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ABSTRACT  

The use of location weights on the formation of the spatio-temporal model contributes to the 
accuracy of the model formed. The location weights that are often used include uniform location 
weight, inverse distance, and cross-correlation normalization. The weight of the location 
considers the proximity between locations. For data that has a high level of variability, the use of 
the location weights mentioned above is less relevant. This research was conducted with the aim 
of obtaining a weighting method that is more suitable for data with high variability. This research 
was conducted using secondary data derived from 10 daily rainfall data obtained from BMKG 
Karangploso. The data period used was January 2008 to December 2018. The points of the rain 
posts studied included the rain post of the Blimbing, Karangploso, Singosari, Dau, and Wagir 
regions. Based on the results of the research forecasting model obtained is the GSTAR ((1), 
1,2,3,12,36) -SUR model. The cross-covariance model produces a better level of accuracy in terms 
of lower RMSE values and higher R2 values, especially for Karangploso, Dau, and Wagir areas. 
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INTRODUCTION  

There are several spatio-temporal models that have been developed. For the first 
time, Space-Time Autoregressive (STAR) model was introduced by Pfeifer & Deutsch [1], 
[2]. The Space-Time Autoregressive (STAR) model had the assumption that the variance 
between locations is the same/homogeneous. However, in fact, it often gets heterogeneity 
between observation sites. Thus the STAR model is not suitable for data that has 
heterogeneous location characteristics. This is the weakness of the STAR model and this 
weakness can be handled by the Generalized Space-Time Autoregressive (GSTAR) and 
GSTAR-OLS models developed by Borovkova, Lopuha, & Ruchjana [3] and Ruchjana [4], 
[5]. The GSTAR model developed is used for data that meets stationary assumptions. The 
latest development of this spatio-temporal model is the GSTAR-SUR model developed by 
Iriany [6] to overcome data that is not stationary and has a seasonal pattern. Furthermore, 
the use of the GSTAR-SUR-NN hybrid model was also developed for data that has a 
nonlinear pattern [7]–[9] 

The use of location weights in the formation of spatiotemporal models also 
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contributes to the level of accuracy of the model formed. There are some types of location 
weights that are used to build models, there are uniform location weight, inverse distance, 
and cross-correlation normalization [10], [11]. The weight of the location considers the 
proximity between locations. For data that has a high level of variability, the use of the 
location weights mentioned above is less relevant. Therefore, we need location weights 
that consider the various aspects of observational data. One of the location weights that 
have been developed is the weight of the variance ratio which has proven to have a better 
level of accuracy [12]. The weight of other locations developed is the weight of cross-
covariance. The use of the weight of cross-covariance has been researched and applied in 
the research of Apanosovich and Genton [13] to predict pollution in California and the 
research of Efromovich & Smirnova [14] for fMRI imaging processes with a wavelet 
approach. This research was conducted to determine the accuracy of the GSTAR model 
that was built using the weight of cross-covariance and compare the level of accuracy with 
the GSTAR model that was built with the weight of cross-correlation. 

 

METHODS  

The data period used is January 2008 to December 2018, where data for conducting a 
training (in-sample) is data from January 2008 to December 2017. While data from 
January 2018 to December 2018 is used as testing data (out-of-sample). The first step 
taken is testing the stationary data on rainfall. The stationary test on the average is done 
using the Augmented Dickey-Fuller test. While the stationarity test for the variance was 
carried out by the Box-Cox test. The next step is to identify the real MACF and MPACF lags 
to determine the order that will be used as an estimate of the GSTAR model. Next, the 
cross-correlation normalization weighting is calculated with Equation 1 [11]: 
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and the normalization weight of cross-covariance is calculated with Equation 2 [13], [14] : 
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 The next process is GSTAR-OLS analysis to get the residual value with Equation 3  

 01 11( ) ( )(t) t (t -1) t   μ Φ ΦZ W Z 
     (3) 

