The Rainbow Vertex-Connection Number of Star Fan Graphs

Ariestha Widyastuty Bustan ${ }^{1}$, A.N.M. Salman ${ }^{2}$
${ }^{1}$ Mathematics Department, Faculty of Mathematics and Natural Sciences, Universitas Pasifik Morotai
${ }^{2}$ Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung

Email: ariesthawidyastutybustan@gmail.com , msalman@math.itb.ac.id

Abstract

A vertex-colored graph $G=(V(G), E(G))$ is said to be rainbow vertex-connected, if for every two vertices u and v in $V(G)$, there exists a $u-v$ path with all internal vertices have distinct colors. The rainbow vertexconnection number of G, denoted by $r v c(G)$, is the smallest number of colors needed to make G rainbow vertex-connected. In this paper, we determine the rainbow vertex-connection number of star fan graphs.

Keywords: Rainbow Vertex-Coloring; Rainbow Vertex-Connection Number; Star Fan Graph; Fan

INTRODUCTION

All graph considered in this paper are finite, simple, and undirected. We follow the notation and terminology of Diestel [1]. A vertex-colored graph $G=(V(G), E(G))$ is said to be rainbow vertex-connected, if for every two vertices u and v in $V(G)$, there exists a $u-v$ path with all internal vertices have distinct colors. The rainbow vertex-connection number of G, denoted by $\operatorname{rvc}(G)$, is the smallest number of colors needed to make G rainbow vertex-connected. It was introduced by Krivelevich and Yuster [2].

Let G be a connected graph, n be the size of G, and diameter of G denoted by $\operatorname{diam}(G)$, then they stated that

$$
\begin{equation*}
\operatorname{diam}(G)-1 \leq \operatorname{rvc}(G) \leq n-2 \tag{1}
\end{equation*}
$$

Besides that, if G has c cut vertices, then

$$
\begin{equation*}
\operatorname{rvc}(G) \geq c \tag{2}
\end{equation*}
$$

In fact, by coloring the cut vertices with distinct colors, we obtain $\operatorname{rvc}(G) \geq c$. It is defined that $\operatorname{rvc}(G)=0$ if G is a complete graph

There are many interesting results about rainbow vertex-connection numbers. Some of them were stated by Li and Liu[3] and Simamora and Salman[4] and Bustan [5]. Li and Liu determined the rainbow vertex-connection number of a cycle C_{n} of order $n \geq$ 3. Based on it, they proved that for a connected graph G with a block decomposition $B_{1}, B_{2}, \ldots, B_{k}$ and c cut vertices, $r v c\left(B_{1}\right)+r v c\left(B_{2}\right)+\cdots+r v c\left(B_{k}\right)+t$. In 2015 Simamora and Salman determined the rainbow vertex-connection number of pencil graph. In 2016 Bustan determined the rainbow vertex-connection number of star cycle graph.

In this paper, we introduce a new class of graph that we called star fan graphs and we determine the rainbow vertex-connection number of them. Star fan graphs are divided into two classes based on the selection of a vertex of the fan graph ie a vertex with n degree and vertex with 3 degree.

Figure 1. $S\left(6, F_{6}, v_{i, 1}\right)$

Figure 2. $S\left(6, F_{6}, v_{i, 7}\right)$

RESULTS AND DISCUSSION

Definition 1. Let m and n be two integers at least $3, S_{m}$ be a star with $m+1$ vertices. F_{n} be a fan with $n+1$ vertices, $v \in V\left(F_{n}\right)$ and v is a vertex with n degree. A star fan graph is a graph obtained by embedding a copy of F_{n} to each pendant of S_{m}, denoted by $S\left(m, F_{n}, v_{i, 1}\right) i \in[1, m]$, such that the vertex set and the edge set, respectively, as follows.

$$
\begin{aligned}
& V\left(S\left(m, F_{n}, v_{i, 1}\right)\right)=\left\{v_{i, j} \mid i \in[1, m], j \in[1, m+1]\right\} \cup\left\{v_{m+1}\right\}, \\
& E\left(S\left(m, F_{n}, v_{i, 1}\right)\right)=\left\{v_{m+1} v_{i, 1} \mid i\right. \\
& \quad \in[1, m]\} \cup\left\{v_{i, 1} v_{i, j} \mid i \in[1, m], j \in[2, m+1]\right\} \cup\left\{v_{i, j} v_{i, j+1} \mid i \in[1, m], j\right. \\
& \in[2, m]\}
\end{aligned}
$$

