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ABSTRACT
In the paper is described development of predictive controller of combustion engine. The basic part of control system is predictive model 
describing future engine behavior in transient conditions. Accurate identification of controlled system, combustion engine in our case, is 
very important for high level of control precision. Typical engine operation is defined by driving cycle, which is used for engine operation 
parameters identification. Developed predictive control system was subsequently tested using software-in-the-loop technique.
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SHRNUTÍ
V tomto článku je popsán vývoj prediktivního řídicího systému pro spalovací motor. Základem prediktivního kontrolního systému je prediktivní 
model popisující chování v krátké budoucnosti přechodového děje. Přesná identifikace řízené soustavy, v našem případě spalovacího motoru, 
je velmi důležitá z hlediska přesnosti řízení. Typický provoz motoru je definován jízdním cyklem, který byl z tohoto důvodu použit pro 
identifikaci stavových parametrů motoru. Vyvinutý prediktivní systém řízení byl následně otestován s využitím software-in-the-loop techniky.
KLÍČOVÁ SLOVA: SIMULAČNÍ MODEL, 1-D SIMULACE, ŘÍDICÍ ALGORITMUS, PREDIKTIVNÍ ŘÍZENÍ, PREDIKTIVNÍ MODEL, LOLIMOT

1. INTRODUCTION
Internal combustion engines, as a source of mechanical power, 
started their development and improvement from the first day of 
their application. Engine efficiency, together with specific power, 
was gradually increased to meet demands of vehicles and machines 
of various kinds. Heavy and complicated steam engines were quickly 
replaced by ICE, which were simply more economical and also more 
ecological. Constant development of industry and transportation, 
mainly in large city agglomerations, was related with negative 
impact on the environment. This impact in connection with oil 
crisis was a driving force for implementation of emission limits for 
combustion engines. Nowadays, the dangerous pollutant emissions 
are limited together with CO2, which was identified as a main factor 
causing global warming. Amount of CO2 in engine exhaust gases 
is dependent on carbon fraction in fuel, which oxidizes during 
combustion process, and a total fuel consumption. Combustion 
engine total efficiency has to be increased or alternative low carbon 
fuel can be used to reduce specific CO2 emissions.
Engine research and development deals with combustion 
optimization and with exhaust gas aftertreatment optimization 

intensively to fulfil present and future emission limits. Nevertheless, 
none of new technologies could be applied to new engines without 
engine control optimization. Each technology implemented into 
design of combustion engine, which enables control and setting, 
brings new parameter for control system. Complexity of engine 
control systems gradually grows with number of controlled 
variables. Typical control unit works with look-up tables, which 
prescribes output for individual inputs. Low computation effort for 
interpolation in tables is in contrast to high demands for calibration 
of control unit, which require filling calibration parameters into 
thousands of tables for each engine type. The engines in automotive 
industry are produced in large quantities and ECU calibration costs 
are fractionated among production. More sophisticated control 
algorithms will probably call for more expensive hardware, which 
cannot guarantee lower price in mass production. Despite this fact, 
engine control systems and control algorithms are developed to 
meet demands of future combustion engines.
One possibility of engine control system with lower calibration 
effort is implementation of physical relationships among 
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variables. Results of relatively simple physical models will 
significantly reduce amount of look-up tables. This approach 
will potentially lead to complete thermodynamic engine model 
computed in engine control unit in real time. Results from 
engine model are applied to the real engine control since engine 
model behavior is identical to a real one. Furthermore, predicted 
parameters from engine model will substitute measured signals 
and possibly reduce number of sensors on real engine. Required 
number of parameters for engine thermodynamic model setup 
is dramatically reduced in comparison to simple look-up table 
based control unit. Most of the parameters are engine physical 
dimensions together with engine layout, which are all known 
during engine development. Although this approach is very 
promising, the cost of powerful electronic control unit hardware 
prevents utilization of this type of engine control.
Another possibility of engine control system is application of 
modern control methods, which will treat the considered dynamic 
system as one complex multi-input-multi-output (MIMO) unit. 
Model-based predictive control (MPC) [1], [2], [3] is a natural 
choice here, since discrete predictive models are very well suited 
to the “clockwork” nature of IC engines. A reliable predictive 
model of the controlled system is crucial for the proper control 
function, so one of the important tasks is finding a suitable 
method of creating such a model, i.e. of the system identification. 
One of the most promising and universal methods of dynamic 
systems identification is LOLIMOT [4]. It can produce robust, 
real time capable predictive models that have the advantage of 
being piece-wise linear, so that linear predictive control will be 
based on them. Since LOLIMOT models do not describe physical 
behavior of controlled system, analogically to other black-box 
models, the definition of the sets of linear functions is generated 
during model training. This procedure is important especially in 
terms of model results accuracy. The model is adapted to the real 
system outputs according to the system input parameters.

