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ABSTRACT 

Discussion of local stability analysis of SVIR models in this article included in the scope of applied 
mathematics. The purpose of this discussion was to provide results of local stability analysis that 
had not to discuss in some articles related to the SVIR model. The SVIR models discussed in this 
article involve logistics growth in the vaccinated compartment. The results obtained, i.e., if the 
basic reproduction number ℜ0 < 1 and 𝑚 > 0, then there is one equilibrium point i.e. 𝐸0 is locally 
asymptotically stable. In the field of epidemiology, this means that the disease will disappear from 
the population. However, if  ℜ0 > 1, 𝛽1 > 𝛽 and 𝑚 > 0, then there are two equilibrium points, i.e., 
disease-free equilibrium point denoted by 𝐸0 and the endemic equilibrium point denoted by 𝐸1

∗. 
In this case, the endemic equilibrium point 𝐸1

∗ Locally asymptotically stable. In the field of 
epidemiology, this means that the disease will remain in the population. The numerical simulation 
supports these results. 
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INTRODUCTION 

The mathematical modeling of infectious disease spread is one of the areas of 
research for mathematicians and epidemiologists. The formulated model is often said to 
be a model epidemic. Epidemic models sometimes involve complexity and non-linearity. 
Therefore, not all epidemic models can found solutions with analytical methods. Epidemic 
models usually formulate with a deterministic or stochastic approach. Kermack and 
Mckendrick first introduced a deterministic model in the article [1], which was later 
generalized by Capasso and Serio in the paper [2]. In the article [2], The population is 
divided into three parts, i.e., susceptible, infected, and recovered. Each population 
contains some people whose health conditions correspond to the name of the population. 
The model is known as the SIR model. 

The SIR model represents the dynamic epidemic of a person infected to a susceptible 
person through direct contact with the closed population. The SIR model formulate as an 
initial value condition of the ordinary differential equation system, and it is analyzed 
mathematically. This SIR Model is then continuously developed by many researchers for 
various cases occurring today. Based on the SIR model developed by Capasso and Serio, 
the spread of infectious diseases can formulate by dividing the population into some 
compartment that depends on health conditions.  Therefore, the vaccine given to a person 
can also be considered a specific situation to add to its compartment. People who have 
given vaccines are included in the V population [3]. The V population is then added to the 
SI model to study the dynamics of the spread of tuberculosis disease. The SIV model later 
generalizes into the SVIR model in the article [4], which discusses the possibility that 
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individuals can recover from the disease. Furthermore, the SVIR model develops to study 
the transmission dynamics of influenza disease discussed in articles [5] and [6].  
The vaccination strategy discussed in some of the above articles is a continuously given 
vaccination. Some cases found that vaccines sometimes administer for a certain period or 
seasonal. Vaccination strategies for this state are usually called Pulse Vaccination Strategy 
(PVS). A comparison between the continuous vaccination model and the PVS discuss in 
the article [7]. Later, the model of the continuous vaccination strategy mentioned by Liu 
et al. was developed by Khan et al., Islam, Harianto, and Suparwati. In the article [8], the 
non-linear saturation rate adds to the SVIR model with a continuous vaccination strategy. 
The addition of population migration factors in the susceptible population of the SVIR 
model with a continuous vaccination strategy discuss in the article [9]. In the paper [10], 
the SVIR model with a continuous vaccination strategy was developed by adding a death 
factor due to disease infection. In other words, the infectious disease is a deadly disease. 
The discussion also provided numerical simulation to support the analysis results. The 
death rate of each population in the SVIR model is assumed to be identical. A year later, 
Harianto and Suparwati continued discussing the SVIR model by adding different death 
rate assumptions for each population in the SVIR model. Its numerical analysis and 
simulation discuss in the article [11]. In the paper [1] until [11], The population growth 
assumes to increase exponentially. The models in these articles are more realistic if their 
population growth uses logistic growth. In other words, the population assumes to be 
growing in logistics. The logistics growth factor on the SIR model discusses in the articles 
[12],[13],[14],[15], and [16]. The paper in [17] and [18] also discusses other compartment 
models that use logistical growth. Li et al. discuss the paper [12] as a SIR model with a 
saturation incidence rate. According to the article, these discussions will be modified SVIR 
models in [7] by involving the logistic growth in the population studied in [12]. 
Furthermore, it discussed the existence of the equilibrium point and local stability. The 
last part makes a simulated model that has analysis. 
 

