for more
information) is specifically thought for multi-lab studies
by automatically recording information about the com-
puter which runs the experiment. This enables the iden-
tification of the site associated with each participant.

We concede that automation of data analysis prevents
one interesting advantage of sequential testing. Namely,
the fact that data collection can be stopped whenever
the behaviour of data is unexpected, allowing the ex-
perimenter to rethink the experimental design or aim
before collecting more data (Lakens, 2014). Depending
on the confidence and expected familiarity with the data
to be collected, the researchers have to choose between
automated or "two-person" analysis blinding. The first
option has low costs of implementation whereas the sec-
ond one is more flexible. In any case, after performing a
sequential analysis, nothing prevents Lisa from perform-
ing additional analyses based on unexpected data speci-
ficity, taking care to record and state the exploratory
nature of any such analyses.

A word on blind analysis by multiple people

If Lisa can afford working with a colleague on her
study and if she prefers to do so, we advise her to ap-
ply the logic of the automated procedure described in
this tutorial. The only difference will be that her col-
league will analyse data while Lisa collects it (or con-
versely). If her colleague analyses data, they will have
to retrieve data online (e.g., on OSF) and to perform
the planned preregistered analysis (unless data behave

11This figure has been inspired by the Figure 1 in Quintana
et al. (2016).

https://cran.r-project.org/web/packages/taskscheduleR/vignettes/taskscheduleR.html
https://cran.r-project.org/web/packages/taskscheduleR/vignettes/taskscheduleR.html
https://barelysignificant.shinyapps.io/blind_sequential_analyses/
https://barelysignificant.shinyapps.io/blind_sequential_analyses/
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Figure 2. Schematic procedure of a transparent and
blind sequential data analysis.
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very unexpectedly in which case they will have the re-
sponsibility to adapt the analysis or stop data collection
prematurely). The only contact Lisa and her colleague
will have concerning the experiment will be the email
they will send to inform Lisa whether to stop or con-
tinue data collection, nothing more.

Conclusions

We began by presenting the intra and interpersonal
biases that might emerge during sequential testing and
sequential analysis procedures. To tackle these issues,
we proposed a novel automated, transparent, repro-
ducible and blind protocol for sequential analysis. The
main interest of this procedure is to reduce possible
biases that could be encountered during intermediate
data analysis and to prevent the inflation of social influ-
ences during data collection.

This protocol should be considered as a proof-of-
concept for sequential analysis automation. However,
future work will be able to propose more comprehensive
and more user-friendly solutions for sequential analy-

ses. For instance, the reliance on the user’s R program-
ming skills might be alleviated with the development of
an online platform that would automate the procedure
online, without the need for coding.

More work is also needed to precisely quantify in-
tra and interpersonal biases during data collection and
analysis. For instance, one could set up experimental
procedures to pinpoint these biases in realistic lab sit-
uations (e.g., see Gilder & Heerey, 2018). In addition
to experimental procedures, computational modelling
could also be used to estimate the presence of bias in ex-
tant (published or not) sequential analyses. By formalis-
ing the sequential analysis procedure (e.g., using an evi-
dence accumulation model) and by explicitly modelling
the biases that we describe in the present article, we
might be able to assess the likelihood that an observed
set of collected statistics (e.g., BFs) has been obtained
under the assumption of bias (or no bias).

Supplementary materials

Reproducible code and supplementary materials are
available on OSF: https://osf.io/mwtvk/.
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