2. MODEL-BASED PREDICTIVE CONTROL 
SYSTEM
Predictive models have an ability to predict the behavior of 
a dynamic system in the (near) future, therefore they are used for 
the calculation of the predictive control law. A predictive model 
is usually a discrete state model of the system.

2.1 LOLIMOT
LOLIMOT produces a combination of local input-output models 
that approximate the nonlinear behavior of an identified system 
by linear functions valid in particular sub-regions of the whole 
domain of definition. The mathematical models of a system 
identified with the LOLIMOT are called ‘LOLImodels’ (LLMs).

The basic principle of LOLIMOT is the approximation of the 
generally non-linear multivariable input-output function of 
a system by the scalar product of the vector of linear input-
-output functions and the vector of validity functions. Each 
linear function approximates the system output in sub -region 
determined by a relevant validity function. The output of the 
model can be written as:
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where M is the number of LLMs, ỹi is the output of the i -th LLM,
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is the vector of inputs, Φi(uL) is a validity function for the i -th 
LLM (designed as a normalized orthogonal Gaussian function),
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is the vector of the parameters of the i -th LLM.
The process of computing LLMs parameters, i.e. the identification 
of a given dynamic system, is called ‘training of LLMs’, and 
the computation is based on training signals. 
LOLIMOT was utilized to produce piecewise -linear predictive 
model of the engine. LLMs were trained using two independent 
sources of dynamic response data sets – a simulation model (for 
a model -in -the -loop simulation) and a real test -bed engine (for 
a hardware -in -the -loop arrangement).

2.2 PREDICTIVE MODEL BASED ON LOLIMOT
Although calculated LLMs generally constitute a nonlinear 
predictive system, their big advantage is that they can be directly 
transformed into a discrete state -space description with locally 
constant state matrices A, B, C, D:
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where Δx are system state variables, Δu are system inputs 
(control variables) and Δy are system outputs (i.e. variables to 
be controlled).
Three quantities designate the system states – engine speed, 
turbocharger speed, and boost pressure. LLMs were subsequently 
calculated of the state variables. Each LLM had five input signals 
(two actual control inputs and the past values of three state 
variables themselves). Another LLM was computed for the 
engine torque, which was (together with the boost pressure) 
chosen as the controlled quantity.

2.3 MODEL -BASED PREDICTIVE CONTROL
A model -based control scheme utilizes a concurrently running 
numerical model as a basis for the application of the control law. 
One of the benefits of this approach is the possibility to replace 
measurements by computations, which considerably reduces 
demands on the instrumentation of the whole control system. 
This have a big impact on both the price and the reliability of the 
system. Moreover, the simulation model provides some data that 
are not measurable using standard means (there is a danger of 
engine damage).
Rewriting the state model (2) for N subsequent steps, while 
getting rid of the incremental form of the states, inputs and 
outputs (i.e. writing x, u, and y instead of Δx, Δu, and Δy), 
one gets the formula sequence (3). The inclusion of the direct 
algebraic link between the plant input and output variables 
(via the matrix D) within the control framework resulted from 
the practical application requirements.
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Using the sequence (3), the output variables written in a complex 
matrix form (suitable for the control law derivation) is as follows: 
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The control is derived from the optimization of a quadratic 
performance index Jk