METHODS 

This study uses the literature review method. The references used are in the form of 
several reputable international scientific books and journals. The theories used to support 
the results of this study are the equilibrium point stability theory of ordinary differential 
equation systems described in a book written by Perko [19] and the theory related to the 
construction of the basic reproduction number of an epidemiological model in article [20]. 
The flow of thought in this discussion, first adds assumptions to the model that has been 
studied, then forms the model. Next, determine the equilibrium point of the system and 
analyze its stability. Finally, a numerical simulation is given to check the correctness of 
the analysis results obtained and a sensitivity analysis of the basic reproduction number. 
 

RESULTS AND DISCUSSION 

Model 
The model discussed in this section is a modification of the SVIR model with a 

continuous vaccination strategy adopted from the article [7]. The modification of the 
model is the growth of its population using logistics growth and the death rate caused by 
disease involved. This model divides the human population into four epidemiological 
classes, i.e., susceptible (S), infected (I), vaccinated (V), and recovered (R). The dynamic 
spread of the disease for the case formulate as the following ordinary differential equation 
system. 
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𝑑𝑆

𝑑𝑡
= 𝑟𝑆 (1 −

𝑆

𝐾
) − 𝛽𝑆𝐼 − (𝜇 + 𝛼)𝑆                                                                   

𝑑𝑉

𝑑𝑡
= 𝛼𝑆 − 𝛽1𝑉𝐼 − (𝜇 + 𝛾1)𝑉                                                                        (1) 

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 + 𝛽1𝑉𝐼 − (𝛾 + 𝜇 + 𝜔)𝐼                                                                       

𝑑𝑅

𝑑𝑡
= 𝛾1𝑉 + 𝛾𝐼 − 𝜇𝑅                                                                                               

with the initial conditions 𝑆(0) = 𝑆0 > 0, 𝑉(0) = 𝑉0 > 0, 𝐼(0) = 𝐼0 > 0 dan 𝑅(0) = 𝑅0 ≥
0. 𝑟 denotes the intrinsic growth rate of susceptible population, 𝐾 is the carrying capacity 
of the area. 𝛽 is the contact rate between susceptibles and infected, 𝜇 is the natural death 
rate, 𝛼 is the rate at which an individual leaves the class of the susceptible by becoming 
the vaccination process. 𝛽1 is the contact rate between vaccinated and infected, 𝛾1 is the 
recovery rate from the vaccinated class, 𝛾 is the natural recovery rate from the infected 
class. 𝜔 is the rate of death caused by disease.  
 
Theorem 1 
All solutions of the System (1) with initial conditions (𝑆0, 𝑉0, 𝐼0, 𝑅0) ∈ ℝ+

4  are positive and 
bounded for all 𝑡 ≥ 0. 
Proof: 
The System (1) can be written 

𝑑�̃�

𝑑𝑡
= 𝑓(�̃�) 

with �̃� = (𝑆, 𝑉, 𝐼, 𝑅) ∈ ℝ4 and 𝑓(�̃�) = (𝑓1(�̃�), 𝑓2(�̃�), 𝑓3(�̃�), 𝑓4(�̃�)) ∈ ℝ4. Clearly 𝑓(�̃�) 

differentiable continuous for all �̃� ∈ ℝ4 such that the System (1) has a unique solution. If 
we let 𝐺(𝑡) = 𝛽1𝐼(𝑡) + 𝜇 + 𝛾1, then the second equation of the System (1) can be written 

𝑑𝑉(𝑡)

𝑑𝑡
+ 𝐺(𝑡)𝑉(𝑡) = 𝛼𝑆(𝑡)                                                                (2)  

multiplying both sides of the Equation (2) by exp (∫ 𝐺(𝑢)𝑑𝑢
𝑡

0
) gives 

𝑑𝑉(𝑡)

