On the Local Edge Antimagic Coloring of Corona Product of Path and Cycle

Siti Aisyah ${ }^{1}$, Ridho Alfarisi ${ }^{3}$, Rafiantika M. Prihandini ${ }^{2}$, Arika Indah Kristiana ${ }^{2}$, Ratna Dwi C. ${ }^{1}$
${ }^{1}$ Mathematics Department, Kaltara University of North Kalimantan
${ }^{2}$ Mathematics Education Department, Jember University of Jember
${ }^{3}$ Primary School Department, Jember University of Jember
Email: aisyah_rasyid84@yahoo.com, alfarisi.fkip@unej.ac.id, arikakristiana@gmail.com, r_christyanti@yahoo.com

Abstract

Let $G(V, E)$ be a nontrivial and connected graph of vertex set V and edge set E. A bijection $f: V(G) \rightarrow$ $\{1,2,3, \ldots,|V(G)|\}$ is called a local edge antimagic labeling if for any two adjacent edges e_{1} and $e_{2}, w\left(e_{1}\right) \neq w\left(e_{2}\right)$, where $e=u v \in E(G), w(e)=f(u)+f(v)$. Thus, the local edge antimagic labeling induces a proper edge coloring of G if each edge e assigned the color $w(e)$. The color of any edge $e=u v$ is assigned by $w(e)$ which is defined by the sum of both vertices labels $f(u)$ and $f(v)$. The local edge antimagic chromatic number, denoted by $\gamma_{l a e}(G)$ is the minimum number of colors taken over all colorings induced by local edge antimagic labeling of G. In our paper, we present the local edge antimagic coloring of corona product of path and cycle, namely path corona cycle, cycle corona path, path corona path, and cycle corona cycle.

Keywords: Local antimagic; edge coloring; corona product; path; cycle.

INTRODUCTION

The local antimagic vertex coloring of a graph G introduced by Arumugam et. al [1]. Furthermore, Agustin, et. al [2] defined local edge antimagic coloring of the graph. A bijection $f: V(G) \rightarrow\{1,2,3, \ldots,|V(G)|\}$, is called a local edge antimagic labeling if every two adjacent edges e_{1} and $e_{2}, w\left(e_{1}\right) \neq w\left(e_{2}\right)$, where $e=u v \in E(G)$, and $w(e)=f(u)+f(v)$. Thus, the local edge antimagic labeling induces a proper edge coloring of G if any edge e is assigned the color $w(e)$. The color of each edge $e=u v$ are assigned by $w(e)$ which is defined by the sum of label both and vertices $f(u)$ and $f(v)$. The local edge antimagic chromatic number, denoted by $\gamma_{\text {lae }}(G)$, is the minimum number of colors taken over all colorings induced by local edge antimagic labeling of graph G. Agustin, et. al [2] establish the local edge antimagic chromatic number of path graph and cycle graph. Dettlaff, et. al in [3], a corona graph of G and H, denoted by $G \odot H$, is obtained by joining each vertex of H_{i} to the vertex u_{j} of G.

Ramya in [4], discussed an acyclic coloring of a corona graph and Yero in [5] studied coloring, location, and domination of a corona graph. Kristiana, et.al in [6] found the lower bound of the r-dynamic chromatic number of a corona product by wheel graphs. Many papers presented a corona product topics for example in [7], [2], and [8]. However, the local edge antimagic coloring of corona product still has nothing to discuss. In our paper, we investigate the local edge antimagic coloring of corona product of path and cycle, namely
path corona cycle, cycle corona path, path corona path, and cycle corona cycle. The results of local edge antimagic labeling are as follows.

Conjecture 1.1. Every connected graph other than K_{2} is local antimagic.
Observation 1.1. [6]For any graph $G, \gamma_{l a e}(G) \geq \gamma(G)-1$.
Observation 1.2. [8]For any graph $G, \chi_{\mathrm{la}}(\mathrm{G}) \geq \chi(\mathrm{G})$, where $\chi(\mathrm{G})$ is a vertex chromatic number of G.
Observation 1.3. [6] For any graph $G, \gamma_{l a e}(G) \geq \gamma(G)$, where $\gamma(G)$ is an edge chromatic number of G.
Theorem 1.1. [6] If $\Delta(G)$ is maximum degrees of G, then we have $\gamma_{l a e}(G) \geq \Delta(G)$.
Proposition 1.1. [6] Let G be a connected graph, we have
a) If $G \cong P_{n}$, then $\gamma_{\text {lae }}(G)=2$.
b) If $G \cong C_{n}$, then $\gamma_{\text {lae }}(G)=3$.
c) If $G \cong L_{n}$, then $\gamma_{\text {lae }}(G)=3$.
d) If $G \cong K_{n}$, then $\gamma_{l a e}(G)=2 n-3$.
e) If $G \cong W_{n}$, then $\gamma_{l a e}(G)=n+2$.
f) If $G \cong S_{n}$, then $\gamma_{l a e}(G)=n$.
g) If $G \cong F_{n}$, then $\gamma_{\text {lae }}(G)=2 n+1$.
h) If $G \odot m K_{1}$, then $\gamma_{l a e}\left(G \odot m K_{1}\right)=\gamma_{l a e}(G)+m$.