Theorem 1. Let m and n be two integers at least 3 and $S\left(m, F_{n}, v_{i, 1}\right)$ be a star fan graph, then

$$
\operatorname{rvc}\left(S\left(m, F_{n}, v_{i, 1}\right)\right)=m+1
$$

Proof.
Based on equation (2), we have

$$
\begin{equation*}
\operatorname{rvc}\left(S\left(m, F_{n}, v_{i, 1}\right)\right) \geq c=m+1 \tag{3}
\end{equation*}
$$

In order to proof $\operatorname{rvc}\left(S\left(m, F_{n}, v_{i, 1}\right)\right) \leq m+1$, define a vertex-coloring $\alpha: V\left(S\left(m, F_{n}, v_{i 1}\right)\right) \rightarrow[1, m+1]$ as follows.

$$
\alpha\left(v_{i, j}\right)=\left\{\begin{array}{c}
\boldsymbol{i}, \text { for } j=1 \\
\boldsymbol{m}+\mathbf{1}, \text { others }
\end{array}\right.
$$

We are able to find a rainbow path for every pair vertices u and v in $V\left(S\left(m, F_{n}, v_{i, 1}\right)\right)$ as shown in table 1

Tabel 1. The rainbow vertex $u-v$ path for graph $S\left(m, F_{n}, v_{i, 1}\right)$

\boldsymbol{u}	\boldsymbol{v}	Condition	Rainbow-vertex path						
is adjacent to v $\boldsymbol{v}_{\boldsymbol{i}, \boldsymbol{j}}$ $\boldsymbol{v}_{\boldsymbol{k}, \boldsymbol{l}}$							$\boldsymbol{i}, \boldsymbol{k} \in[\mathbf{1}, \boldsymbol{m}]$ $\boldsymbol{j}, \boldsymbol{l} \in[\mathbf{1}, \boldsymbol{m}+\mathbf{1}]$	Trivial	

So we conclude that

$$
\begin{equation*}
\operatorname{rvc}\left(S\left(m, F_{n}, v_{i, 1}\right)\right) \leq m+1 \tag{4}
\end{equation*}
$$

From equation (3) and (4), we have $\operatorname{rvc}\left(S\left(m, F_{n}, v_{i, 1}\right)\right)=m+1$
Definition 2. Let m and n be two integers at least $3, S_{m}$ be a star with $m+1$ vertices. F_{n} be a fan with $n+1$ vertices, $v \in V\left(F_{n}\right)$ and v is a vertex with 3 degree. A star fan graph is a graph obtained by embedding a copy of F_{n} to each pendant of S_{m}, denoted by $S\left(m, F_{n}, v_{i, j}\right) i \in[1, m], j \in[2, m]$ such that the vertex set and the edge set, respectively, as follows.

$$
\begin{aligned}
& V\left(S\left(m, F_{n}, v_{i, j}\right)\right)=\left\{v_{i, j} \mid i \in[1, m], j \in[, m+1]\right\} \cup\left\{v_{m+1}\right\}, \\
& E\left(S\left(m, F_{n}, v_{i, j}\right)\right)=\left\{v_{m+1} v_{i, j} \mid i \in[1, m], j\right. \\
& \qquad \in[2, m+1]\} \cup\left\{v_{i, 1} v_{i, j} \mid i \in[1, m], j \in[2, m+1]\right\} \cup\left\{v_{i, j} v_{i, j+1} \mid i \in[1, m], j\right. \\
& \quad \in[2, m]\}
\end{aligned}
$$

Theorem 2. Let m and n be two integers at least 3 and $S\left(m, F_{n}, v_{i, j}\right)$ be a star fan graph, then

$$
\operatorname{rvc}\left(S\left(m, F_{n}, v_{i, j}\right)\right)=m+2
$$

Proof.

- Case 1. $m=3$

Based on equation (1), we have $\operatorname{rvc}\left(S\left(3, F_{3}, v_{i, 4}\right)\right) \geq \operatorname{diam}-1=6-1=5$. We may define a rainbow vertex 5-coloring on $S\left(m, F, v_{i, 7}\right)$ as shown in Figure 2.