𝑑𝑡
exp(∫𝐺(𝑢)𝑑𝑢

𝑡

0

) + 𝐺(𝑡)𝑉(𝑡) exp(∫𝐺(𝑢)𝑑𝑢

𝑡

0

) = 𝛼𝑆(𝑡) exp(∫𝐺(𝑢)𝑑𝑢

𝑡

0

) 

By using multiplication rules on derivatives we have 

𝑑

𝑑𝑡
[𝑉(𝑡) exp(∫𝐺(𝑢)𝑑𝑢

𝑡

0

)] = 𝛼𝑆(𝑡) exp(∫𝐺(𝑢)𝑑𝑢

𝑡

0

)                            (3) 

By integrating two sides of the Equation (3) with 𝑡 gives 

𝑉(𝑡) = 𝑉0 exp(−∫𝐺(𝑢)𝑑𝑢

𝑡

0

) + [∫𝛼𝑆(𝜏) exp(∫𝐺(𝑢)𝑑𝑢

𝜏

0

)𝑑𝜏

𝑡

0

] exp(−∫𝐺(𝑢)𝑑𝑢

𝑡

0

) > 0. 

Similarly, we can prove that 𝑆(𝑡), 𝐼(𝑡) dan 𝑅(𝑡) are nonnegative for all 𝑡 > 0. 
Consequently, from the first equation of the System (1), we have 

𝑑𝑆

𝑑𝑡
= 𝑟𝑆 (1 −

𝑆

𝐾
) − 𝛽𝑆𝐼 − (𝜇 + 𝛼)𝑆 < 𝑟𝑆 (1 −

𝑆

𝐾
) 

Hence, there exists 𝑀 = max{𝑆0, 𝐾} such that lim
𝑡→∞

sup 𝑆(𝑡) < 𝑀 

Let 𝑁(𝑡) = 𝑆(𝑡) +  𝑉(𝑡) +  𝐼(𝑡) + 𝑅(𝑡), total population change is 
𝑑𝑁

𝑑𝑡
 =

𝑑𝑆

𝑑𝑡
+

𝑑𝑉

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
+

𝑑𝑅

𝑑𝑡
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= 𝑟𝑆 (1 −
𝑆

𝐾
) − 𝜇𝑁 − 𝜔𝐼 < 𝑟𝑆 − 𝜇𝑁 < 𝑟𝑀 − 𝜇𝑁 

Then we have 0 < 𝑁(𝑡) <
𝑟𝑀

𝜇
 for 𝑡 → ∞. Therefore, all solutions of the System (1) are 

positive and bounded all 𝑡 ≥ 0. 
 
Equilibria and Basic Reproduction Number 

We see that 𝑅 does not appear in three equations in the System (1). Hence, the fourth 
equation on the System (1) can be ignored, and the discussion is focused on three 
equations as follows: 

 
 

𝑑𝑆

𝑑𝑡
= 𝑟𝑆 (1 −

𝑆

𝐾
) − 𝛽𝑆𝐼 − (𝜇 + 𝛼)𝑆                                                                 

𝑑𝑉

𝑑𝑡
= 𝛼𝑆 − 𝛽1𝑉𝐼 − (𝜇 + 𝛾1)𝑉                                                                      (4) 

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 + 𝛽1𝑉𝐼 − (𝛾 + 𝜇 + 𝜔)𝐼                            

 
The equilibrium point of the System (4) obtained by resolving the following equations: 

𝑟𝑆 (1 −
𝑆

𝐾
) − 𝛽𝑆𝐼 − (𝜇 + 𝛼)𝑆 = 0                                                      (5) 

𝛼𝑆 − 𝛽1𝑉𝐼 − (𝜇 + 𝛾1)𝑉 = 0                                                      (6) 
𝛽𝑆𝐼 + 𝛽1𝑉𝐼 − (𝛾 + 𝜇 + 𝜔)𝐼 = 0                                                      (7) 

Clearly from the Equation (3), (4), and (5) that if 𝑚 = 𝑟 − (𝜇 + 𝛼) > 0, then System (4) 
has a unique disease-free equilibrium point. The disease-free equilibrium point of the 

System (4) denoted by 𝐸0 = (𝑆0, 𝑉0, 𝐼0) with 𝑆0 =
𝐾𝑚

𝑟
 , 𝑉0 =

𝐾𝛼𝑚

𝑟(𝜇+𝛾1)
 , 𝐼0 = 0. 