2.:

�

� { }
{ }�������������

���������
��

��
��

+�+�+=

=+��=

����

���� ��
 (6)

The performance index is optimized in the step k using the 
prediction JH>C<�I=:�EG:9>8I>DC� ��;DG�
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output vectors. The parameter e is a mean value operator, N is 
the prediction horizon, y is the output vector, w is the desired 
output vector, Q is a penalization matrix for the outputs, p is 
the penalization of the inputs, and 
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is the sequence of input vectors. 
From the requirement of the minimization of the performance index
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the derived control law: 
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Only the first element of the vector u is used for the nearest 
control action.
In terms of the actual work, the following quantities designate 
the system variables (relevant for the control):

• 2 system inputs u: 1. fuel mass per cycle, 2. rack 
position of the VGT;

• 3 state variables x: 1. engine speed, 2. turbocharger 
speed, 3. pressure;

• 2 system outputs y: 1. engine torque, 2. intake manifold 
(boost) pressure.

The engine is supposed to work in a mode of prescribed engine 
speed, which is being set externally, while controlled variables 
are the two above mentioned system outputs. While the choice 
of the desired engine torque is arbitrary (within certain limits), 
a function (in form of a 2 -D lookup table) is imposed on 
the online calculation of the boost pressure setpoint, which 
takes engine speed and torque setpoint into account, and its 
goal is to provide optimum combustion conditions.

3. ENGINE SIMULATION MODEL
Iveco Tector F4AE0682C six -cylinder diesel engine was used for 
the purpose of this work. The engine was equipped with common 
rail fuel injection system. Original turbocharger was replaced by 
Honeywell turbocharger with variable geometry turbine (VGT) 
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set by electric actuator. Original ECU was replaced by Ricardo 
rCube2 control system which is fully open and modifiable. The 
control system developed in MATLAB/Simulink is computed on 
rCube2 hardware after compilation. Engine maximum power 
was 194 kW / 2500 min-1 and torque of 930 Nm in wide range 
of engine speed.
Original engine control algorithms are based on a large set of 
look -up tables where working state is described by engine speed 
and engine torque. Target value of engine torque is calculated 
from the accelerator pedal position with respect to engine full 
load curve. Actual engine torque is not measured as a feedback, 
therefore only target torque value is used as input for control 
look -up maps interpolation. Each map output is uniquely 
defined and used for control with application of correction 
data. Maximum injected fuel mass is limited by the calculated 
Air to Fuel (A/F) ratio to suppress excessive smoke production. 
Feedback control strategy realized by simple PI controller was 
used only for intake air pressure control. All control maps were 
calibrated in steady states at the engine test bench. Since 
original ECU cannot be easily modified, original look -up table 
based control strategy was programed into rCube2 as a basic 
control system. MPC controller was later implemented into 
rCube2 instead of lookup tables.

3.1 CALIBRATION OF 1 -D ENGINE SIMULATION MODEL
1 -D simulation model was built in GT -Suite software from Gamma 
Technologies. All geometrical data was measured on real engine. 
Turbocharger characteristic was delivered by the producer. 
Combustion model was calibrated using Three Pressure Analysis 
(TPA) in single cylinder simulation model from high -speed 
measurement of pressures in cylinder and in intake and exhaust 
manifolds. 

