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Another Warning about Median Reaction Time

Jeff Miller1

1University of Otago

Contrary to the warning of Miller (1988), Rousselet and Wilcox (2020) argued that
it is better to summarize each participant’s single-trial reaction times (RTs) in a given
condition with the median than with the mean when comparing the central tendencies
of RT distributions across experimental conditions. They acknowledged that median
RTs can produce inflated Type I error rates when conditions differ in the number of
trials tested, consistent with Miller’s warning, but they showed that the bias respon-
sible for this error rate inflation could be eliminated with a bootstrap bias correction
technique. The present simulations extend their analysis by examining the power of
bias-corrected medians to detect true experimental effects and by comparing this power
with the power of analyses using means and regular medians. Unfortunately, although
bias-corrected medians solve the problem of inflated Type I error rates, their power
is lower than that of means or regular medians in many realistic situations. In addi-
tion, even when conditions do not differ in the number of trials tested, the power of
tests (e.g., t-tests) is generally lower using medians rather than means as the summary
measures. Thus, the present simulations demonstrate that summary means will often
provide the most powerful test for differences between conditions, and they show what
aspects of the RT distributions determine the size of the power advantage for means.

Keywords: reaction time, power, means, medians, within-subjects comparisons

Introduction

In typical reaction time (RT) experiments, re-
searchers collect many RTs per participant in each con-
dition that are then compared via repeated-measures t-
tests or ANOVAs. When they want to determine whether
the central tendencies of the RTs differ between condi-
tions, they are faced with the problem of how to sum-
marize the many within-condition RTs per participant
into a single number for use in the repeated-measures
test. Various summary measures have been used for this
purpose—most commonly the means and medians of
the within-condition RTs for each participant.

Miller (1988) warned that when RT distributions are
skewed, as they usually are, median RTs are biased. Fur-
thermore, this bias is larger when the number of trials
per condition is small. He therefore recommended that
medians should not be used when comparing condi-
tions with different numbers of trials, because the larger
bias could cause conditions with fewer trials to appear
slower, even with identical RT distributions in both con-
ditions. Rousselet and Wilcox (2020; henceforth, R&W)
recently disputed this recommendation based on an ex-
tensive series of simulations examining means, medi-
ans, and several other summary measures. In particu-
lar, they used a standard percentile bias correction pro-
cedure (e.g., Efron, 1979, Efron and Tibshirani, 1993)

and found that it successfully eliminated the bias prob-
lem identified by Miller (1988). In brief, their procedure
estimates the median bias as the difference between the
observed median and the average median across many
bootstrap samples. The observed median is then cor-
rected by subtracting this estimated bias, and the final
result of this subtraction is taken as the bias-corrected
median estimate (for further details, see Rousselet and
Wilcox, 2020). In view of the fact that the correction
procedure eliminated median bias and other aspects of
their analysis, R&W concluded that “the recommenda-
tion by Miller (1988) to not use the median when com-
paring distributions that differ in sample size was ill-
advised” (p. 31). Their conclusions have been influen-
tial in encouraging researchers to analyze median RTs
(e.g., Gordon et al., 2020, Maksimenko et al., 2019,
Thornton and Zdravković, 2020).

The present article reexamines the use of mean RT,
median RT, and bias-corrected median RT as summary
measures for the central tendency of an individual par-
ticipant’s RTs observed in a particular experimental con-
dition, focusing on the statistical power of each sum-
mary measure. It is obviously desirable to use a sum-
mary measure that provides as much power as possi-
ble while staying within the chosen level of Type I er-
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ror rate1. In particular, the present simulations sought
to identify the summary method that would provide
the greatest power when comparing condition means
of the summary scores across participants via paramet-
ric tests (e.g., t-tests or ANOVAs), as is most commonly
done. Although this question has been looked at pre-
viously, it appears that power is sometimes higher for
means and sometimes higher for medians (e.g., Ratcliff,
1993, Rousselet and Wilcox, 2020), and there has been
no clear characterization of the conditions under which
each one is superior.

The primary simulations reported in this article used
the ex-Gaussian distribution as an ad hoc descriptive
model of RT, because this simple distribution generally
provides good fits to observed RT distributions (e.g.,
Luce, 1986, Hohle, 1965). The ex-Gaussian can be con-
ceived of as the sum of two independent random vari-
ables. One is a normal with mean µ and standard de-
viation σ, the other is an exponential with mean τ, and
the overall mean RT is the sum of µ and τ. Examples
of these distributions are shown in Figure 1, which il-
lustrates that the exponential τ parameter reflects the
skewness of the RT distribution—that is, the length of
the long tail of slow responses characteristically seen
in real RT data (Burbeck and Luce, 1982 ,Luce, 1986,
Hohle, 1965). The flexibility of the ex-Gaussian in de-
scribing distributions with different amounts of skew
makes it a useful model for simulations investigating
Type I error rates, because these depend on skew (e.g.,
Miller, 1988).

In addition to the ex-Gaussian, simulations were
also carried out using four other statistical models for
RT distributions in order to make sure that the ob-
tained results were not idiosyncratic to the ex-Gaussian.
Specifically, these were the ex-Wald distribution (e.g.,
Schwarz, 2001), the shifted lognormal distribution, the
shifted gamma distribution, and the three-parameter
(i.e., shifted) Weibull distribution. As is illustrated with
the examples in Figure 2, these are all similar to ob-
served RT distributions in that they are skewed with
a long tail at the high end. For each of the differ-
ent ex-Gaussian distributions that we examined, paral-
lel simulations of 1,000 experiments were also carried
out with each of these alternative distributional mod-
els. For these parallel simulations, the parameters of
each alternative distribution were adjusted so that the
alternative distribution matched the corresponding ex-
Gaussian at the 5th, 50th, and 95th percentile points,
so we will refer to these as the “percentile-matched”
distributions. To foreshadow the results, the patterns
obtained with all of these percentile-matched distribu-
tions closely matched the presented patterns obtained
with the ex-Gaussian. More specifically, although the

relative performance of the mean, median, and bias-
corrected median summary measures depends strongly
on RT skewness, it depends hardly at all on the precise
underlying distribution family producing that skewness.