The basic reproduction number in epidemiology used to indicate the number of diseases 
and control spread. The basic reproduction number denoted by ℜ0. If ℜ0 < 1 then the 
spread of disease in the population predicted to disappear. However, if ℜ0 > 1 then the 
virus will remain in the population. The basic reproduction number of the System (4) in 
this discussion is determined based on the theory learned in the article [21]. Let 𝑋 =
(𝑆, 𝑉), 𝑋0 = (𝑆0, 𝑉0), 𝑍 = (𝐼), ℎ(𝑋, 𝑍) = 𝛽𝑆𝐼 + 𝛽1𝑉𝐼 − 𝑛𝐼 with 𝑛 = 𝛾 + 𝜇 + 𝜔 > 0 and   

𝑓(𝑋, 𝑍) = [
𝑟𝑆 (1 −

𝑆

𝐾
) − 𝛽𝑆𝐼 − (𝜇 + 𝛼)𝑆

𝛼𝑆 − 𝛽1𝑉𝐼 − (𝜇 + 𝛾1)𝑉
] 

Derivating ℎ(𝑋0, 𝑍) by 𝑍 gives 
𝐷𝑧ℎ(𝑋0, 𝑍)|𝑧=0 = 𝛽𝑆0 + 𝛽1𝑉

0 − 𝑛 
We have 

𝐴 = 𝐷𝑧ℎ(𝑋0, 𝑍)|𝑧=0 = 𝛽𝑆0 + 𝛽1𝑉
0 − 𝑛 

because 𝐴 = 𝑀 − 𝐷 then gives 𝑀 = 𝛽𝑆0 + 𝛽1𝑉
0 and 𝐷 = 𝑛. Hence, we have  

ℜ0 = 𝜌(𝑀𝐷−1) =
𝛽𝑆0 + 𝛽1𝑉

0

𝑛
=

𝛽𝐾𝑚(𝜇 + 𝛾1) + 𝛽1𝐾𝛼𝑚

𝑟𝑛(𝜇 + 𝛾1)
 

with 𝑚 = 𝑟 − (𝜇 + 𝛼) and 𝑛 = 𝛾 + 𝜇 + 𝜔. 
The following discussed the existence of the endemic equilibrium point denoted by       
𝐸∗ = (𝑆∗, 𝑉∗, 𝐼∗). Assume that 𝑆∗, 𝐼∗, 𝑉∗ ≠ 0. From Equation (5), we have 

𝑟 (1 −
𝑆

𝐾
) − 𝛽𝐼 − (𝜇 + 𝛼) = 0 

then  
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𝑆∗ =
𝐾

𝑟
(𝑚 − 𝛽𝐼∗) 

From Equation (6), we have  

𝑉∗ =
𝛼𝑆∗

𝛽1𝐼∗ + 𝜇 + 𝛾1
=

𝐾𝛼(𝑚 − 𝛽𝐼∗)

𝑟(𝛽1𝐼∗ + 𝜇 + 𝛾1)
 

From Equation (7), we have  
𝛽𝑆∗ + 𝛽1𝑉

∗ − 𝑛 = 0                                                                      (8)  

with 𝑛 = 𝛾 + 𝜇 + 𝜔. If  𝑆∗ =
𝐾

𝑟
(𝑚 − 𝛽𝐼∗) and 𝑉∗ =

𝐾𝛼(𝑚−𝛽𝐼∗)

𝑟(𝛽1𝐼∗+𝜇+𝛾1)
  substituted to Equation (8), 

then 

 𝐴1𝐼
∗2 + 𝐴2𝐼 + 𝐴3 = 0                                                                       (9) 

with 

𝐴1 =
𝐾

𝑟
𝛽2𝛽1 

𝐴2 =
𝐾

𝑟
𝛽2(𝜇 + 𝛾1) +

𝐾

𝑟
𝛽𝛽1𝛼 + 𝑛𝛽1 −

𝐾

𝑟
𝛽𝛽1𝑚 

𝐴3 = 𝑛(𝜇 + 𝛾1) −
𝐾

𝑟
𝛽𝑚(𝜇 + 𝛾1) −

𝐾

𝑟
𝛽1𝑚𝛼 = 𝑛(𝜇 + 𝛾1)(1 − ℜ0) 