RESULTS AND DISCUSSION

In our paper, we consider the local edge antimagic chromatic number of a corona product of path and cycle, including path corona cycle, cycle corona path, path corona path, cycle corona cycle. Furthermore, we determine the exact values of local edge antimagic chromatic number of corona product in the following theorems.
Theorem 2.1. The local edge antimagic chromatic number of $P_{n} \odot P_{m}$ for n odd and $n, m \geq$ 3 is $\gamma_{l a e}\left(P_{n} \odot P_{m}\right)=2(n+1)+m$.
Proof. The graph $P_{n} \odot P_{m}$ is a connected graph with vertex set $V\left(P_{n} \odot P_{m}\right)=\left\{x_{i}: 1 \leq i \leq\right.$ $n\} \cup\left\{x_{j}{ }^{i}: 1 \leq j \leq m ; 1 \leq i \leq n\right\}$ and edge set $E\left(P_{n} \odot P_{m}\right)=\left\{x_{i} x_{i+1}: 1 \leq i \leq n-1\right\} \cup$ $\left\{x_{j}^{i} x_{j+1}^{i}: 1 \leq j \leq m-1 ; 1 \leq i \leq n\right\} \cup\left\{x_{i} x_{j}^{i}: 1 \leq j \leq m ; 1 \leq i \leq n\right\}$. The cardinality of the vertex set is $\left|V\left(P_{n} \odot P_{m}\right)\right|=n+m n$ and the cardinality of the edge set is $\left|E\left(P_{n} \odot P_{m}\right)\right|=$ $2 m n-1$. We define a bijection $f: V\left(P_{n} \odot P_{m}\right) \rightarrow\left\{1,2,3, \ldots,\left|V\left(P_{n} \odot P_{m}\right)\right|\right\}$ for the graph $P_{n} \odot$ P_{m} to be local edge antimagic labeling as follows.

$$
f\left(x_{i}\right)=\left\{\begin{array}{cc}
\frac{i+1}{2}, & \text { if } i \text { is odd } \\
n-\left(\frac{i-2}{2}\right), & \text { if } i \text { is even }
\end{array}\right.
$$

$$
f\left(x_{j}^{i}\right)=\left\{\begin{array}{cc}
n+1+\left(\frac{i-2}{2}\right)+\left(\frac{j-2}{2}\right) n, & \text { if } i \text { and } j \text { are even } \\
2 n+n\left\lceil\frac{m}{2}\right]+1+\left(\frac{i-2}{2}\right)-n\left(\frac{j-1}{2}\right), & \text { if } i \text { is even and } j \text { is odd } \\
2 n-\left(\frac{i-1}{2}\right)+\left(\frac{j-2}{2}\right) n, & \text { if } i \text { is odd and } j \text { is even } \\
m n+n-\left(\frac{i-1}{2}\right)-n\left(\frac{j-1}{2}\right), & \text { if } i \text { and } j \text { are odd }
\end{array}\right.
$$

It is clear that f is a local antimagic labeling of $P_{n} \odot P_{m}$ and the edge weights are as follows:

$$
\begin{gathered}
w\left(x_{i} x_{i+1}\right)= \begin{cases}n+1, & \text { if } i \text { is odd } \\
n+2, & \text { if } i \text { is even }\end{cases} \\
w\left(x_{j}^{i} x_{j+1}^{i}\right)=\left\{\begin{array}{cc}
m n+3 n-(i-1), & \text { if } i \text { and } j \text { are odd } \\
m n+2 n-(i-1), & \text { if } i \text { is odd and } j \text { is even } \\
m n+n+i, & \text { if } i \text { is even and } j \text { is odd } \\
m n+i, & \text { if } i \text { and } j \text { are even }
\end{array}\right. \\
w\left(x_{i} x_{j}^{i}\right)= \begin{cases}m n+1+n\left(\frac{j-3}{2}\right), & \text { if } j \text { is odd } \\
2 n+1+n\left(\frac{j-2}{2}\right), & \text { if } j \text { is even }\end{cases}
\end{gathered}
$$