The ex-Gaussian and other skewed distributions are
helpful not only in describing single RT distributions but
even more so in describing the effects of experimental
manipulations on these distributions. Observed RT dis-
tributions can easily differ in ways that are too complex
to summarize in a single measure of central tendency
such as a mean, so other descriptors of distributional
changes can provide useful clues about the causes of
experimental effects (e.g., Balota et al., 2008, Balota
and Yap, 2011, Heathcote et al., 1991). Besides being
of interest in their own right, these distributional dif-
ferences may also have implications for the choice of
the most appropriate measure of central tendency to be
used when that is the research focus. One possibility,
illustrated by the pair of ex-Gaussians on the left of Fig-
ure 1, is that the experimental manipulation shifts the
distribution to the right in the slower condition, which is
described within the ex-Gaussian model by an increase
in the µ parameter with no change in skewness. For
example, using a spatial Simon paradigm (e.g., Hom-
mel, 2011), Luo and Proctor (2018) asked participants
in their Experiment 1 to respond with the left versus
right hand to red versus green squares that appeared
irrelevantly to the left or right of fixation. Even though
location was irrelevant, responses were faster when the
square appeared on the same side as the required re-
sponse than when it appeared on the opposite side. At
the distributional level, this RT difference was well de-
scribed as a shift effect reflected entirely in the µ param-
eter, with no change in skewness (τ). Another possibil-
ity, illustrated by the pair of ex-Gaussians on the right
side of Figure 1, is that the experimental manipulation
stretches the tail of the RT distribution in the slower con-
dition, essentially increasing its skew, which can be de-
scribed as an effect that is entirely on τ. For example, in
their Experiment 3, Luo and Proctor (2018) asked par-
ticipants to respond with the left versus right hand to
red versus green arrows that pointed irrelevantly to the
left or right, and responses were faster when the arrow
pointed to the same side as the required response than
when it pointed to the opposite side. This time, how-
ever, the RT difference was mainly due to a stretched

1R&W also evaluated different summary measures with re-
spect to various criteria for identifying “the typical value of a
distribution, which provides a good indication of the location
of the majority of observations” (p. 2). I will not address those
criteria in the present article, but only consider the value of
the measures for standard hypothesis testing, which is a very
common statistical procedure with such data.
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Figure 1

Example probability density functions (PDFs) and cumulative distribution functions (CDFs) for three ex-Gaussian dis-
tributions differing in µ and τ, all with σ = 50. A reference distribution with µ = 400 and τ = 200 (solid lines, mean
600 ms, median 544.82 ms) is shown on all panels to facilitate visualization of the effects of changing µ versus τ. The
comparison distributions (dotted lines, with mean 700 ms) differ with respect to either µ (left panels, median 644.82 ms)
or τ (right panels, median 612.11 ms).

tail, with increased skew reflected in a larger τ, and
there was little change in µ.

Since the introduction of the ex-Gaussian by Hohle
(1965), many studies have examined the shifting versus
tail-stretching effects of various experimental manipula-
tions on the shapes of RT distributions as described in
terms of µ and τ. Both µ and τ are typically larger in
the slower condition than in the faster one, indicating
that most experimental manipulations have both shift-

ing and stretching effects, in varying mixtures. There
is unfortunately no consensus about the psychological
meanings of changes in these different parameters, be-
cause there are at best weak distinctions between exper-
imental manipulations with shifting versus stretching
effects (e.g., Matzke and Wagenmakers, 2009, Rieger
and Miller, 2020), but the ex-Gaussian distribution nev-
ertheless remains useful as a way of describing changes
in the shapes of RT distributions as well as their means.
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Figure 2

Example probability density functions (PDFs) for the different RT distribution families examined. The ex-Gaussian
distribution has parameters of µ = 400, σ = 50, and τ = 200. The parameters of the other distributions were adjusted to
match the ex-Gaussian at the 5th, 50th, and 95th percentile points, leading to the following parameter values: ex-Wald:
Wald µ = 399.9 and σ = 50.9, and exponential τ = 199.9; shifted lognormal: µ = 312.9 and σ = 215.6, with a shift of
C = 287.2; shifted gamma: µ = 246.3 and σ = 206.1, with a shift of C = 353.0; Weibull: µ = 239.8 and σ = 205.2, with
an offset of C = 359.5.

0 500 1000 1500

RT

0.0000

0.0010

0.0020

0.0030

P
D

F
(R

T
)

ex-Gaussian
ex-Wald
shifted lognormal
shifted gamma
Weibull

For the present purposes, the distinction between shift-
ing and stretching effects is relevant because—as will
be seen—statistical tests based on means, medians, and
bias-corrected medians are especially different in their
power to detect stretching effects.

Type I Error Rates

For completeness, and to make the simulation pro-
cess more concrete, this section reviews briefly the well-
established fact that Type I error rates are inflated by
sample-size-dependent bias when medians are used to
compare RTs across conditions with unequal numbers
of trials (which I will call unequal trial “frequencies”
rather than “sample size”, to avoid confusion with the
number of participants). This bias is an artifact that
would contaminate comparisons of conditions with dif-
ferent trial frequencies if medians were used to sum-
marize the RTs in each condition. Originally, compar-
isons of such conditions were used particularly in stud-
ies of the main effects of stimulus and response prob-
ability (e.g., Hyman, 1953), attentional cuing (e.g.,

Posner et al., 1978), and expectancy (e.g., Mowrer et
al., 1940, Zahn and Rosenthal, 1966). In addition,
trial frequencies have often been varied across con-
ditions to explore a variety of cognitive processes by
investigating their interactions with probability (e.g.,
Broadbent and Gregory, 1965, Den Heyer et al., 1983,
Miller and Pachella, 1973, Sanders, 1970, Theios et al.,
1973). Currently, trial frequencies are commonly var-
ied in studies of spatial and temporal statistical learning
(e.g., Flowers et al., 2021, Gibson et al., 2021, Liese-
feld and Müller, 2021, Vadillo et al., 2021), the mod-
ulation of attentional control processes by environmen-
tal contingencies (e.g., Cochrane et al., 2021, Huang et
al., 2021, Kang and Chiu, 2021), action-outcome con-
tingency learning (e.g., Gao and Gozli, 2021), adapta-
tion to the frequency of congruent versus incongruent
information (e.g., Bausenhart et al., 2021, Ivanov and
Theeuwes, 2021, Thomson et al., 2021), and between-
task resource sharing (e.g., Miller and Tang, 2021), to
name just a few areas. Unfortunately, median bias is still
sometimes overlooked and may contaminate published
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comparisons of conditions with different trial frequen-
cies (e.g., Bulger et al., 2021).