Hence, 𝐼∗ is the root of the Equation (9), i.e.: 

𝐼1,2
∗ =

−𝐴2 ± √𝐴2
2 − 4𝐴1𝑛(𝜇 + 𝛾1)(1 − ℜ0)

2𝐴1
 

Clearly that if ℜ0 < 1 then 𝑟𝑛 > 𝐾𝛽𝑚, consequently 𝐴2 > 0. Thus, the existence of the 
endemic equilibrium point depends on ℜ0. The existence of disease-free and the endemic 
equilibrium points associated with basic reproductive numbers summarized in the 
following theorems. 
 
Theorem 2 
We define 

ℜ0 =
𝛽𝐾𝑚(𝜇 + 𝛾1) + 𝛽1𝐾𝛼𝑚

𝑟𝑛(𝜇 + 𝛾1)
 

𝑔(𝐼∗) = 𝐴1𝐼
∗2 + 𝐴2𝐼 + 𝑛(𝜇 + 𝛾1)(1 − ℜ0) 

𝐴1 =
𝐾

𝑟
𝛽2𝛽1 

𝐴2 =
𝐾

𝑟
𝛽2(𝜇 + 𝛾1) +

𝐾

𝑟
𝛽𝛽1𝛼 + 𝑛𝛽1 −

𝐾

𝑟
𝛽𝛽1𝑚 

with 𝑚 = 𝑟 − (𝜇 + 𝛼) and 𝑛 = 𝛾 + 𝜇 + 𝜔 > 0. 
i. If ℜ0 < 1 and 𝑚 > 0 then 𝐴2 > 0 such that there exists a unique equilibrium point 

of the  System (4), i.e. the disease-free equilibrium point denoted by 𝐸0 =

(
𝐾𝑚

𝑟
,

𝐾𝛼𝑚

𝑟(𝜇+𝛾1)
, 0). 

ii. If ℜ0 > 1 and 𝑚 > 0, then System (4) has only two equilibrium point, i.e. the 

disease-free equilibrium point denoted by 𝐸0 = (
𝐾𝑚

𝑟
,

𝐾𝛼𝑚

𝑟(𝜇+𝛾1)
, 0) and the endemic 

equilibrium point denoted by 𝐸1
∗ = (𝑆1

∗, 𝑉1
∗, 𝐼1

∗) with 𝑆1
∗ =

𝐾

𝑟
(𝑚 − 𝛽𝐼∗), 𝑉1

∗ =
𝐾𝛼(𝑚−𝛽𝐼∗)

𝑟(𝛽1𝐼∗+𝜇+𝛾1)
 and 𝐼1

∗ is the positive root of 𝑔(𝐼∗). 

iii. if ℜ0 = 1, 𝑚 > 0 and 𝐴2 < 0, then System (4) has only two equilibrium point, i.e. 

the disease-free equilibrium point denoted 𝐸0 = (
𝐾𝑚

𝑟
,

𝐾𝛼𝑚

𝑟(𝜇+𝛾1)
, 0) and the endemic 
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equilibrium point denoted 𝐸2
∗ = (𝑆2

∗, 𝑉2
∗, 𝐼2

∗) with 𝑆2
∗ =

𝐾

𝑟
(𝑚 − 𝛽𝐼∗), 𝑉2

∗ =
𝐾𝛼(𝑚−𝛽𝐼∗)

𝑟(𝛽1𝐼∗+𝜇+𝛾1)
 and 𝐼2

∗ = −
𝐴2

𝐴1
 . 