Detailed 1 -D model was simplified up to RT model (Figure 1). 
Number of flow volumes decreased from 360 to approximately 60 
for FRM and 30 for RT model. The level of pulsation in turbine inlet 
is different in FRM and RT models, which affects turbine power 
especially in transient operation.
Time -averaged data measured at steady states at engine test bench 
was used to the calibration of engine model. Comparison of measured 
data with simulation results are displayed in Figure 2. The deviation 
of calibrated detailed 1 -D model is less than 3% in most of measured 
points. The comparison of maximum cylinder pressure shows good 
prediction of combustion model. All parameters describing the engine 
operation are predicted with acceptable level of accuracy.
The agreement of results of detailed 1 -D model, FRM and even 
RT model is very high and transient test proved that unsteady 
operation predicted by FRM models are as accurate as detailed 
1 -D models. FRM computation time is 77 times faster than 
detailed 1 -D model and real -time ratio is approximately 3.5. RT 
model computational time was approximately 0.8 of real time 
with satisfactory accuracy of engine operation parameters.

FIGURE 1: Fast Running Model of engine in GT-Power.
OBRÁZEK 1: Rychlý výpočetní model motoru v prostředí GT-Power.

 

FIGURE 2: Results comparison of detailed 1-D model and FRM model with 
measured data – injected fuel mass per cycle (upper) and maximum 
cylinder pressure (lower).
OBRÁZEK 2: Porovnání výsledků podrobného 1-D modelu a rychlého 
modelu s naměřenými daty – dávka paliva (horné) a maximální 
spalovací tlaky (dolní).
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3.2 VEHICLE SIMULATION MODEL
The simulation depth of 1 -D models is used in wide range 
of applications for its high accuracy and low computational 
demands. Properly calibrated engine model is suitable for 
predictive model training process for its higher robustness 
in comparison to the real engine measurement, especially 
when randomly generated control signal is used (there is no 
danger of engine damage).
Tested vehicle was represented by IVECO EuroCargo truck 
with load of 4000 kg. Vehicle model was built in GTSuite 
– Figure 3. Vehicle driving resistances were assumed with 
respect to typical values for a vehicle in this category.
The vehicle uses manually shifted six speed transmission. 
The driver is substituted by several controllers. They 
are represented by ordinary PID controllers set engine 
accelerator pedal position, brake position, clutch position 
and shifted gear. Shifting algorithm evaluates possible 
engine speed using all gears, available engine torque at all 
gears and chooses the best available gear from the point of 
view of low fuel consumption. 
The vehicle model is combined with 1 -D engine model in 
single simulation model. Driving resistances calculated by 
the vehicle model result in engine load, which is controlled 
by the driver model to follow required vehicle speed. 
The input signal for the vehicle model is required vehicle 
speed (driving cycle) with road slope in dependence on 
route length. The output signals were engine operation 
parameters.

4. ENGINE PREDICTIVE MODEL TRAINING
The predictive controller utilizes predictive engine model 
describing ICE dynamic behavior. As a predictive model 
LOLIMOT model was chosen for its robustness and real -time 
computational capability. The LOLIMOT model consists of 
combination of local input -output models that approximate 
the nonlinear behavior of an identified system by linear 
functions valid in particular sub -regions of the whole domain 
of definition. Analogically to other black -box models, the 
definition of the sets of linear functions is generated during 
model training. This procedure is important especially in terms 
of model results accuracy. The model is adapted to the real 
system outputs according to the system input parameters.

4.1 RANDOMLY GENERATED TRAINING SIGNAL
The question is how the training set of input data should 
be arranged. All previous work described in [7], [8] and [9] 
used randomly generated step signal for all system state 
parameters – Figure 4 and 5. Since the predictive model is 
applied to the combustion engine, the input parameters are 
system inputs (fuel mass per cycle, VGT position) and system 
state variables (engine speed, turbocharger speed, boost 
pressure etc.). 
If the signals for all input parameters are generated 
independently, it leads to the states which are not common in 
engine application or even impossible to arrange (e.g. large 
amount of injected fuel with very low VGT position resulting 
in high turbocharger speed and boost pressure). Engine 