Hence, we get that the upper bound of the local edge antimagic chromatic number of $P_{n} \odot P_{m}$ is $\gamma_{l a e}\left(P_{n} \odot P_{m}\right) \leq 2(n+1)+m$. Furthermore, we prove that lower bound of the local edge antimagic chromatic number of $P_{n} \odot P_{m}$ is $\gamma_{l a e}\left(P_{n} \odot P_{m}\right) \geq 2(n+1)+m$. By contradiction, we assume that $\gamma_{l a e}\left(P_{n} \odot P_{m}\right)<2(n+1)+m$. Without lost of generality, we assume that $w\left(x_{i} x_{i+1}\right) \neq w\left(x_{j}^{i} x_{j+1}^{i}\right) \neq w\left(x_{i} x_{j}^{i}\right)$. Based on Proposition 1, $\gamma_{l a e}\left(P_{n}\right)=2$ and $\gamma_{l a e}\left(P_{m}\right)=2$ then we get $\left|\left\{w(e) ; e \in E\left(P_{n}\right)\right\}\right|=2,\left|\left\{w\left(x_{j}^{i} x_{j+1}^{i}\right)\right\}\right|=m$ and $\mid\{w(e) ; e \in$ $\left.E\left(\left(P_{m}\right)_{i}\right), 1 \leq i \leq n-1\right\}\left|=2(n-1),\left|\left\{w(e) ; e \in E\left(\left(P_{m}\right)_{n}\right)\right\}\right|=1\right.$ such that $\left|w(e) ; e \in E\left(P_{n} \odot P_{m}\right)\right|=\left|\left\{w(e) ; e \in E\left(P_{n}\right)\right\}\right|$
$+\left|\left\{w\left(x_{j}^{i} x_{j+1}^{i}\right)\right\}\right|+\left|\left\{w(e) ; e \in E\left(\left(P_{m}\right)_{i}\right), 1 \leq i \leq n-1\right\}\right|+\left|\left\{w(e) ; e \in E\left(\left(P_{m}\right)_{n}\right)\right\}\right|$
$\left|w(e) ; e \in E\left(P_{n} \odot P_{m}\right)\right|=2+m+2(n-1)+1$

$$
\left|w(e) ; e \in E\left(P_{n} \odot P_{m}\right)\right|=m+2 n+1
$$

If $\left|\left\{w(e) ; e \in E\left(\left(P_{m}\right)_{n}\right)\right\}\right|=1$, then we obtain at least two edges which have same edge weight, it is a contradiction. Thus, we receive that the lower bound of the local edge antimagic chromatic number of $P_{n} \odot P_{m}$ is $\gamma_{l a e}\left(P_{n} \odot P_{m}\right) \geq m+2 n+2=2(n+1)+m$. It concludes that the local antimagic edge chromatic number of $P_{n} \odot P_{m}$ is $\gamma_{l a e}\left(P_{n} \odot P_{m}\right)=$ $2(n+1)+m$.
Theorem 2.2 The local edge antimagic chromatic number of $P_{n} \odot C_{m}$ for n, m odd and $n, m \geq 4$ is $\gamma_{l a e}\left(P_{n} \odot C_{m}\right)=2+3 n+m$.
Proof. The graph $P_{n} \odot C_{m}$ is a connected graph with vertex set $V\left(P_{n} \odot C_{m}\right)=\left\{x_{i}: 1 \leq i \leq\right.$ $n\} \cup\left\{x_{j}{ }^{i}: 1 \leq j \leq m ; 1 \leq i \leq n\right\}$ and edge set $E\left(P_{n} \odot C_{m}\right)=\left\{x_{i} x_{i+1}: 1 \leq i \leq n-1\right\} \cup$ $\left\{x_{j}^{i} x_{j+1}^{i}: 1 \leq j \leq m-1 ; 1 \leq i \leq n\right\} \cup\left\{x_{m}^{i} x_{1}^{i}, 1 \leq i \leq n\right\} \cup\left\{x_{i} x_{j}^{i}: 1 \leq j \leq m ; 1 \leq i \leq n\right\}$.
The cardinality of the vertex set is $\left|V\left(P_{n} \odot C_{m}\right)\right|=n+m n$ and the cardinality of the edge set is $\left|E\left(P_{n} \odot C_{m}\right)\right|=2 m n+n-1$. We define a function bijection $f: V\left(P_{n} \odot C_{m}\right) \rightarrow$ $\left\{1,2,3, \ldots,\left|V\left(P_{n} \odot C_{m}\right)\right|\right\}$ for the graph $P_{n} \odot C_{m}$ to be local edge antimagic labeling as follows.