 
Local Stability Analysis 

This section discusses the local stability analysis of disease-free equilibrium and 
endemic points of the System (4). The local stability of the equilibrium point of the System 
(4) is determined using the Jacobian matrix (Linearization method) studied in [19]. The 
Jacobian matrix of Systems (4) written as follows: 

𝐽 = [

−2𝑟𝑆

𝐾
− 𝛽𝐼 + 𝑚 0 −𝛽𝑆

𝛼 −𝛽1𝐼 − (𝜇 + 𝛾1) −𝛽1𝑉
𝛽𝐼 𝛽1𝐼 𝛽𝑆 + 𝛽1𝑉 − 𝑛

] 

with 𝑚 = 𝑟 − (𝜇 + 𝛼) and 𝑛 = 𝛾 + 𝜇 + 𝜔 > 0. 
Local stability analysis of the disease-free equilibrium point of the System (4) presented 
in the following theorems. 
 
Theorem 3 
If ℜ0 < 1 and 𝑚 > 0, then the disease-free equilibrium point of the System (4), i.e. 𝐸0 =

(
𝐾𝑚

𝑟
,

𝐾𝛼𝑚

𝑟(𝜇+𝛾1)
, 0) is locally asymptotically stable.  

Proof. 
The Jacobian matrix of the System (4) in 𝐸0, i.e. 

𝐽(𝐸0) = [

−𝑚 0 −𝛽𝑆0

𝛼 −(𝜇 + 𝛾1) −𝛽1𝑉
0

0 0 𝑛(ℜ0 − 1)

] 

Hence, the characteristics equation of  𝐽(𝐸0), i.e. 

(𝜆 − 𝑛(ℜ0 − 1))(𝜆 + 𝑚)(𝜆 + 𝜇 + 𝛾1) = 0 

Then we have eigenvalue 𝜆1 = 𝑛(ℜ0 − 1), 𝜆2 = −𝑚 dan 𝜆3 = −𝜇 − 𝛾1 < 0. Therefore, if 
ℜ0 < 1 and 𝑚 > 0, then all the eigenvalues of 𝐽(𝐸0) are negative consequently according 
to [19], 𝐸0 is locally asymptotically stable. 
Local stability analysis of the endemic equilibrium point of the System (4) presented in 
the following theorems. 
 
Theorem 4 
If ℜ0 > 1, 𝛽1 > 𝛽 and 𝑚 > 0, then the endemic equilibrium point of the System (4) 

denoted by 𝐸1
∗ = (𝑆1

∗, 𝑉1
∗, 𝐼1

∗) is locally asymptotically stable with 𝑆1
∗ =

𝐾

𝑟
(𝑚 − 𝛽𝐼∗), 𝑉1

∗ =
𝐾𝛼(𝑚−𝛽𝐼∗)

𝑟(𝛽1𝐼∗+𝜇+𝛾1)
 and 𝐼1

∗ is the root of 𝑔(𝐼∗) = 𝐴1𝐼
∗2 + 𝐴2𝐼 + 𝑛(𝜇 + 𝛾1)(1 − ℜ0), 𝐴1 =

𝐾

𝑟
𝛽2𝛽1 , 𝐴2 =

𝐾

𝑟
𝛽2(𝜇 + 𝛾1) +

𝐾

𝑟
𝛽𝛽1𝛼 + 𝑛𝛽1 −

𝐾

𝑟
𝛽𝛽1𝑚. 

Proof: 
The Jacobian matrix of the System (4) in 𝐸1

∗, i.e. 

𝐽(𝐸1
∗) = [

−
2𝑟

𝐾
𝑆1

∗ − 𝛽𝐼1
∗ + 𝑚 0 −𝛽𝑆1

∗

𝛼 −𝛽1𝐼1
∗ − (𝜇 + 𝛾1) −𝛽1𝑉1

∗

𝛽𝐼1
∗ 𝛽1𝐼1

∗ 𝛽𝑆1
∗ + 𝛽1𝑉1

∗ − 𝑛

] 

because 𝑆1
∗ ≠ 0 and according to Equation (5) we have 

𝑟 −
𝑟

𝐾
𝑆1

∗ − 𝛽𝐼1
∗ − (𝜇 + 𝛼) = 0 ⇒ 𝑚 −

2𝑟

𝐾
𝑆1

∗ − 𝛽𝐼1
∗ = −

𝑟

𝐾
𝑆1

∗ 
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From Equation (6) we have 