FIGURE 3: Vehicle model built in GT-Suite.
OBRÁZEK 3: Model vozidla v prostředí GT-Suite.
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control unit uses limits and safety circuits to avoid possible 
dangerous situation and black box model has to learn these 
limitations during training process.
Quality of predictive control system trained only with randomly 
generated step signal is strongly dependent on training in 
the whole multispace of possible situations. Extrapolation of 
control outside of trained region can result in fault behavior of 
control system. An example of test cycle is displayed in Figure 5. 
Acceleration phase starts at 220 s of the test and ends at 
approximately 245 s. The boost pressure in acceleration phase 
need to be high to produce maximal engine power, which 
will be achieved by closing VGT to increase turbine power 
and turbocharger speed. Figure 5. does not show demanded 
boost pressure since control algorithm does not work with this 
variable. Predictive control behavior displayed Figure 5 reacted 
exactly in opposite way, which resulted in poor dynamic 
engine behavior. To avoid predictive control extrapolation 
outside trained region, the trained signal has to be generated 
in parameters range where engine is typically used, which for 
vehicle engine is the typical drive cycle.

4.2 TRAINING SIGNAL GENERATED IN DRIVE CYCLE
Accuracy of model prediction depends on quality of all possible 
system states examination in the multi -space of all input 
parameters. Randomly generated signal without subsequent 
evaluation of trained data cannot guarantee high model 
accuracy in the whole input parameters multi -space. 
The highest model accuracy is required in the parameters range 
where engine is typically used. Which for the vehicle, is typical 
driving cycle. Therefore, training process will include especially 
data sampled from driving cycles and not only randomly generated 
data. This improvement of predictive model training process 
eliminates extrapolation of model parameters, where engine state 
prediction accuracy decreases significantly. Nevertheless, some 
randomly generated signal will be used to learn the limits (low 
and high engine speed, and low and high load).

4.3 THE VEHICLE VELOCITY PROFILE OPTIMIZATION ON 
KNOWN ROUTE
The biggest factors directly influencing fuel consumption of 
vehicle are the set of vehicle and load parameters, trajectory 
shape and other trajectory properties and especially operating 
behavior of the vehicle, represented by the current velocity in 
each point in the prescribed route.
If the driving route is known in advance together with its legal 
and physical parameters, it is possible to design an optimal 
control for fuel saving in compliance with the set of external 
optimization conditions. These conditions are, for example, the 
arrival times into selected places in the route. Vehicle operating 
behavior and consequently the real fuel consumption can be 

 

FIGURE 4: Predictive engine model training with random step signal – 
engine speed (left) and engine torque (right).
OBRÁZEK 4: Trénování prediktivního modelu motoru signálem s náhodně 
generovanými skokovými změnami – otáčky motoru (vlevo) a moment 
motoru (vpravo).
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FIGURE 5: Result of predictive engine boost control with fault behavior in 
acceleration phase.
OBRÁZEK 5: Výsledky prediktivního řízení plnicího tlaku motoru 
s chybným chováním v průběhu akcelerace. 
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defined on the basis of the vehicle velocity in each points of the 
route. Resulted profile along optimization on known trajectory 
is optimal velocity profile.
Route input data splitted in two independent parts:

a. vehicle input parameters
b. input navigation data, based on vehicle route

The vehicle input parameters are given by vehicle construction, 
vehicle dimensions and complete drivetrain characteristics.
Map navigation input data include waypoints of road shape, 
road slope profile and the information about legal velocity 
limit in each navigation points. The navigation data are 
further extended by the information about vehicle load for all 
navigation points. Based on this information, for optimization is 
necessary to determine the real velocity limit for all navigation 
points. In each point on the prescribed route, the following 
velocity limits are defined:

a. legal velocity limit 
b. physical velocity limit (adhesssion during cornerign)
c. comfort velocity limit (comfort lateral acceleration 

during cornering)
The resulting maximum velocity profile along the prescribe 
route is given by the lowest limit of the velocity (Figure 6 – 
left) and it is the input to the following optimization algorithm.
Vehicle dynamic behavior is affected by route shape, velocity 
limits and road slope at each point of route. The section of 
route trajectory is divided into subsections, where the following 
parameters are constant (Figure 6 – right):