As noted by Miller (1988) and confirmed by R&W’s
Table 2, sample medians are biased with skewed dis-
tributions, and the bias is greater when the number of
trials is smaller. If medians are used to compare con-
ditions with different trial frequencies, this bias causes
the Type I error rate to be inflated—perhaps seriously.
Specifically, the low-frequency condition will often ap-
pear to be statistically slower than the high-frequency
condition, even if the true RT distributions are identical
in the two conditions.

A simple simulation of 5,000 experiments illustrates
the problem. In each simulated experiment, RTs were
generated for 60 participants. Each participant was
tested for 51 trials in the “frequent” condition and 5
trials in the “infrequent” condition, with odd numbers
of trials used so that the median of each sample would
be the unique middle score. The null hypothesis was
always true—that is, RTs for both conditions were sam-
pled from the same underlying ex-Gaussian distribu-
tion with µ = 400, σ = 50, τ = 200 shown in Fig-
ure 1. Within each simulated experiment, the RTs sam-
pled for each participant were summarized by comput-
ing the median in each condition. Using these medians
as the dependent variable, a paired t-test comparing the
means of these medians was then computed across the
60 participants, with α = 0.05, two-tailed. Since the
null hypothesis was true in the simulated experiments,
one would theoretically expect approximately 5% sig-
nificant results (i.e., Type I errors) by chance, with half
of these yielding significantly larger scores in the fre-
quent condition and half significantly larger scores in
the infrequent condition. However, the simulation actu-
ally produced 17.8% Type I errors where the infrequent
condition appeared slower versus only 0.1% where the
frequent condition appeared slower. Thus, in accor-
dance with the warning of Miller (1988), comparing the
means of participant/condition median RTs produced
far too many Type I errors in the direction that would
lead researchers to conclude that responses are slower
in the infrequent condition.

The inflated Type I error rate for medians arises for
purely statistical reasons. As is described in the Ap-
pendix, the full sampling distribution of the sample me-
dians can be computed numerically using the known
properties of order statistics (i.e., the median of the
smaller sample is the third order statistic in a sample of
five, and the median of the larger sample is the 26th or-
der statistic in a sample of 51), and these sampling dis-
tributions are shown in Figure 3. Crucially, the means
of these sampling distributions are 561.4 and 546.7, re-
spectively, so the long-run mean of the smaller sample

medians really is larger than that of the larger sam-
ples. The t-test results simply reflect this true differ-
ence in average medians for samples of these two sizes
from this distribution. In comparison, across exactly the
same simulated datasets using each participant’s condi-
tion mean or bias-corrected median2 as the summary
measure, approximately 2.5% Type I errors in each di-
rection were obtained, as expected.

Parallel simulations were carried out to determine
the extent of error rate inflation under a variety of dif-
ferent simulation conditions, and representative results
are shown in Figure 4. The different simulation condi-
tions used: (a) varying numbers of trials N in the in-
frequent condition (the frequent condition always had
51 trials), as shown along the horizontal axis; (b) ex-
Gaussian (or corresponding percentile-matched distri-
butions) with different values of µ and τ to vary the de-
gree of skewness, shown as different lines; and (c) 30 or
60 participants in the experiment, shown in the panels
on the left or right. The vertical axis shows the pro-
portion of simulated experiments in which researchers
would reject the null hypothesis and conclude that re-
sponses were slower in the infrequent condition. Since
scores in both conditions were actually always drawn
from the same distribution, these would again be Type I
errors in that direction. Obviously, the Type I error rates
for the median analyses can far exceed the appropriate
2.5% with small Ns in the infrequent condition, whereas
the error rates for the means do not. Bias-corrected me-
dians also produced appropriate error rates, replicating
R&W’s results.

Very similar patterns of Type I error rates were ob-
tained in the simulations with the other four percentile-
matched distributions used as RT models (i.e., ex-Wald,
shifted lognormal, etc). For example, across the 32 sim-
ulation conditions shown in Figure 4, the average Type I
error rate for the median was 6.7% for the ex-Gaussian,
whereas it ranged from 6.1% to 6.7% with the other
four distributions. Similarly, the Type I error rate ex-
ceeded 15% for all distributions in the worst case (i.e.,
the simulation with 60 participants, five trials in the
infrequent condition, and the most-skewed distribution
percentile-matched to the ex-Gaussian with µ = 350 and
τ = 250). Meanwhile, the Type I error rates for the mean
and bias-corrected medians were always around 2% for
these other distributions, just as they were with the ex-
Gaussian (Fig. 4). Thus, the finding of inflated Type I
errors for medians seems relatively independent of the
precise shape of the skewed RT distribution.

The simulations presented so far have all used pure,
uncontaminated RT distributions, but there are reasons

2For all simulations in this article, bias-corrected medians
were based on 200 bootstrap samples.



6

Figure 3

Probability density function (PDF) for the theoretical sampling distribution of the median for samples of five and 51
trials from an ex-Gaussian distribution with µ = 400, σ = 50, and τ = 200, together with the mean µ of each sampling
distribution.