$$
\begin{gathered}
f\left(x_{i}\right)=\left\{\begin{array}{cc}
\frac{i+1}{2}, & \text { if } i \text { is odd } \\
n-\frac{i-2}{2}, & \text { if } i \text { is even }
\end{array}\right. \\
f\left(x_{j}^{i}\right)=\left\{\begin{array}{cc}
m n+1+\left(\frac{i-2}{2}\right)-\left(\frac{j-2}{2}\right) n, & \text { if } i \text { and } j \text { are even } \\
n+1+\left(\frac{i-2}{2}\right)+\left(\frac{j-1}{2}\right) n, & \text { if } i \text { is even and } j \text { is odd } \\
m n+n-\left(\frac{i-1}{2}\right)-\left(\frac{j-2}{2}\right) n, & \text { if } i \text { is odd and } j \text { is even } \\
2 n-\left(\frac{i-1}{2}\right)+n\left(\frac{j-1}{2}\right), & \text { if } i \text { is odd }
\end{array}\right. \\
f\left(x_{m}^{i}\right)=\left\{\begin{array}{cc}
n\left\lceil\frac{m}{2}\right\rceil+n-\left(\frac{i-1}{2}\right), \\
n\left\lceil\frac{m}{2}\right\rceil+1+\left(\frac{i-2}{2}\right), & \text { if } i \text { is even odd }
\end{array}\right.
\end{gathered}
$$

It is easy to see that f is a local edge antimagic labeling of $P_{n} \odot C_{m}$ and the edge weights are as follows:

$$
\begin{gathered}
w\left(x_{i} x_{i+1}\right)= \begin{cases}n+1, & \text { if } i \text { is odd } \\
n+2, & \text { if } i \text { is even }\end{cases} \\
w\left(x_{j}^{i} x_{j+1}^{i}\right)=\left\{\begin{array}{cc}
m n+4 n-(i-1), & \text { if } i \text { and } j \text { are odd } \\
m n+3 n-(i-1), & \text { if } i \text { is odd and } j \text { is even } \\
m n+2(n+1)+(i-2), & \text { if } i \text { is even and } j \text { is odd } \\
m n+n+2+(i-2), & \text { if } i \text { and } j \text { are even }
\end{array}\right. \\
w\left(x_{m}^{i} x_{1}^{i}\right)=\left\{\begin{array}{cc}
n\left\lceil\frac{m}{2}\right\rceil+3 n-(i-1), & \text { if } j \text { is odd } \\
n\left\lceil\frac{m}{2}\right\rceil+n+2+(i-2), & \text { if } j \text { is even }
\end{array}\right. \\
w\left(x_{i} x_{j}^{i}\right)= \begin{cases}2 n+1+n\left(\frac{j-1}{2}\right), & \text { if } j \text { is odd } \\
m n+n-n\left(\frac{j-2}{2}\right), & \text { if } j \text { is even }\end{cases} \\
w\left(x_{i} x_{m}^{i}\right)= \begin{cases}n\left\lceil\frac{m}{2}\right\rceil+n+1-\left(\frac{i-1}{2}\right), & \text { if } j \text { is odd } \\
n\left\lceil\frac{m}{2}\right\rceil+2+\left(\frac{i-2}{2}\right), & \text { if } j \text { is even }\end{cases}
\end{gathered}
$$

Hence, we get that the upper bound of the local edge antimagic chromatic number of $P_{n} \odot C_{m}$ is $\gamma_{l a e}\left(P_{n} \odot C_{m}\right) \leq 2+3 n+m$. Furthermore, we prove that the lower bound of the
local edge antimagic chromatic number of $P_{n} \odot C_{m}$ is $\gamma_{l a e}\left(P_{n} \odot C_{m}\right) \geq 2+3 n+m$. By contradiction, we assume that $\gamma_{l a e}\left(P_{n} \odot C_{m}\right)<2+3 n+m$. Without of generality, $w\left(x_{i} x_{i+1}\right) \neq w\left(x_{j}^{i} x_{j+1}^{i}\right) \neq w\left(x_{1}^{i} x_{m}^{i}\right) \neq w\left(x_{i} x_{j}^{i}\right)$. Based on Proposition 1 that $\gamma_{\text {lae }}\left(P_{n}\right)=2$ and $\gamma_{l a e}\left(C_{m}\right)=3$ then we get $\left|\left\{w(e) ; e \in E\left(P_{n}\right)\right\}\right|=2,\left|\left\{w\left(x_{i} x_{j}^{i}\right)\right\}\right|=m$ and $\mid\{w(e) ; e \in$ $\left.E\left(\left(C_{m}\right)_{i}\right), 1 \leq i \leq n-1\right\}\left|=3(n-1),\left|\left\{w(e) ; e \in E\left(\left(C_{m}\right)_{n}\right)\right\}\right|=2\right.$ such that $\left|w(e) ; e \in E\left(P_{n} \odot C_{m}\right)\right|=\left|\left\{w(e) ; e \in E\left(P_{n}\right)\right\}\right|+\left|\left\{w\left(x_{i} x_{j}^{i}\right)\right\}\right|+\mid\left\{w(e) ; e \in E\left(\left(C_{m}\right)_{i}\right), 1 \leq\right.$ $i \leq n-1\}\left|+\left|\left\{w(e) ; e \in E\left(\left(C_{m}\right)_{n}\right)\right\}\right|\right| w(e) ; e \in E\left(P_{n} \odot C_{m}\right) \mid$
$=2+m+3(n-1)+2\left|w(e) ; e \in E\left(P_{n} \odot C_{m}\right)\right|=m+3 n+1$
If $\left|\left\{w(e) ; e \in E\left(\left(C_{m}\right)_{n}\right)\right\}\right|=2$, then we obtain at least two edges which have the same edge weight, which is a contradiction. Accordingly, the lower bound of the local edge antimagic chromatic number of $P_{n} \odot C_{m}$ is $\gamma_{l a e}\left(P_{n} \odot C_{m}\right) \geq m+3 n+2$. It concludes that the local edge antimagic chromatic number of $P_{n} \odot C_{m}$ is $\gamma_{l a e}\left(P_{n} \odot C_{m}\right)=2+3 n+m$.