a. slope of the route
b. real velocity limit 
c. mass of load

Each section is represented by general velocity profile, which is 
continuous function, depending on the vehicle position on the 
prescribed route. Velocity profile consists of four basic driving 
modes (phases):

a. driving mode with the vehicles acceleration – 
considered only the constant acceleration of vehicle 
due to the power drive unit

b. driving mode with constant vehicle velocity – constant 
vehicle velocity is provided by the power drive unit

c. coasting driving mode – the vehicle is driven by inertia 
forces and is braked only by driving resistance

d. driving mode with the vehicles deceleration – 
the vehicle is decelerated by means of the own 
breaking system or in combination with the resistive 
torque of the drive unit

The first mode in each section is acceleration mode, followed by 
constant velocity mode, coasting mode and deceleration mode 
in this order (Figure 7).
Each velocity profile is parametrized by set of characteristic 
parameters and the set of external characteristic conditions 
using the following parameters:
1. v1 – velocity in the beginning of section and in the 

beginning of acceleration phase
2. aa – constant acceleration parameter for acceleration phase

FIGURE 7: Velocity profile and driving phases in each section.
OBRÁZEK 7: Rychlostní profil a rozdělení každé sekce na jednotlivé fáze.

 
FIGURE 6: Possible velocity limits along the route (left) and route trajectory sectioning by the maneuvers classification (right).
OBRÁZEK 6: Rychlostní omezení na trase (vlevo) a rozdělení trasy na sekce dle klasifikace jízdních manévrů (vpravo).
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3. sa – length of section part with vehicle acceleration
4. sd – length of section part with vehicle deceleration
5. ad – constant deceleration parameter for deceleration phase 
6. v4 – velocity on the end of section and on the end of 

deceleration phase
The total velocity profile along prescribe trajectory is given by 
the set of individual velocity profiles in all sections. Total velocity 
profile has to respect continuity condition at the edge of each 
continuously adjacent section. This condition reduces real set 
of characteristic parameters into the set of five parameters. The 
beginning velocity of first section (starting velocity of the whole 
route) and the ending velocity of the last section (ending velocity 
of the whole route) are given by chosen constant values. This 
set of the velocity profiles parameters is set by optimization 
parameters for subsequent optimization.
The road fuel consumption was integrated using simplified vehicle 
model, which calculates balance of driving resistance forces and 
drivetrain driving force. Engine characteristic was based on look-
up map model. Suitable transmission gear was determined by the 
lowest possible gear ratio for desired engine power. The optimum 
velocity profile has been found by numerical optimization method 
“Trust-Region Method for nonlinear Minimization”. Input data for 
numeric solution must contain the following data:

a. initial estimate of velocity profile, which is given by 
maximum real velocity profile

b. local optimization conditions like lower and upper 
bounds for each optimization parameter

c. global optimization conditions like the total driving 
time for the whole prescribed route

Optimized vehicle velocity profile ensures minimum energy 
consumption respecting all optimization conditions.