200 400 600 800 1000

sample median RT

0.0000

0.0050

0.0100

0.0150

P
D

F
(s

am
pl

e 
m

ed
ia

n 
R

T
)

51=546.7

5=561.4

51 trials
 5 trials

to suspect that observed RT distributions contain occa-
sional outliers (e.g., Ratcliff, 1993, Ulrich and Miller,
1994), perhaps because the participant’s attention mo-
mentarily wanders away from the task. It is an empirical
question whether the results shown in Figure 4 would
change markedly if the simulations included outliers.
For example, since means are more affected by extreme
scores than medians, the Type I error rates associated
with mean-based analyses might be inflated when out-
liers are included. To look at the effects of outliers, ad-
ditional simulations were conducted using each of the
different RT models already introduced. These simula-
tions included either 2% or 4% outliers, and the outliers
were formed by summing an RT from the uncontam-
inated distribution with a random number distributed
uniformly between 0–1,000 ms to reflect a distraction
delay3. Such outliers had hardly any influence on the
Type I error rates obtained using means, medians, or
bias-corrected medians, so it seems unlikely that out-
liers in real RT data would reduce the Type I error rate
advantage for means and bias-corrected medians rela-
tive to regular medians.

R&W acknowledged the problem of inflated Type I
errors when using sample medians for comparing pop-

ulation means (e.g., with t-tests), and their Figure 10B
even shows simulation results displaying the problem.
Nonetheless, they essentially dismissed this problem be-
cause “the bias can be strongly attenuated by using a
percentile bootstrap bias correction” (p. 31), which is
a procedure that was not considered by Miller (1988).
Indeed, their Figure 10C shows that the bootstrap bias
correction completely cures the Type I error rate prob-
lem, as is also shown in the present Figure 4. Thus, it
is reasonable to consider the bias-corrected median as a
possible summary measure of RTs, and the next step is
to check its power.

Power

Given that bias correction solves the median’s prob-
lem of Type I error rate inflation, it is tempting to
suspect that bias-corrected medians would be prefer-
able to means, because the median is often the pre-
ferred measure of central tendency with skewed dis-

3Ratcliff (1993) introduced outliers varying uniformly be-
tween 0–2,000 ms, but it seems that responses delayed by
1,000–2,000 ms would be easily identified and excluded by
commonly-used outlier rejection techniques.
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Figure 4

Proportions of “infrequent mean larger” Type I errors obtained when using means, medians, or bias-corrected medians
to compare conditions with different numbers of trials N in the infrequent condition, with an expected Type I error
rate in this direction of 0.025 based on α = 0.05. Each point indicates the proportion of significantly larger means
in the infrequent condition across 10,000 simulated experiments with the indicated number of participants. The true
distribution was always an ex-Gaussian with σ = 50. Its value of µ was 350, 400, 450, or 500, with τ = 600 − µ.
There were always 51 trials in the frequent condition, and the true underlying RT distributions were always identical
ex-Gaussians in the frequent and infrequent conditions. For the bias-corrected medians, 200 bootstrap samples were
used to correct the median separately for each simulated participant/condition pair.
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tributions. Contrary to this intuition, however, Ratcliff
(1993) reported that regular medians provide less sta-
tistical power than means. R&W acknowledged Rat-
cliff’s report, but they downplayed it because of the
small trial frequencies used in Ratcliff’s analysis. In ad-
dition, it remains an open question how the power of
bias-corrected medians compares with that of means.
The present simulations investigated these issues.

Fortunately, it is easy to compare the power of means
versus bias-corrected medians using simulations similar
to those described above for assessing Type I error rate.
Instead of using the same RT distributions for the two
conditions being compared, one simply uses different
distributions and checks the proportion of simulated ex-
periments yielding a statistically significant difference—
this proportion is an estimate of statistical power. To
model the different types of experimental effects for
which researchers might test, one can allocate different
amounts of the RT increase in the slower condition to
different amounts of shifting versus skewing (i.e., tail-
stretching) effects on the RT distribution. Within the
ex-Gaussian RT model this amounts to increases in the
µ versus τ parameters, and changes in other parame-
ters produce comparable shifting versus stretching ef-
fects within the other RT distribution models.

The first set of power simulations examined the abil-
ity of the different summary measures to reveal a true
between-condition RT difference in experiments where
the two conditions had unequal trial frequencies, and
the results of these simulations are displayed in Fig-
ure 5. Regular medians would not be appropriate in
this situation because of the Type I error rate problem
described in the previous section, so these simulations
only compared the power of tests using means and bias-
corrected medians. Naturally, these two types of testing
were compared under identical simulation conditions,
and in fact identical samples of simulated RTs were al-
ways analyzed with the two summary measures.

In total, there were 32 simulation conditions using
ex-Gaussian RT distributions, corresponding to the 32
points shown in Figure 5, for each of the mean-based
and bias-corrected median-based tests. In all 32 sim-
ulation conditions, 51 RTs per participant were sam-
pled from the faster condition, and the true mean RT
in the faster condition was 600 ms. The 32 conditions
were formed as the factorial combination of eight dif-
ferent dataset sizes and four conditions differing with
respect to RT skewness. The eight dataset sizes con-
sisted of 30 or 60 participants factorially combined with
5, 9, 17, or 33 trials in the slower condition. The four
skewness conditions were formed using two amounts of
skewness of the RT distribution in the faster condition
(i.e., µ f = 350 and τ f = 250 or µ f = 500 and τ f = 100,

with σ = 50 in both cases) and by allocating the RT
increase in the slower condition either 25% to µs and
75% to τs, or the reverse4. Thus, in different simulation
conditions the faster RT distribution was either more
or less skewed to begin with and the mean RT differ-
ence between conditions arose either mostly from shift-
ing the distribution in the slower condition or mostly
from stretching it. Finally, the true mean RT difference
between the fast and slow conditions was adjusted indi-
vidually for each of the 32 simulation conditions to pro-
duce an intermediate power level (i.e., approximately
25%–75%) for tests using means as the summary mea-
sure. Intermediate power levels are desirable because
they provide the best opportunity to observe power dif-
ferences between means and bias-corrected medians;
with very low or high power levels, the differences be-
tween analysis methods are compressed by floor or ceil-
ing effects. Across the 32 simulation conditions, the true
mean difference varied from 9–41 ms.