Next, calculate the var ( ) ε Ω  matrix with the equation  

𝚺 = [

σ11 σ12 … σ1𝑚
σ21 σ22 … σ2𝑚
⋮

σ𝑚1

⋮
σ𝑚2

⋱
…

⋮
σ𝑚𝑚

]  (4) 

 
The next step is estimating the GSTAR (1, p) -SUR parameter using the formula 

( ) -1 -1 -1
β X'Ω X X'Ω y . The best model is chosen based on RMSE and R2 prediction values. 
The research data analysis process was carried out using R and SAS software. 
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RESULTS AND DISCUSSION  

This research was carried out by taking daily rainfall data obtained from the rain 
heading point for the Blimbing, Karangploso, Singosari, Dau, and Wagir regions. The 
following is a description of the statistics of rainfall data in the five locations presented in 
Table 1: 

Table 1. Description of Rainfall Data Statistics in Five Research Locations 

Location N 
Mean 
(mm) 

Standard 
Deviation 

(mm) 
Minimum 

(mm) 
Maximum 

(mm) 
Blimbing 360 5.682 6.909 0 33.5 
Singosari 360 3.93 5.575 0 41.75 

Karangploso 360 4.302 5.71 0 25.36 
Dau 360 4.564 5.825 0 36.38 

Wagir 360 7.08 8.187 0 43.63 
 

Based on Table 1 above, it is descriptively shown that the average rainfall in Wagir 
District is the highest and Singosari District has the lowest average rainfall. In all study 
locations, the standard deviation value was greater than the average, indicating a high 
level of rainfall variation in all study locations. In addition, the heterogeneity of the 
observation location can be measured by calculating the Gini Index. The higher the index 
value, the more heterogeneous the location will be. This index calculation for the five 
locations in this study is: 
 

𝐺𝑛 = 1 +
1

𝑛
−

2

𝑛2𝑦�̅�
∑ 𝑦𝑖
𝑁
𝑖=1   

 

= 1 +
1

360
−

2

36025.111
9200.68  

 
= 0.975  

 

Based on the results of the Gini index calculation, the Gini index value is 0.975, close 
to 1. From the Gini Index calculation, it is shown that heterogeneous locations so that 
modeling using the GSTAR-SUR model can be done. 

Stationary testing of variance was carried out using a Box-Cox plot. The stationarity of 
variance is said to be fulfilled if the Box-Cox plot results in a value of λ = 1. However, if the 
value of λ ≠ 1, then the data transformation process is carried out. The following are the 
results of stationary testing of the variance in rainfall data for each location: 

 

Table 2. Stationary Testing of the Variance of Rainfall in Each Location 

Location λ 
Transformation I 

Transformation λ 

Blimbing -0.27 Z-0.27 1.0 

Singosari -0.68 Z-0.68 1.0 

Karangploso -0.50 Z-0.5 1.0 

Dau -0.50 Z-0.5 1.0 

Wagir -0.19 Z-0.19 1.0 

 

Based on Table 4.3 the initial λ values for all study locations have not been worth 1. 
This shows that the rainfall data in each location is not yet stationary in variety so that 
Box-Cox transformation is needed. The Box-Cox I transformation results show the value 
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of λ = 1, which means that the data has been stationary to the variety and the 
transformation is stopped. 

In addition to stationary variety, stationary testing is also carried out on the average. 
Stationary to average testing was carried out using the Augmented Dickey-Fuller (ADF) 
test. Stationarity on the average is said to be fulfilled if the results of the ADF test obtained 
the p-value of less than 0.05. If the ADF test results obtained the p-value of more than 0.05, 
it is necessary to do a differencing process. Following are the results of the ADF test: 
 

Table 3. Stationary Testing on the Average Rainfall of Each Location 

Location t-Statistics p-value 

Blimbing -5.974 0.000 

Singosari -5.556 0.000 

Karangploso -7.831 0.000 

Dau -7.215 0.000 

Wagir -7.425 0.000 
 

Based on the results of the stationary test on the average using the ADF test in Table 
3, at each location p-value was less than 0.05. From this test, it is shown that the stationary 
data of rainfall on the average has been fulfilled. 