Theorem 2.3. The local edge antimagic chromatic number of $C_{n} \odot C_{m}$ for n, m even and $n, m \geq 4$ is $\gamma_{\text {lae }}\left(C_{n} \odot C_{m}\right)=3(n+1)+m$.
Proof. The graph $C_{n} \odot C_{m}$ is a connected graph with vertex set $V\left(C_{n} \odot C_{m}\right)=\left\{x_{i}: 1 \leq i \leq\right.$ $n\} \cup\left\{x_{j}{ }^{i}: 1 \leq j \leq m ; 1 \leq i \leq n\right\}$ and edge set $E\left(C_{n} \odot C_{m}\right)=\left\{x_{i} x_{i+1}: 1 \leq i \leq n-1\right\} \cup$ $\left\{x_{1} x_{n}\right\} \cup\left\{x_{j}^{i} x_{j+1}^{i}: 1 \leq j \leq m-1 ; 1 \leq i \leq n\right\} \cup\left\{x_{i} x_{j}^{i}: 1 \leq j \leq m ; 1 \leq i \leq n\right\} \cup\left\{x_{m}^{i} x_{1}^{i}, 1 \leq\right.$ $i \leq n\}$. The cardinality of the vertex set is $\left|V\left(C_{n} \odot C_{m}\right)\right|=n+m n$ and the cardinality of the edge set is $\left|E\left(C_{n} \odot C_{m}\right)\right|=2 m n+n$. We define a function bijection $f: V\left(C_{n} \odot C_{m}\right) \rightarrow$ $\left.\left\{1,2,3, \ldots, \mid V C_{n} \odot C_{m}\right) \mid\right\}$ for the graph $C_{n} \odot C_{m}$ to be local edge antimagic labeling as follows.

$$
\begin{gathered}
f\left(x_{i}\right)=\left\{\begin{array}{cc}
\frac{i+1}{2}, & \text { if } i \text { is odd } \\
n-\frac{i-2}{2}, & \text { if } i \text { is even }
\end{array}\right. \\
f\left(x_{j}^{i}\right)=\left\{\begin{array}{cc}
m n+1+\left(\frac{i-2}{2}\right)-\left(\frac{j-1}{2}\right) n, & \text { if } i \text { and } j \text { are even } \\
n+1+\left(\frac{i-2}{2}\right)+\left(\frac{j-1}{2}\right) n, & \text { if } i \text { is even and } j \text { is odd } \\
m n+n-\left(\frac{i-1}{2}\right)-\left(\frac{j-2}{2}\right) n, & \text { if } i \text { is odd and } j \text { is even } \\
2 n-\left(\frac{i-1}{2}\right)+n\left(\frac{j-1}{2}\right), & \text { if } i \text { and } j \text { are odd } \text { odd }
\end{array}\right. \\
f\left(x_{m}^{i}\right)=\left\{\begin{array}{cc}
n\left\lceil\frac{m}{2}\right\rceil+n-\left(\frac{i-1}{2}\right), & \text { is even } \\
n\left\lceil\frac{m}{2}\right\rceil+1+\left(\frac{i-2}{2}\right),
\end{array}\right.
\end{gathered}
$$