Not surprisingly, the results shown in Figure 5 indi-
cate that the power of t-test comparisons increases with
the number of participants and the number of trials
per participant, and in fact these power increases are
even more dramatic than are shown because the true
differences were adjusted to smaller values with larger
datasets in order to avoid ceiling effects on power. More
critically, they also show a clear power advantage for us-
ing means rather than bias-corrected medians. Thus, al-
though the bias-correction procedure lets the median do
as well as the mean with respect to Type I errors (Fig. 4),
this summary measures seems to have much less power
than the simpler option of using means. The advan-
tage for mean-based testing depends little either on the
number of trials in the slower condition or on the skew-
ness of RTs in the faster condition (i.e., µ f = 350 versus
µ f = 500). It is clearly larger, however, when the exper-
imental effect arises mainly from a tail-stretching effect
(i.e., ∆µ/∆ = 0.25; upper panels) rather than from a
shifting effect (i.e., ∆µ/∆ = 0.75; lower panels). Indeed,
further simulations (not shown) indicate that the power
of mean-based analyses is only slightly higher than that
of analyses using bias-corrected medians when slowing
is almost entirely due to a shift (i.e., ∆µ/∆ = 0.95). The
reasons for this pattern will become clearer after the
next set of simulations, which reinforce and extend the
pattern.

Once again, the results of the simulations with
the other, percentile-matched RT distributions closely

4In the corresponding 32 simulation conditions using each
of the percentile-matched distributions, adjustments of the pa-
rameters of those distributions were made as needed to match
the percentiles of the other distributions to those of the ex-
Gaussians used in the fast and slow conditions.
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Figure 5

Power of mean- and bias-corrected median-based tests for true differences in ex-Gaussian RT distributions in experiments
comparing a faster condition with 51 trials per participant against a slower condition with fewer trials per participant.
Each point indicates the proportion of significant results across 5,000 simulated experiments (α = 0.025, one-tailed).
Simulation conditions also differed with respect to the skewness of the faster RT distribution (µ f = 350 and τ f = 250 or
µ f = 500 and τ f = 100) and the proportion of the total RT slowing (∆) associated with the µ parameter (∆µ/∆ = 0.25
or 0.75). For the bias-corrected medians, 200 bootstrap samples were used to correct the median separately for each
simulated participant/condition pair.

match those of the ex-Gaussian RT distributions, with
these simulations also showing greater power for mean-
based testing. For example, across the 32 simulation
conditions in Figure 5, the average power levels of the
mean- and bias-corrected median-based tests were 0.58
and 0.32, respectively. With the other distributions, the

average power for means ranged from 0.55–0.58, and
the average power for bias-corrected medians ranged
from 0.26–0.31. Similarly, across all distribution types
and all simulation conditions, the minimum and max-
imum power levels ranged from 0.30–0.37 and 0.77–
0.80 respectively for means, whereas these ranges ex-
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tended from 0.11–0.12 and 0.51–0.61 for bias-corrected
medians. In further simulations including 2% or 4%
outliers of the same type used in the earlier Type I error
rate simulations, power decreased for both mean- and
bias-corrected median-based tests, but average power
across simulation conditions was still more than 10%
higher for the mean than for the bias-corrected median
with all distributions.

In view of the fact that mean-based RT summaries
have demonstrably greater power than bias-corrected
median-based summaries for experiments with unequal
trial frequencies (Fig. 5), it is also sensible to compare
power levels in experiments with equal trial frequencies.
As noted by Miller (1988) and R&W, regular medians
are not associated with Type I error rate inflation in
this situation because they would be equally biased in
both conditions, so regular medians can also be consid-
ered as an appropriate summary of single-trial RTs in
this case. It is, however, useful to compare the power
of these three candidate measures of central tendency
(i.e., means, medians, bias-corrected medians).

Figure 6 shows the results of simulations analogous
to those shown in Figure 5, except with equal num-
bers of trials per participant in the faster and slower
conditions, and naturally power again increased in the
simulation conditions with more participants and trials
even though these conditions had smaller true mean
differences to avoid ceiling effects. Power is consis-
tently lower for bias-corrected medians than for regu-
lar medians, suggesting that the bias correction should
not be used with equal trial frequencies. Mean-based
tests again have the most power, although the power
difference between means and medians depends heavily
on whether the experimental manipulation has mostly
a shifting or tail-stretching effect. As can be seen in
the upper panels of Figure 6, means have substantially
more power than medians when a minority of the RT
difference results from a change in µ (i.e., ∆µ/∆ = 0.25).
The power advantage for means is much reduced when
a majority of the RT difference results from a change
in µ (i.e., ∆µ/∆ = 0.75), and medians can actually have
slightly more power when the RT difference is a pure
shift (i.e., ∆µ/∆ = 1.00; not shown). The same qualita-
tive patterns are evident in Figs. 14–16 of R&W.

Overall, the pattern of greater power for mean-based
testing shown in Figure 6 was again consistent across
distributions and outlier conditions. Averaging across
the different dataset sizes and skewness combinations
shown in the figure, the average power levels of mean-
based testing ranged across distributions from 0.55–
0.58, whereas the ranges for median- and bias-corrected
median-based testing were 0.38–0.45 and 0.27–0.33,
respectively. The presence of 2% or 4% outliers reduced

these average power levels overall, but average power
was still largest for means (ranging across distributions
from 0.46–0.49 and 0.41–0.43 with 2% and 4% out-
liers, respectively), second-largest for medians (ranging
from 0.37–0.43 and 0.35–0.41), and smallest for bias-
corrected medians (ranging from 0.26–0.31 and 0.26–
0.30).