The GSTAR model identification process is done by looking at the Matrix Partial 
Autocorrelation Function (MPACF) scheme.  

 

Table 4. Matrix Partial Autocorrelation Scheme (MPACF) 

 

Based on the MPACF matrix scheme in Table 4 it can be seen that there is a real MPACF 
lag in lag 1 to lag 3. Then in lag 4, there is no significant partial autocorrelation. Then in 5 
lags and so on there are some significant partial autocorrelations. Based on the MPACF 
scheme, it is shown that significant partial autocorrelation is truncated at lag 4. So, the 
determination of the VAR order (p) is done by looking at the smallest AIC value for real 
lag. The following is the AIC value in lag 1 to lag 3: 

Table 5. AIC values for GSTAR Order Determination 

Order AIC Value 

1 14.67906 

2 14.52868 

3 14.52445 
 

Based on the AIC value in Table 5 it can be seen that the lowest AIC value is obtained 
in the 3rd order. Thus, the GSTAR model used has a 3rd order. In addition to determining 
the order with the AIC value, identification of the GSTAR model is also carried out by 
univariate ACF and PACF plots at each location. Based on the ACF plot it is shown that 
rainfall data at each location is indicated by seasonal patterns. This can be seen in the ACF 
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plot which has a repetitive pattern at a certain time lag. Based on the PACF plot in 
Appendix 8 shows that at some time lag there is a PACF that crosses the 5% boundary 
line. When combined in 5 locations, it was found that the five locations had PACF that 
passed 12 and 36 of time lags. Therefore, the results of the identification of seasonal 
patterns indicated that the appropriate model was GSTAR ((1), 1,2,3,12,36) 

This study uses five locations with 𝑛𝑖
(1)

  or the number of locations adjacent to the i-

th location is 4 locations so that the cross-correlation normalization matrix is as follows: 
 
 

0 0.2353 0.2294 0.2688 0.2665 

0.2664 0 0.2143 0.2675 0.2518 

0.2734 0.2100 0 0.2765 0.2401 

0.2950 0.2174 0.2327 0 0.2549 

0.2694 0.2235 0.2420 0.2650 0 

 

While the magnitude of cross-covariance normalization weighting based on 
calculations is as follows: 

 
 
 
 
 
 
 
 
 

The results of the estimation of the parameters of the GSTAR ((1), 1,2,3,12,36) -SUR 
model with the weight of the cross correlation normalization location for Blimbing 
District are as follows: 
�̂�1t = 0.119 Z1(t-1) + 0.009 Z2(t-1) - 0.009 Z3(t-1) + 0.022 Z4(t-1) + 0.017 Z5(t-1) + 0.205 Z1(t-2) + 

0.087 Z2(t-2) + 0.084 Z3(t-2) + 0.009 Z4(t-2) + 0.075 Z5(t-2) - 0.086 Z1(t-3) - 0.074 Z2(t-3) + 0.037 

Z3(t-3) + 0.023 Z4(t-3) + 0.005 Z5(t-3) + 0.059 Z1(t-12) - 0.056 Z2(t-12) - 0.01 Z3(t-12) + 0.019 Z4(t-

12) - 0.025 Z5(t-12) + 0.246 Z1(t-36) + 0.052 Z2(t-36) - 0.093 Z3(t-36) + 0.034 Z4(t-36) + 0.069 Z5(t-

36)  

While the result of the parameter estimation of the GSTAR ((1), 1,2,3,12,36) -SUR 
model with cross-covariance normalization location weights is as follows : 
�̂�1t = 0.116 Z1(t-1) + 0.003 Z2(t-1) - 0.006 Z3(t-1) + 0.022 Z4(t-1) + 0.015 Z5(t-1) + 0.212 Z1(t-2) + 0.083 

Z2(t-2) + 0.081 Z3(t-2) + 0.018 Z4(t-2) + 0.072 Z5(t-2) - 0.092 Z1(t-3) - 0.066 Z2(t-3) + 0.031 Z3(t-3) 