It is easy to see that f is a local edge antimagic labeling of $C_{n} \odot C_{m}$ and the edge weights are as follows:

$$
\begin{gathered}
w\left(x_{i} x_{i+1}\right)= \begin{cases}n+1, & \text { if } i \text { is odd } \\
n+2, & \text { if } i \text { is even }\end{cases} \\
w\left(x_{1} x_{n}\right)=\frac{n+2}{2} \\
w\left(x_{j}^{i} x_{j+1}^{i}\right)=\left\{\begin{array}{cc}
m n+4 n-(i-1), & \text { if } i \text { and } j \text { are odd } \\
m n+3 n-(i-1), & \text { if } i \text { is odd and } j \text { is even } \\
m n+2(n+1)+(i-2), & \text { if } i \text { is even and } j \text { is odd } \\
m n+2+(i-2), & \text { if } i \text { and } j \text { are even }
\end{array}\right. \\
w\left(x_{m}^{i} x_{1}^{i}\right)=\left\{\begin{array}{c}
n\left\lceil\frac{m}{2}\right\rceil+3 n-(i-1), \text { if } j \text { is odd } \\
n\left\lceil\frac{m}{2}\right\rceil+n+2+(i-2), \text { if } j \text { is even }
\end{array}\right. \\
w\left(x_{i} x_{j}^{i}\right)=\left\{\begin{array}{c}
2 n+1+n\left(\frac{j-1}{2}\right), \text { if } j \text { is odd } \\
m n+n-n\left(\frac{j-2}{2}\right), \text { if } j \text { is even }
\end{array}\right. \\
w\left(x_{i} x_{m}^{i}\right)=\left\{\begin{array}{r}
n\left\lceil\frac{m}{2}\right\rceil+n+1-\left(\frac{i-1}{2}\right), \text { if } j \text { is odd } \\
n\left\lceil\frac{m}{2}\right\rceil+2+\left(\frac{i-2}{2}\right), \text { if } j \text { is even }
\end{array}\right.
\end{gathered}
$$

Hence, we get that the upper bound of the local edge antimagic chromatic number of $C_{n} \odot$ C_{m} is $\gamma_{\text {lae }}\left(C_{n} \odot C_{m}\right) \leq 3(n+1)+m$. Furthermore, we prove that lower bound of the local edge antimagic chromatic number of $C_{n} \odot C_{m}$ is $\gamma_{l a e}\left(C_{n} \odot C_{m}\right) \geq 3(n+1)+m$. By contradiction, we assume that $\gamma_{l a e}\left(C_{n} \odot C_{m}\right)<3(n+1)+m$. Without lost of generality, we gives that $w\left(x_{i} x_{i+1}\right) \neq w\left(x_{1} x_{n}\right) \neq w\left(x_{j}^{i} x_{j+1}^{i}\right) \neq w\left(x_{1}^{i} x_{m}^{i}\right) \neq w\left(x_{i} x_{j}^{i}\right)$. Based on Proposition 1 that $\gamma_{\text {lae }}\left(C_{n}\right)=3$ and $\gamma_{\text {lae }}\left(C_{m}\right)=3$ then we get $\left|\left\{w(e) ; e \in E\left(C_{n}\right)\right\}\right|=3$, $\left|\left\{w\left(x_{i} x_{j}^{i}\right)\right\}\right|=m \quad$ and $\quad\left|\left\{w(e) ; e \in E\left(\left(C_{m}\right)_{i}\right), 1 \leq i \leq n-1\right\}\right|=3(n-1), \quad \mid\{w(e) ; e \in$ $\left.E\left(\left(C_{m}\right)_{n}\right)\right\} \mid=2$ such that $\left|w(e) ; e \in E\left(C_{n} \odot C_{m}\right)\right|$

$$
\begin{aligned}
& =\left|\left\{w(e) ; e \in E\left(C_{n}\right)\right\}\right|+\left|\left\{w\left(x_{i} x_{j}^{i}\right)\right\}\right|+\left|\left\{w(e) ; e \in E\left(\left(C_{m}\right)_{i}\right), 1 \leq i \leq n-1\right\}\right| \\
& +\left|\left\{w(e) ; e \in E\left(\left(C_{m}\right)_{n}\right)\right\}\right|=3+m+3(n-1)+2=m+3 n+2
\end{aligned}
$$

If $\left|\left\{w(e) ; e \in E\left(\left(C_{m}\right)_{n}\right)\right\}\right|=2$, then we obtain at least two edges which have same edge weight, which is a contradiction. Thus, we receive that the lower bound of the local edge antimagic chromatic number of $C_{n} \odot C_{m}$ is $\gamma_{l a e}\left(C_{n} \odot C_{m}\right) \geq m+3 n+3$. It concludes that the local edge antimagic chromatic number of $C_{n} \odot C_{m}$ is $\gamma_{l a e}\left(C_{n} \odot C_{m}\right)=3(n+1)+$ m.