Why is it that using participant mean RTs as the sum-
mary measure has so much more power when the ex-
perimental effect is mostly a stretch in the slow tail?
The main reason is simply that power increases with
effect size, as is true for all statistical tests. Consider
two conditions whose true mean RTs differ by 40 ms. In
that case, the expected difference in mean RTs between
those two conditions is 40 ms, regardless of how the
effect is distributed between shifting and stretching and
regardless of how many trials there are per participant
in each condition. The situation is far more complicated
for differences in medians, however, as is illustrated
with the ex-Gaussian distribution in Figure 7. Figure 7A
shows the expected value of the difference between the
medians of the fast and slow conditions (∆mdn) as a func-
tion of (a) how much of the 40 ms mean RT difference
is produced by changes in µ versus τ (i.e., ∆µ versus ∆τ),
and (b) how many trials per participant are tested in
each condition5. Critically, the expected difference be-
tween medians is always less than the 40 ms expected
difference in means, and it is far less when the condi-
tions differ mostly in τ (i.e., ∆µ = 10 and ∆τ = 30)
rather than mostly in µ (i.e., ∆µ = 30 and ∆τ = 10),
particularly when the number of trials is large. The fact
that the numerical differences are larger for means than
medians strongly suggests that tests using means would
have more power. In theory, medians could provide
more statistical power despite their smaller effect size in
milliseconds if they had much smaller standard errors.
They do not, however, as is clear in Figure 7B, which
shows the corresponding ratios of the standard error of
the difference in means to the standard error of the dif-
ference in medians. These ratios are quite close to 1.0,
which means that the standard errors of the means and
medians are nearly equal in all of these cases. Figure 7C
shows the comparison of means versus medians plotted
in terms of Cohen’s d, a standard effect size measure. Ef-
fect sizes increase with the number of trials, as expected
because the standard error of the sample statistics (i.e.,
mean and median) decrease as the number of trials in-
creases. More importantly, it is clear that effect sizes are
larger for means than for medians across all conditions,
and this is the source of the power advantage for means.

5The results shown in this figure were obtained by compu-
tation rather than by simulation, using methods explained in
the Appendix.
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Figure 6

Power of mean-, median-, and bias-corrected median-based tests for true differences in ex-Gaussian RT distributions in
experiments comparing faster and slower conditions with equal numbers of trials per participant. The parameters other
than the numbers of trials per condition are the same as those in Figure 5.

In essence, when much of an experimental manipula-
tion’s effect is to stretch the long upper tail of the RT dis-
tribution, the median’s relative insensitivity to this part
of the distribution eliminates part of the very between-
condition difference that the researcher is looking for6.
This is particularly ironic because insensitivity to skew
is often cited as one of the median’s benefits, and it is
supposed to make the median especially tempting with
skewed distributions (e.g., Hays, 1973, Marascuilo,
1971). As noted by Yule (1911), for example, “The me-

dian may [italics in original] sometimes be preferable to
the mean, owing to its being less affected by abnormally
large or small values of the variable” (p. 120), although
he also commented that the median’s “limitations ren-
der the applications of the median in any work in which
theoretical considerations are necessary comparatively

6The same problem would arise with trimmed means,
though to a lesser extent, because trimming also reduces the
contribution of the high end of the RT distribution, where the
condition difference is greatest.
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Figure 7

A: Expected difference between fast- and slow-condition median RTs (∆mdn) for two conditions whose true means differ
by 40 ms as a function of the number of trials per participant in each condition and of the division of the 40 ms effect
between the µ and τ parameters of the ex-Gaussian RT distribution (i.e., ∆µ = 10 and ∆τ = 30, ∆µ = 20 and ∆τ = 20, or
∆µ = 30 and ∆τ = 10). In all cases, the expected difference between the mean RTs of these conditions is 40 ms. B: The
ratio of the standard error of the difference in means (σmn) to the standard error of the difference in medians (σmdn),
illustrating that the standard errors of the differences are approximately equal. C: Cohen’s d for testing the condition
effect using means (dmn, thick lines) versus medians (dmdn, thin lines) as the summaries of the individual-participant
performance in each condition.
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circumscribed” (p. 119). As the present simulations
show, however, means can have much higher power to
detect between-condition RT differences when experi-
mental manipulations increase skewness, as they often
do (e.g., Heathcote et al., 1991, Hockley, 1984, Hockley
and Corballis, 1982, Luo and Proctor, 2018, Mewhort et
al., 1992, Moutsopoulou and Waszak, 2012, Possamaï,
1991, Singh et al., 2018). In a re-analysis of datasets
from seven published articles, for example, Rieger and
Miller (2020) found significant (p < 0.05) increases in
τ in 15 of 25 different statistical comparisons involv-
ing various distinct experimental manipulations. Evi-
dence from research on bilingualism also suggests that
the RT advantage for bilinguals is mostly due to the re-
duced number of quite long RTs and that the power of
bilingual/monolingual comparisons diminishes greatly
when long RTs are not considered (Zhou and Krott,
2016).

Distribution of Differences

In addition to comparing the effectiveness of means,
medians, and bias-corrected medians as summaries of
individual-participant RTs, R&W also compared three
different methods of testing for a significant differ-
ence between conditions after a summary measure
had been obtained for each participant in each con-
dition. They did this using simulations based on a
“g&h” distribution (see below). One method was to con-
duct a one-sample t-test using the individual-participant
between-condition differences in the summary scores.
This method is equivalent to testing with a repeated-
measures ANOVA or a paired t-test as in the present
simulations (e.g., Fig. 4), which appear to be the most
common methods of testing for overall RT differences
between conditions. The second method was to con-
duct a test on 20% trimmed means—that is, a test ex-
cluding participants with the most extreme between-
condition differences. Finally, the third method was to
test whether the median of the participants’ between-
condition differences differed from zero.