+ 0.025 Z4(t-3) + 0 Z5(t-3) + 0.06 Z1(t-12) - 0.048 Z2(t-12) - 0.016 Z3(t-12) + 0.016 Z4(t-12) - 0.023 

Z5(t-12) + 0.256 Z1(t-36) + 0.045 Z2(t-36) - 0.085 Z3(t-36) + 0.025 Z4(t-36) + 0.068 Z5(t-36)  

 
The result of parameter estimation of GSTAR ((1), 1,2,3,12,36) -SUR model with the 

weight of cross-correlation normalization location for Singosari Subdistrict is as follows: 
�̂�2t = 0.024 Z1(t-1) + 0.171 Z2(t-1) - 0.009 Z3(t-1) + 0.02 Z4(t-1) + 0.012 Z5(t-1) + 0.017 Z1(t-2) - 0.255 

Z2(t-2) + 0.083 Z3(t-2) + 0.009 Z4(t-2) + 0.052 Z5(t-2) + 0.055 Z1(t-3) + 0.649 Z2(t-3) + 0.036 Z3(t-

3) + 0.021 Z4(t-3) + 0.004 Z5(t-3) - 0.017 Z1(t-12) + 0.335 Z2(t-12) - 0.01 Z3(t-12) + 0.018 Z4(t-12) - 

0.018 Z5(t-12) + 0.031 Z1(t-36) - 0.084 Z2(t-36) - 0.092 Z3(t-36) + 0.031 Z4(t-36) + 0.048 Z5(t-36)  

While the result of the parameter estimation of the GSTAR ((1), 1,2,3,12,36) -SUR 
model with cross-covariance normalization location weights is as follows : 
�̂�2t = 0.024 Z1(t-1) + 0.206 Z2(t-1) - 0.006 Z3(t-1) + 0.021 Z4(t-1) + 0.01 Z5(t-1) + 0.013 Z1(t-2) - 0.281 

Z2(t-2) + 0.081 Z3(t-2) + 0.016 Z4(t-2) + 0.05 Z5(t-2) + 0.055 Z1(t-3) + 0.639 Z2(t-3) + 0.03 Z3(t-3) + 

0 0.2060 0.2056 0.2458 0.3426 

0.2754 0 0.1831 0.2331 0.3084 

0.2847 0.1764 0 0.2427 0.2962 

0.3058 0.1818 0.1993 0 0.3130 

0.3085 0.2065 0.2290 0.2559 0 

Wij = 

Wij = 
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0.023 Z4(t-3) + 0 Z5(t-3) - 0.017 Z1(t-12) + 0.301 Z2(t-12) - 0.015 Z3(t-12) + 0.015 Z4(t-12) - 0.016 

Z5(t-12) + 0.025 Z1(t-36) - 0.04 Z2(t-36) - 0.084 Z3(t-36) + 0.023 Z4(t-36) + 0.047 Z5(t-36) 

 
The result of parameter estimation of GSTAR ((1), 1,2,3,12,36) -SUR model with the 

weight of cross-correlation normalization location for Karangploso Subdistrict is as 
follows: 
�̂�3t = 0.033 Z1(t-1) + 0.008 Z2(t-1) + 0.411 Z3(t-1) + 0.023 Z4(t-1) + 0.016 Z5(t-1) + 0.023 Z1(t-2) + 0.081 

Z2(t-2) - 0.318 Z3(t-2) + 0.01 Z4(t-2) + 0.072 Z5(t-2) + 0.076 Z1(t-3) - 0.069 Z2(t-3) - 0.056 Z3(t-3) + 

0.024 Z4(t-3) + 0.005 Z5(t-3) - 0.023 Z1(t-12) - 0.052 Z2(t-12) + 0.029 Z3(t-12) + 0.02 Z4(t-12) - 0.024 

Z5(t-12) + 0.042 Z1(t-36) + 0.048 Z2(t-36) + 0.752 Z3(t-36) + 0.035 Z4(t-36) + 0.066 Z5(t-36)  