Theorem 2.4. The local edge antimagic chromatic number of $C_{n} \odot P_{m}$ for n odd and $n, m \geq$ 3 is $\gamma_{\text {lae }}\left(C_{n} \odot P_{m}\right)=3+2 n+m$.
Proof. The graph $C_{n} \odot P_{m}$ is a connected graph with vertex set $V\left(C_{n} \odot P_{m}\right)=\left\{x_{i}: 1 \leq i \leq\right.$ $n\} \cup\left\{x_{j}{ }^{i}: 1 \leq j \leq m ; 1 \leq i \leq n\right\}$ and edge set $E\left(C_{n} \odot P_{m}\right)=\left\{x_{i} x_{i+1}: 1 \leq i \leq n-1\right\} \cup$ $\left\{x_{1} x_{n}\right\} \cup\left\{x_{j}^{i} x_{j+1}^{i}: 1 \leq j \leq m-1 ; 1 \leq i \leq n\right\} \cup\left\{x_{i} x_{j}^{i}: 1 \leq j \leq m ; 1 \leq i \leq n\right\}$. The cardinality of the vertex set is $\left|V\left(C_{n} \odot P_{m}\right)\right|=n+m n$ and the cardinality of the edge set is $\left|E\left(C_{n} \odot P_{m}\right)\right|=2 m n+n-1$. We define a function bijection $f: V\left(C_{n} \odot P_{m}\right) \rightarrow$ $\left\{1,2,3, \ldots,\left|V\left(C_{n} \odot P_{m}\right)\right|\right\}$ for the graph $C_{n} \odot P_{m}$ to be local edge antimagic labeling as follows.

$$
\begin{gathered}
f\left(x_{i}\right)=\left\{\begin{array}{cc}
\frac{i+1}{2}, & \text { if } i \text { is odd } \\
n-\frac{i-2}{2}, & \text { if } i \text { is even }
\end{array}\right. \\
f\left(x_{j}^{i}\right)=\left\{\begin{array}{cc}
n+1+\left(\frac{i-2}{2}\right)+\left(\frac{j-2}{2}\right) n, & \text { if } i \text { and } j \text { are even } \\
2 n+n\left\lceil\frac{m}{2}\right\rceil+1+\left(\frac{i-2}{2}\right)-n\left(\frac{j-1}{2}\right), & \text { if } i \text { is even and } j \text { is odd } \\
2 n-\left(\frac{i-1}{2}\right)+\left(\frac{j-2}{2}\right) n, & \text { if } i \text { is odd and } j \text { is even } \\
m n+n-\left(\frac{i-1}{2}\right)-n\left(\frac{j-1}{2}\right), & \text { if } i \text { and } j \text { are odd }
\end{array}\right.
\end{gathered}
$$

It is easy to see that f is a local edge antimagic labeling of $P_{n} \odot C_{m}$ and the edge weights are as follows:

$$
\begin{aligned}
& w\left(x_{i} x_{i+1}\right)= \begin{cases}n+1, & \text { if } i \text { is odd } \\
n+2, & \text { if } i \text { is even }\end{cases} \\
& w\left(x_{1} x_{n}\right)=\frac{n+2}{2} \\
& \left(x_{i} x_{i+1}\right)=\left\{\begin{array}{lc}
n+1, & \text { if } i \text { is odd } \\
n+2, & \text { if } i \text { is even }
\end{array}\right. \\
& w\left(x_{j}^{i} x_{j+1}^{i}\right)=\left\{\begin{array}{c}
m n+3 n-(i-1), \text { if } i \text { and } j \text { are odd } \\
m n+2 n-(i-1), \text { if } i \text { is odd and } j \text { is even } \\
m n+n+i, \\
m n+2+i, \\
\text { if } i \text { is even and } j \text { is odd } \\
\text { if } i \text { is even and } j \text { is even }
\end{array}\right. \\
& w\left(x_{i} x_{j}^{i}\right)=\left\{\begin{array}{l}
m n+1+n\left(\frac{j-3}{2}\right), \text { if } j \text { is odd } \\
2 n+1+n\left(\frac{j-2}{2}\right), \text { if } j \text { is even }
\end{array}\right.
\end{aligned}
$$