4.4 EXAMPLE OF DRIVE CYCLE FOR PREDICTIVE MODEL TRAINING
As an example of predictive model training data, one driving 
cycle simulation was calculated. Required route, defined by 
road from VTP in Roztoky u Prahy to Prague Dejvice, used 
for the simulation purposes was logged by GPS system. The 
vehicle speed was obtained by route optimization with route 
constraints (Figure 8). Quite low vehicle speed was caused by 
low importance of driving time parameter used in optimization 
setting. 
Detailed engine parameters for engine predictive model 
training was provided by dynamic vehicle model with FRM 
engine model. The results are displayed in Figure 9. Engine 
state variables were used as training set for LOLIMOT models 
together with randomly generated step signal, which will 
ensure increase of predictive model accuracy mainly in engine 
speed and load typical for driving.
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FIGURE 8: Optimized speed and elevation profile on simulated route.
OBRÁZEK 8: Optimalizovaný rychlostní profil a profil sklonu vozovky 
v průběhu simulované trasy.
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FIGURE 9: Results of drive cycle simulation for engine predictive model training.
OBRÁZEK 9: Výsledky simulace jízdního cyklu použitelné pro trénování prediktivního modelu motoru.
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5. SIMULATION RESULTS (MIL)
Trained LOLIMOT predictive models were implemented in 
predictive control system. The developed control method 
was extensively tested and tuned using a model-in-the-loop 
(MiL) simulation environment. The MiL system was realized 
by co-simulation of two models working on different software 
platforms – an engine simulation model built in GT-Suite and 
the partial model of a controller programmed in Simulink (co-
simulation scheme in Figure 10).
The controller only includes a few chosen input and output 
signals, which have been specified by training data analysis. 
The related Simulink model consists mainly of an embedded-
MATLAB-function block. The idea behind this implementation 
was to create a compilable model that will be capable of further 
reusage in a hardware-in-the-loop system (HiL). However, the 
solution brought considerable challenges to the task because the 
embedded-MATLAB code is subject to a number of restrictions.
The main control target was to track a given engine speed 
setpoint, using the injected fuel mass and the VGT position as 
the action quantities, and taking into account several constraint 
conditions. An engine speed and load (given by truck resistance 
forces) resulting from drive cycle of a WHTC was used for the 
first test of control system – results in Figure 11. The results of 
the control process in the MiL environment are very promising, 
however, it is the first test, and the control system tuning process 
will continue in the near future.

6. CONCLUSION
Model based predictive control of combustion engines has been 
investigated. Predictive models are integral parts of predictive control 

 

FIGURE 11: Result of simulation of WHTC – engine speed (left) and engine 
brake torque (right).
OBRÁZEK 11: Výsledky simulací WHTC – otáčky motoru (vlevo) a moment 
motoru (vpravo).

FIGURE 10: Simulink / GT-Suite co-simulation (closed-loop control).
OBRÁZEK 10: Spojená simulace modelů v prostředí Simulink / GT-Suite (řízení se zpětnou vazbou).
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system and their accuracy is the key to successful application to 
controlled system. Benefit of predictive systems is mainly in accurate 
control of dynamic system without oscillation and overshooting. 
Predictive models were generated based on LOLIMOT algorithm, 
which are capable of predicting future engine states. It is a description 
of generally nonlinear dynamic system by a combination of linear 
dynamic systems in subregions of the whole input-output space. 
Such model can be simply locally linearized and used for efficient 
optimization of future control inputs. At the same time, the global 
nonlinear behavior of the engine is taken into account. 
Improved methodology of predictive model training is based on 
extension of training process of engine control system by training in 
driving cycles, which involve typical engine usage. Increased emphasis 
on typical engine usage will bring up increase of predictive model 
accuracy in comparison with training process only with randomly 
generated step training signal. 
The developed model-based predictive control system was successfully 
tested on the simulation model. The proposed predictive control 
system controls the engine to keep the predefined controlled vehicle 
speed profile from off-line optimizer. The control system takes into 
account several limits for optimal control. Both the prediction ability 
of the developed predictive model and the quality of the applied 
predictive control turned out to be very satisfactory, which implies 
a good potential of developed predictive control. The application of 
predictive control system will be tested in the near future.
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LIST OF NOTATIONS AND ABBREVIATIONS
ECU Engine Control Unit
FRM Fast Running Model
ICE Internal Combustion Engine
LLM LOLI model 

LOLIMOT Liner Output – Linear Input Models
HiL Hardware in the Loop
MiL Model in the Loop
MIMO Multi-input – multi-output
MPC Model-based Predictive Control
PID Proportional Integration Derivation Control
RT Real Time
VTG Variable Turbine Geometry
WHTC World Harmonized Test Cycle
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