While the result of the parameter estimation of the GSTAR ((1), 1,2,3,12,36) -SUR 
model with cross-covariance normalization location weights is as follows : 
�̂�3t = 0.033 Z1(t-1) + 0.003 Z2(t-1) + 0.407 Z3(t-1) + 0.023 Z4(t-1) + 0.014 Z5(t-1) + 0.018 Z1(t-2) + 0.078 

Z2(t-2) - 0.348 Z3(t-2) + 0.019 Z4(t-2) + 0.069 Z5(t-2) + 0.076 Z1(t-3) - 0.061 Z2(t-3) - 0.028 Z3(t-3) 

+ 0.026 Z4(t-3) + 0 Z5(t-3) - 0.023 Z1(t-12) - 0.045 Z2(t-12) + 0.067 Z3(t-12) + 0.017 Z4(t-12) - 0.022 

Z5(t-12) + 0.035 Z1(t-36) + 0.042 Z2(t-36) + 0.744 Z3(t-36) + 0.026 Z4(t-36) + 0.065 Z5(t-36)  

 
The result of parameter estimation of GSTAR ((1), 1,2,3,12,36) -SUR model with the 

weight of cross-correlation normalization location for Dau Subdistrict is as follows: 
�̂�4t = 0.033 Z1(t-1) + 0.009 Z2(t-1) - 0.009 Z3(t-1) + 0.253 Z4(t-1) + 0.016 Z5(t-1) + 0.023 Z1(t-2) + 

0.089 Z2(t-2) + 0.086 Z3(t-2) + 0.13 Z4(t-2) + 0.069 Z5(t-2) + 0.076 Z1(t-3) - 0.075 Z2(t-3) + 0.038 

Z3(t-3) + 0 Z4(t-3) + 0.005 Z5(t-3) - 0.023 Z1(t-12) - 0.057 Z2(t-12) - 0.01 Z3(t-12) - 0.119 Z4(t-12) - 

0.023 Z5(t-12) + 0.042 Z1(t-36) + 0.053 Z2(t-36) - 0.096 Z3(t-36) + 0.169 Z4(t-36) + 0.064 Z5(t-36)  

While the result of the parameter estimation of the GSTAR ((1), 1,2,3,12,36) -SUR 
model with cross-covariance normalization location weights is as follows : 
�̂�4t = 0.034 Z1(t-1) + 0.003 Z2(t-1) - 0.006 Z3(t-1) + 0.25 Z4(t-1) + 0.014 Z5(t-1) + 0.018 Z1(t-2) + 0.085 

Z2(t-2) + 0.084 Z3(t-2) + 0.083 Z4(t-2) + 0.066 Z5(t-2) + 0.077 Z1(t-3) - 0.067 Z2(t-3) + 0.032 Z3(t-

3) - 0.008 Z4(t-3) + 0 Z5(t-3) - 0.023 Z1(t-12) - 0.049 Z2(t-12) - 0.016 Z3(t-12) - 0.113 Z4(t-12) - 0.021 

Z5(t-12) + 0.035 Z1(t-36) + 0.046 Z2(t-36) - 0.087 Z3(t-36) + 0.203 Z4(t-36) + 0.063 Z5(t-36)  

 

The result of parameter estimation of GSTAR ((1), 1,2,3,12,36) -SUR model with the 
weight of cross-correlation normalization location for Wagir Subdistrict is as follows: 
�̂�5t = 0.031 Z1(t-1) + 0.009 Z2(t-1) - 0.01 Z3(t-1) + 0.023 Z4(t-1) + 0.243 Z5(t-1) + 0.022 Z1(t-2) + 0.092 

Z2(t-2) + 0.092 Z3(t-2) + 0.01 Z4(t-2) + 0.07 Z5(t-2) + 0.072 Z1(t-3) - 0.078 Z2(t-3) + 0.04 Z3(t-3) + 