It is important to realize that R&W’s g&h simula-
tions comparing the three different methods of testing
for differences in summary measures address a differ-
ent question than that of how the individual RTs of
a given participant should be summarized in the first
place. Specifically, comparing hypothesis testing pro-
cedures addresses the question of how best to test for
a significant effect of conditions after summarizing the
original individual-participant RTs in each condition. This
is a different question because researchers could ini-
tially summarize individual-trial RTs with any of the
summary methods (i.e., means, medians, bias-corrected
medians) and then subsequently test for condition dif-

ferences with any of the hypothesis testing methods
(i.e., t-test, 20% trimmed means test, median test). In
principle, any one of these nine options could provide
the most statistical power. Thus, the conclusions of
the present simulations comparing different summary
methods are specific to the t-tests and these simulations
might have a different outcome if the summary mea-
sures were compared across conditions with some other
method.

In their comparison of different hypothesis testing
procedures using the g&h distribution, R&W did not dis-
tinguish between the three different methods of summa-
rizing individual-trial RTs (i.e., means, medians, bias-
corrected medians). In fact, they only generated a
single random number for each simulated participant,
and this number represented the difference (i.e., con-
dition effect) for that participant summarized from
the individual-participant RTs with “any type of differ-
ences between means, medians or any other quantities”
(p. 17). These individual-participant difference scores
were generated from “g&h” distributions, which allow
convenient parametric variation of distribution skew-
ness and kurtosis (i.e., tail heaviness) through g and h
parameters, respectively. Although it might seem more
appropriate to simulate single-trial RTs and examine all
nine possible analysis combinations (i.e., 3 summary
methods × 3 hypothesis testing methods), it is not clear
how to do that realistically. Even assuming that all
of the individual-participant RT distributions were ex-
Gaussians, the participants would surely differ in their
distribution parameters and in their between-condition
differences in these parameters (e.g., effects on µ and
τ). The distribution of individual-participant difference
scores would be heavily influenced by this participant-
to-participant variation as well as by the choice of sum-
mary method, but there does not yet exist an appropri-
ate model for this individual variation. Thus, it was not
unreasonable for R&W to model the final distribution
of individual-participant difference scores directly with
the g&h distribution rather than attempting to specify a
model in which these difference scores would emerge
from varying individual RT distributions under each
summary method.

R&W’s simulations comparing the effectiveness of
the different hypothesis testing methods produced two
particularly important results (e.g., their Figs. 12 and
13). First, each of the hypothesis testing methods tends
to lose power when the distribution of participant-to-
participant difference scores is more skewed or has
heavier tails (i.e., larger kurtosis). Second, this ten-
dency to lose power with increasing skew or kurtosis
is much stronger for the t-test than for the tests us-
ing trimmed means or medians. Naturally, then, R&W
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suggested that researchers should consider carefully the
amount of skew and kurtosis in their distributions of
participant-to-participant difference scores when decid-
ing which procedure to use in testing for a condition
effect.

Although R&W’s simulations comparing hypothesis
testing methods do not speak directly to the question
of how the individual-participant RTs should be sum-
marized in the first place, as was mentioned earlier,
one might suspect that they do so indirectly. In par-
ticular, their results suggest that researchers should pre-
fer the summary measure for which the participant-to-
participant difference scores are the least skewed and
have the lightest tails. Intuitively, it might seem reason-
able to assume that medians—by virtue of their smaller
sensitivity to extreme scores—would produce difference
score distributions that are less skewed and have lighter
tails than those produced by means, but this assumption
must be checked empirically.

To do that, I examined the two large, publicly avail-
able RT datasets of Ferrand et al. (2010) and Hutchi-
son et al. (2013), both involving lexical decision
tasks. In both datasets, responses to words were faster
than responses to nonwords, which provided a conve-
nient condition effect to examine. Since these are real
datasets, they have realistic trial-to-trial RT variabil-
ity and participant-to-participant variability in condition
effects, by definition, obviating the need to specify a
formal model for these. Thus, I computed three sep-
arate nonword-minus-word difference scores for each
participant—once each using the participant’s condition
mean RTs, condition median RTs, and bias-corrected
condition median RTs. The normalized frequency distri-
butions of these difference scores for the two datasets,
tabulated across 944 and 503 participants, respectively,
are shown in Figure 8.

Perhaps somewhat counterintuitively, the empirical
distributions of individual-participant difference scores
shown in Figure 8 are both less skewed (smaller values
of skew and g) and lighter tailed (smaller values of kur-
tosis and h) when the difference scores are computed
from mean RTs than when they are computed from ei-
ther of the median-based summary measures. In com-
bination with R&W’s finding of greater power with less
skewed and lighter-tailed difference score distributions,
this pattern provides clear evidence that researchers
would have more power when using means rather than
medians to summarize RTs. Based on R&W’s results,
it seems that this would be true regardless of which
hypothesis testing procedure was used, but it appears
that the mean advantage would be especially large with
standard t-tests or ANOVAs.

A distinctive feature of the SPP and FLP datasets,

relative to many published studies, is that there were
unusually many trials in each condition. One might
therefore wonder whether the results shown in Figure 8
would generalize to datasets with fewer trials per con-
dition (perhaps because there were more conditions).
To examine this issue, I conducted simulations with
smaller random subsets of the RTs for each participant
in each condition. To increase the stability of the simu-
lation results, 20 subsets of a given number of RTs were
randomly selected for each participant, selecting with-
out replacement for each subset but with replacement
across subsets (because there were not enough RTs to
sample without replacement for the larger subsets). For
each randomly selected subset of RTs from one partici-
pant, the condition effect was computed using each of
the three summary measures (i.e., mean, median, bias-
corrected median). Finally, across all simulated subsets
for a given number of RTs, the distribution of condition
effects was analyzed using the same computations as
those shown in Figure 8 for the full datasets.

Figure 9 shows the results of these simulations, which
nicely extend the results obtained with hundreds of tri-
als per participant in each condition (Fig. 8) to datasets
with smaller numbers of trials. With virtually any num-
ber of trials per condition per participant selected from
these real datasets, the between-participant difference
score distributions would be less skewed (i.e., smaller
skewness and g) and less heavy-tailed (i.e., smaller
kurtosis and h) when differences were computed from
mean RTs than when they were computed from me-
dians or bias-corrected medians. Thus, as with the
full datasets, these results in combination with R&W’s
demonstration of greater power with less skew and
lighter tails, provide a further argument for using the
mean to summarize the central tendency of observed
RTs.