𝛽1𝐼1
∗ + 𝜇 + 𝛾1 =

𝛼𝑆1
∗

𝑉1
∗  

And clearly 𝛽𝑆1
∗ + 𝛽1𝑉1

∗ − 𝑛 = 0. Hence, 𝐽(𝐸1
∗) equivalent with 

𝐽(𝐸1
∗) =

[
 
 
 
 −

𝑟

𝐾
𝑆1

∗ 0 −𝛽𝑆1
∗

𝛼 −
𝛼𝑆1

∗

𝑉1
∗ −𝛽1𝑉1

∗

𝛽𝐼1
∗ 𝛽1𝐼1

∗ 0 ]
 
 
 
 

 

Thus the characteristics equation of 𝐽(𝐸1
∗), i.e. 

𝑎1𝜆
2 + 𝑎2𝜆 + 𝑎3 = 0 

with 

𝑎1 =
𝛼𝑆1

∗

𝑉1
∗ +

𝑟

𝐾
𝑆1

∗ 

𝑎2 =
𝑟𝛼𝑆1

∗2

𝐾𝑉1
∗ + 𝛽2𝑆1

∗𝐼1
∗ + 𝛽1

2𝑉1
∗𝐼1

∗ 

𝑎3 = 𝛽𝛽1𝛼𝑆1
∗𝐼1

∗ + 𝛽2𝛼
𝑆1

∗2

𝑉1
∗ 𝐼1

∗ +
𝑟

𝐾
𝛽1

2𝑆1
∗𝑉1

∗𝐼1
∗ 

𝑎1𝑎2 − 𝑎3 =
𝑟𝛼2𝑆1

∗3

𝐾𝑉1
∗2 +

𝑟2𝛼𝑆1
∗3

𝐾2𝑉1
∗ +

𝑟𝛽2

𝐾
𝑆1

∗2𝐼1
∗ + 𝛽1𝛼𝑆1

∗𝐼1
∗(𝛽1 − 𝛽) 

Clearly 𝑎1 > 0, 𝑎2 > 0, 𝑎3 > 0 and if  𝛽1 > 𝛽 then 𝑎1𝑎2 − 𝑎3 > 0. Therefore, based on the 
Routh-Hurtwiz criteria if 𝛽1 > 𝛽, then all the eigenvalues of 𝐽(𝐸1

∗) are negative 
consequently the endemic equilibrium point of the System (4) denoted by 𝐸1

∗ Locally 
asymptotically stable. 
 
Numerical Simulations 

The following given numerical simulations to confirm the results obtained analytic 
related to local stability of disease-free equilibrium points and endemic to the System (1). 
Figure 1 is the local dynamics of the solution on the system (1) with the parameter value 
𝐾 = 1, 𝑟 = 0,04 , 𝜇 = 0,01 , 𝛼 = 0,01 , 𝛽 = 0,002, 𝛽1 = 0,00045 , 𝛾 = 0,0001 , 𝜔 =
0,02 , 𝛾1 = 0,004 and initial conditions 𝑆0 = 0,8 , 𝑉0 = 0,1, 𝐼0 = 0,1 , 𝑅0 = 0. From the 
value of the parameter then we can calculate that ℜ0 = 0,04 < 1, 𝑚 = 0,02 > 0 and 𝐸0 =
(𝑆0, 𝑉0, 𝐼0, 𝑅0) = (0,5 ; 0,36; 0 ; 0,14). According to theorem 3, the disease-free 
equilibrium point denoted by 𝐸0 is locally asymptotically stable. These results correspond 
to the numerical simulation given. It means that the disease will disappear from the 
population.  

Figure 2 is the local dynamics of the solution on the system (1) with the parameter 
value 𝐾 = 1, 𝑟 = 0,04 , 𝜇 = 0,01 , 𝛼 = 0,01 , 𝛽 = 0,1, 𝛽1 = 0,00045 , 𝛾 = 0,0001 , 𝜔 =
0,02 , 𝛾1 = 0,004 and initial conditions 𝑆0 = 0,8 , 𝑉0 = 0,1, 𝐼0 = 0,1 , 𝑅0 = 0. Clearly that 
𝛽1 > 𝛽 then we can calculate that ℜ0 = 1,66 > 1, 𝑚 = 0,02 > 0 and the endemic 
equilibrium point denoted by 𝐸1

∗ = (𝑆1
∗, 𝑉1

∗, 𝐼1
∗, 𝑅1

∗), i.e 𝐸1
∗ = (0,3 ; 0,21; 0,08 ; 0,09). 