Figure 3. $S\left(3, F_{3}, v_{i, 4}\right)$

- Case 2. $m \geq 4$

Based on equation (2), we have $\operatorname{rvc}\left(S\left(m, F_{n}, v_{i, j}\right)\right) \geq m+1$. Suppose that There is a rainbow vertex $m+1$-coloring on $S\left(m, F_{n}, v_{i, j}\right)$. Without loss of generality, color the vertices as follows:
$\beta^{\prime}\left(v_{m+1}\right)=m+1$
$\beta^{\prime}\left(v_{i, m+1}\right)=i, i \in[1, m]$
Look at the vertex $v_{1,2}$ and $v_{2,2}$ who can not use the same color. To obtain rainbow vertex path between them, should be passed the path of $v_{1,2}, v_{1,1}, v_{1, m+1}, v_{m+1}, v_{2, m+1}, v_{2,1}, v_{2,2}$. Certainly $v_{1,1}$ should be colored by the color which used at the cut vertices, beside color $1, m+1$ and 2 . Suppose that $v_{1,1}$ being color with k. It's impacted there is no rainbow vertex path between vertex $v_{k, 2}$ and $v_{i, 2}$ for $i \neq k$. So that, graph $S\left(m, F_{n}, v_{i, j}\right)$ cannot be colored with $m+1$ colors, so we obtain

$$
\begin{equation*}
\operatorname{rvc}\left(S\left(m, F_{n}, v_{i, j}\right)\right) \geq m+2 \tag{5}
\end{equation*}
$$

In order to proof $\operatorname{rvc}\left(S\left(m, F_{n}, v_{i, j}\right)\right) \leq m+2$, define a vertex-coloring $\beta: V\left(S\left(m, F_{n}, v_{i, j}\right)\right) \rightarrow[1, m+2]$ as follows.
$\beta\left(v_{m+1}\right)=m+2$
$\beta\left(v_{i, j}\right)=(i+j) \bmod (m+1), i \in[1, m], j \in[1, m+1]$
We are able to find a rainbow path for every pair vertices u and v in $V\left(S\left(m, F_{n}, v_{i, j}\right)\right)$ as shown in table 2.

Tabel 2. The rainbow vertex $u-v$ path for graph $S\left(m, F_{n}, v_{i, j}\right)$

\boldsymbol{u}	v	Condition	Rainbow-vertex path
u is adjacent to v			Trivial
$v_{i, j}$	$v_{k, l}$	$\begin{gathered} i, k \in[1, m] \\ j, l \in[1, m+1] \\ k \neq i+l, k \neq i-l, k \\ \in[2, m-1] \end{gathered}$	$u, v_{i, j+1}, v_{i, j+2}, \ldots, v_{i, m+1}, v_{m+1}, v_{k, m+1}, v_{k}$
		If $\boldsymbol{i}=\mathbf{1}, \boldsymbol{k} \neq \boldsymbol{m}$ others	$u, v_{i, 1}, v_{i, m+1}, v_{m+1} v_{k, m+1}, v_{k, 1}, v$

So we conclude that

$$
\begin{equation*}
\operatorname{rvc}\left(S\left(m, F_{n}, v_{i, j}\right)\right) \leq m+2 \tag{6}
\end{equation*}
$$

From equation (5) and (6), we have $\operatorname{rvc}\left(S\left(m, F_{n}, v_{i, j}\right)\right)=m+2$

Figure 4. $S\left(6, F_{6}, v_{i, 7}\right)$

REFERENCES

[1] R. Diestel, Graph Theory 4 ${ }^{\text {th }}$ Edition, Springer, 2010.
[2] M. Krivelevich and R. Yuster, "The rainbow connection of a graph is (at reciprocal to its minimum degree," Journal of Graph Theory, Vol. 63, no. 2, pp 185-191, 2010.
[3] X. Li and S. Liu, "Rainbow vertex-connection number of 2-connected graphs," ArXiv preprint arXiv: 1110.5770, 2011.
[4] D. N. Simamora and A. N. M. Salman, "The rainbow (vertex) connection number of pencil graphs," Procedia Computer Science, vol. 74, pp 138-142, 2015.
[5] A. W. Bustan, " Bilangan terhubung titik pelangi untuk graf lingkaran bintang (SmCn)," Barekeng: Jurnal Ilmu Matematika dan Terapan, vol. 10, no. 2, pp. 77-81, 2016.