0.024 Z4(t-3) + 0.048 Z5(t-3) - 0.022 Z1(t-12) - 0.059 Z2(t-12) - 0.011 Z3(t-12) + 0.02 Z4(t-12) + 0.047 

Z5(t-12) + 0.04 Z1(t-36) + 0.055 Z2(t-36) - 0.102 Z3(t-36) + 0.035 Z4(t-36) + 0.206 Z5(t-36)  

While the result of the parameter estimation of the GSTAR ((1), 1,2,3,12,36) -SUR 
model with cross-covariance normalization location weights is as follows : 
�̂�5t = 0.032 Z1(t-1) + 0.003 Z2(t-1) - 0.007 Z3(t-1) + 0.023 Z4(t-1) + 0.252 Z5(t-1) + 0.017 Z1(t-2) + 0.088 

Z2(t-2) + 0.089 Z3(t-2) + 0.018 Z4(t-2) + 0.071 Z5(t-2) + 0.072 Z1(t-3) - 0.07 Z2(t-3) + 0.034 Z3(t-3) 

+ 0.026 Z4(t-3) + 0.061 Z5(t-3) - 0.022 Z1(t-12) - 0.051 Z2(t-12) - 0.017 Z3(t-12) + 0.017 Z4(t-12) + 

0.042 Z5(t-12) + 0.033 Z1(t-36) + 0.047 Z2(t-36) - 0.093 Z3(t-36) + 0.026 Z4(t-36) + 0.204 Z5(t-36)  

 

The following is a plot to predict rainfall data in each location: 
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 Figure 1. Actual Rainfall and Prediction of GSTAR ((1), 1,2,3,12,36) -SUR with the 
weight of Cross-Correlation and Cross-Covariance 

 

Examination of the accuracy of the GSTAR ((1), 1,2,3,12,36) -SUR models was done by 
calculating the RMSE and R2 prediction values in the model with the weighing location of 
the normalized cross-correlation and cross-covariance. The lower the RMSE value and the 
higher the R2 prediction value, the better the accuracy of the GSTAR ((1), 1,2,3,12,36) -
SUR model in generating the forecast value. Following is the examination of the accuracy 
of the GSTAR ((1), 1,2,3,12,36) -SUR models presented in Table 6: 

 

Table 6. Accuracy Examination of GSTAR ((1), 1,2,3,12,36) -SUR 

Location 

Cross-Correlation Weight 
Model 

Cross-Correlation Weight 
Model 

RMSE 
Data 

Training 

RMSE 
Data 

Testing 

R2 

prediction 

RMSE 
Data 

Training 

RMSE 
Data 

Testing 

R2 

prediction 

Blimbing 

5.796 10.471 

0.579 

5.779 10.433 

0.558 
Singosari 0.609 0.599 

Karangploso 0.707 0.720 
Dau 0.565 0.595 

Wagir 0.328 0.336 
 

Based on the results of the accuracy of the GSTAR ((1), 1,2,3,12,36) -SUR models in 
Table 6, the GSTAR ((1), 1,2,3,12,36) -SUR models that use correlation weights cross has 
RMSE training data value of 5.796 and RMSE on testing data is 10.471. Whereas in the 
GSTAR ((1), 1,2,3,12,36) -SUR model which uses the cross-covariance weight, model, the 
RMSE value of training data is 5,779 and RMSE testing data is 10,433. If the RMSE values 
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in the two models are compared, the RMSE values of the two models are relatively the 
same. 

Besides being done by calculating the RMSE value, checking the accuracy of the model 
is also done by calculating the R2 prediction value at each location. As shown in Table 6, 
R2 prediction values on GSTAR ((1), 1,2,3,12,36) -SUR models that use cross-covariance 
weights, are higher than R2 prediction in models with cross-correlation weights, except in 
locations Blimbing and Singosari Districts. 

 

CONCLUSIONS 

The cross-covariance model produces a better level of accuracy in terms of lower 
RMSE values and higher R2 values, especially for Karangploso, Dau, and Wagir areas. 
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