Conclusions

R&W concluded that “there seems to be no rationale
for preferring the mean over the median as a measure
of central tendency for skewed distributions” (p. 31).
On the contrary, when performing hypothesis tests to
compare the central tendencies of RTs between exper-
imental conditions, the present simulations show that
there may be an extremely clear rationale involving
both Type I error rate and experimental power.

When comparing conditions with unequal numbers
of trials, the sample-size-dependent bias of regular me-
dians can lead to clear inflation of the Type I error rate
(Fig. 4), so these medians definitely should not be used.
Means and bias-corrected medians are both free of this
bias and thus have acceptable Type I error rates, so ei-
ther could be considered as a possible summary mea-
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Figure 8

Normalized histograms of individual-participant RT difference scores computed from three different summary RT mea-
sures in the lexical decision task datasets from the Semantic Priming Project (a, c, e; Hutchison et al., 2013) and
the French Lexicon Project (b, d, f; Ferrand et al., 2010). Each participant’s observed 800–1,000 word and nonword
RTs were first summarized by computing the mean, median, or bias-corrected median, and the nonword minus word
difference was then computed for each measure. The histograms (bars) depict the frequency distributions of these differ-
ences across participants, and the skewness (skew) and kurtosis (kurt) values computed from these observed difference
scores are shown on the panel. The solid line is the best-fitting (maximum likelihood) g&h distribution for each set of
differences, and the g and h parameters of these distributions are also shown.
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sure in this situation. Means clearly have greater power
(Fig. 5) than bias-corrected medians in most situations,
however, which would nearly always make them the
preferred choice.

When comparing conditions with equal numbers of
trials, means, medians, and bias-corrected medians all
have appropriate Type I error rates, so any of these
might be the preferred summary measure in this sit-
uation. Bias-corrected medians always seem to have

less power than regular medians, however, so here the
choice is really between means and regular medians,
depending on which of those has the higher power. As
can be seen in Figure 6), the answer depends on how
the experimental manipulation affects skewness. Thus,
to choose between means and medians as the summary
measure maximizing power, researchers must consider
the effect of the experimental manipulation at the level
of the RT distribution.
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Figure 9

Measures of skewness and kurtosis, plus maximum-likelihood estimates of parameters g and h, as a function of the
number of trials per condition in the lexical decision task datasets from the Semantic Priming Project (Hutchison et al.,
2013) and the French Lexicon Project (Ferrand et al., 2010). Random subsets of the indicated N of trials per condition
were taken for each participant and parameters were estimated as in Figure 8.

The results in Figure 6 suggest that the two measures
will have approximately equal power when RT skew-
ness is unaffected by the manipulation, whereas medi-
ans will have greater power if skewness decreases in the
slower condition and means will have greater power if
skewness increases in the slower condition. Although
the ex-Gaussian τ is one way of assessing skewness,
it is not always necessary to estimate ex-Gaussian pa-
rameters from RT distributions. Instead, one can use a
simpler skewness measure—namely, the difference be-
tween the mean and median of RT—as a proxy for τ. If
this difference is smaller in the slower condition than
the faster one, that is a sign that power will be better

using medians. On the other hand, if this difference
is larger in the slower condition, power will be better
using means.

An important caveat concerning the choice of sum-
mary measure is that this choice should not be made
based on the data being analyzed. To avoid the inflation
of Type I error rate that arises when researchers try mul-
tiple alternative analyses in the attempt to obtain signif-
icant results (i.e., “p-hacking”; Simmons et al., 2011),
researchers must choose the best summary measure in
advance, based on theoretical considerations regarding
the expected effect, on prior experience with similar ex-
perimental manipulations, or on pilot data. It would
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be inappropriate to decide whether to analyze mean or
median RTs based on whichever gave the larger effect
in a given dataset, because this would inflate the re-
searcher’s Type I error rate.
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Appendix

Expected Values and Standard Errors of Differences
in Means and Medians

This appendix describes the numerical procedures
for computing the expected values and standard er-
rors of between-condition differences in mean RTs and
between-condition differences in median RTs that are
depicted in Figure 7.

Let X1,i and X2,i, i = 1 . . . n, be random samples of
n RTs from the two conditions being compared. These
come from assumed probability distributions (e.g., ex-
Gaussian, etc) with means µ1 and µ2, variances σ2

1 and
σ2

2, and cumulative distribution functions (CDFs) F1(t)
and F2(t), respectively. For simplicity in dealing with
medians, assume that n is odd.

Means

To analyze the between-condition difference in mean
RTs, the researcher computes for each participant

Dmn = X̄2 − X̄1 =

n∑
i=1

X2,i/n −
n∑

i=1

X1,i/n, (1)

which has expected value E[Dmn] = µ2−µ1. The variance
of this difference is Var[Dmn] = σ2

1/n +σ
2
2/n, because X1,i

and X2,i are independent samples of trials.

Medians

To analyze the between-condition difference in me-
dian RTs, the researcher computes for each participant

Dmdn = X2(k) − X1(k) (2)

where X·(k) indicates the k’th order statistic in the sam-
ple of n RTs. The median is the k’th order statistic for
k = (n + 1)/2 when n is odd.

Given the CDF F(t) for the RTs in either condition,
the CDF of the median in that condition X(k) is

FX(k) (t) =
n∑

j=k

(
n
j

)
F(t) j · [1 − F(t)]n− j (3)

(e.g., Arnold et al., 1992). As is illustrated in Figure 3,
the probability distribution of the median RT in this con-
dition is uniquely determined by this CDF, so the me-
dian’s expected value E[X(k)] and variance Var[X(k)] in
the condition can be computed by numerical integra-
tion. Once this computation is carried out for each of
the two conditions individually, the expected value and
variance of the difference between conditions are

E[Dmdn] = E[X2(k)] − E[X1(k)] (4)

and

Var[Dmdn] = Var[X2(k)] + Var[X1(k)]. (5)
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