According to theorem 3, the endemic equilibrium point denoted by 𝐸1
∗ Locally 

asymptotically stable. These results correspond to the numerical simulation given. It 
means that the disease will remain in the population. 

 



Local Dynamics of an SVIR Epidemic Model with Logistic Growth 

Joko Harianto 129 

 

Figure 1. Dynamics of the solution on the System (1) for the case ℜ0 = 0,04 < 1 

 

 
 

Figure 2. Dynamics of the solution on the System (1) for the case ℜ0 = 1,66 > 1 
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Sensitivity Analysis of the Basic Reproduction Number  
The sensitivity analysis performed was a local sensitivity ([22], [23], and [24]). In this 
section, the parameters analyzed are 𝛽, 𝛼, 𝛾1, 𝛾, 𝛽1. The sensitivity index for the parameter 
𝛽 is 

𝐶𝛽
ℜ0 =

𝜕ℜ0

𝜕𝛽
×

𝛽

ℜ0
=

𝐾𝛽𝑚(𝜇 + 𝛾1)

𝐾𝛽𝑚(𝜇 + 𝛾1) + 𝛽1𝐾𝛼𝑚
 

With the same steps, we can obtain a sensitivity index for the other parameters. The 
following Table 1 is given the five parameter sensitivity to the basic reproduction number. 
The parameter 𝛽, 𝛼, 𝛾1, 𝛾, 𝛽1 values used are 𝐾 = 1, 𝑟 = 0,04 , 𝜇 = 0,01 , 𝛼 = 0,01 , 𝛽 =
0,002, 𝛽1 = 0,00045 , 𝛾 = 0,0001 , 𝜔 = 0,02 , 𝛾1 = 0,004. 
 

Table 1. Sensitivity index of parameters to the basic reproduction number 
Parameter Sensitivity index 

𝛽 +0,861 
𝛽1 +0.005 
𝛼 -0,138 
𝛾 -0,001 
𝛾1 -0.132 

 
Sensitivity index of parameter 𝛽 and 𝛽1 has a positive value to ℜ0, it's mean that when the 
parameter 𝛽 and 𝛽1 increases, then ℜ0 value also increases and conversely. The 
parameter sensitivity index of parameter 𝛼, 𝛾, 𝛾1has a negative value to ℜ0, it's mean that 
when the parameter 𝛼, 𝛾, 𝛾1 increases, then ℜ0 value decreases, and conversely. The most 
influential parameters of the five parameters are transmission rate (𝛽) and vaccine rate 
(𝛼). 
 
 

CONCLUSIONS 

This article is discussed the local stability analysis of the equilibrium point of the 
SVIR model adapted from Liu et al. The SVIR model discussed in this article was modified, 
assuming the growth rate on susceptible classes (V) approached with the growth of 
logistics. First, we determine the disease-free equilibrium point. Then, we find the basic 
reproduction number by using a disease-free equilibrium point that obtains. Next, we 
determine the existence of the endemic equilibrium point associated with the basic 
reproduction number (ℜ0). Lastly, we determine the stability of the equilibrium point and 
illustrate the numerical simulation.  

Our results show that if  ℜ0 < 1 and 𝑚 > 0, then there exists a unique disease-free 
equilibrium point denoted by 𝐸0 is locally asymptotically stable. The numerical 
simulation shown in Figure 1 supports these results. In the field of epidemiology, this 
means that the disease will disappear from the population. However, if ℜ0 > 1, 𝛽1 > 𝛽 
and 𝑚 > 0, then the System (1) has two equilibrium point, i.e., the disease-free 
equilibrium point denoted by 𝐸0 and the endemic equilibrium point denoted by 𝐸1

∗. In this 
case, the endemic equilibrium point denotes by 𝐸1

∗ Locally asymptotically stable. The 
numerical simulation shown in Figure 2 supports these results. In the field of 
epidemiology, this means that the disease will remain in the population. 
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