Hence, we get that the upper bound of the local edge antimagic chromatic number of $C_{n} \odot$ P_{m} is $\gamma_{l a e}\left(C_{n} \odot P_{m}\right) \leq 3+2 n+m$. furthermore, we prove that the lower bound of the local edge antimagic chromatic number of $C_{n} \odot P_{m}$ is $\gamma_{l a e}\left(C_{n} \odot P_{m}\right) \geq 3+2 n+m$. By contradiction, we assume that $\gamma_{l a e}\left(C_{n} \odot P_{m}\right)<3+2 n+m$. Without lost of generality, we gives that $w\left(x_{i} x_{i+1}\right) \neq w\left(x_{j}^{i} x_{j+1}^{i}\right) \neq w\left(x_{1}^{i} x_{m}^{i}\right) \neq w\left(x_{i} x_{j}^{i}\right)$. Based on Proposition 1 that $\gamma_{\text {lae }}\left(C_{n}\right)=3$ and $\gamma_{\text {lae }}\left(P_{m}\right)=2$ then we get $\left|\left\{w(e) ; e \in E\left(C_{n}\right)\right\}\right|=3,\left|\left\{w\left(x_{i} x_{j}^{i}\right)\right\}\right|=m$ and $\left|\left\{w(e) ; e \in E\left(\left(P_{m}\right)_{i}\right), 1 \leq i \leq n-1\right\}\right|=2(n-1),\left|\left\{w(e) ; e \in E\left(\left(P_{m}\right)_{n}\right)\right\}\right|=1$ such that
$\left|w(e) ; e \in E\left(C_{n} \odot P_{m}\right)\right|=\left|\left\{w(e) ; e \in E\left(C_{n}\right)\right\}\right|+\left|\left\{w\left(x_{i} x_{j}^{i}\right)\right\}\right|+$
$\left|\left\{w(e) ; e \in E\left(\left(P_{m}\right)_{i}\right), 1 \leq i \leq n-1\right\}\right|+\left|\left\{w(e) ; e \in E\left(\left(P_{m}\right)_{n}\right)\right\}\right|$
$\left|w(e) ; e \in E\left(C_{n} \odot P_{m}\right)\right|=3+m+2(n-1)+1$ $\left|w(e) ; e \in E\left(C_{n} \odot P_{m}\right)\right|=m+2 n+2$
If $\left|\left\{w(e) ; e \in E\left(\left(P_{m}\right)_{n}\right)\right\}\right|=1$, then we obtain at least two edges which have same edge weight, Which is a contradiction. Thus, we receive that the lower bound of the local edge antimagic chromatic number of $C_{n} \odot P_{m}$ is $\gamma_{l a e}\left(C_{n} \odot P_{m}\right) \geq m+2 n+3$. It concludes that the local edge antimagic chromatic number of $C_{n} \odot P_{m}$ is $\gamma_{l a e}\left(C_{n} \odot P_{m}\right)=3+2 n+m$.

CONCLUSIONS

In this paper we have given the result on the local edge antimagic chromatic number of corona product of path and cycle, namely path corona cycle, cycle corona path, path corona path, cycle corona cycle.
Open Problem 1. What is the upper bound of local edge antimagic coloring of corona product of a connected graph?
Open Problem 2. What is the lower bound of local edge antimagic coloring of corona product of a connected graph?

ACKNOWLEDGMENT

We gratefully acknowledge the support from DIKTI Indonesia trough the "Penelitian Dosen Pemula" RISTEKDIKTI 2019 research project.

REFERENCES

[1] S. Arumugam, K. Premalatha, M. Bača and A. Semaničová-Feňovčíková, "Local antimagic vertex coloring of a graph," Graphs and Combinatorics, vol. 33, pp. 275-285, 2017.
[2] R. Alfarisi, "dafik, IH Agustin, and AI kristiana," in Journal of physics: conference series, 2018.
[3] M. Dettlaff, J. Raczek and I. G. Yero, "Edge subdivision and edge multisubdivision versus some domination related parameters in generalized corona graphs," Opuscula Mathematica, vol. 36, pp. 575-588, 2016.
[4] N. Ramya, "On Coloring of Corona Graphs," Indian Journal of Science and Technology, vol. 7, p. 9, 2014.
[5] I. G. Yero, D. Kuziak and A. R. Aguilar, "Coloring, location and domination of corona graphs," Aequationes mathematicae, vol. 86, pp. 1-21, 2013.
[6] A. I. Kristiana, M. I. Utoyo and Dafik, "The lower bound of the r-dynamic chromatic number of corona product by wheel graphs," in AIP Conference Proceedings, 2018.
[7] I. H. Agustin, M. Hasan, R. Alfarisi, A. I. Kristiana, R. M. Prihandini and others, "Local Edge Antimagic Coloring of Comb Product of Graphs," in Journal of Physics: Conference Series, 2018.
[8] A. I. Kristiana, M. I. Utoyo and others, "On the r-dynamic chromatic number of the corronation by complete graph," in Journal of Physics: Conference Series, 2018.
[9] R. M. Prihandini, "Local Edge Antimagic Coloring of Graphs," 2017.

