

The Rainbow Vertex-Connection Number of Star Fan Graphs

Ariestha Widyastuty Bustan¹, A.N.M. Salman²

¹Mathematics Department, Faculty of Mathematics and Natural Sciences, Universitas Pasifik Morotai ²Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung

Email: ariesthawidyastutybustan@gmail.com , msalman@math.itb.ac.id

ABSTRACT

A vertex-colored graph G = (V(G), E(G)) is said to be rainbow vertex-connected, if for every two vertices u and v in V(G), there exists a u - v path with all internal vertices have distinct colors. The rainbow vertex-connection number of G, denoted by rvc(G), is the smallest number of colors needed to make G rainbow vertex-connected. In this paper, we determine the rainbow vertex-connection number of star fan graphs.

Keywords: Rainbow Vertex-Coloring; Rainbow Vertex-Connection Number; Star Fan Graph; Fan

INTRODUCTION

All graph considered in this paper are finite, simple, and undirected. We follow the notation and terminology of Diestel [1]. A vertex-colored graph G = (V(G), E(G)) is said to be rainbow vertex-connected, if for every two vertices u and v in V(G), there exists a u - v path with all internal vertices have distinct colors. The rainbow vertex-connection number of G, denoted by rvc(G), is the smallest number of colors needed to make G rainbow vertex-connected. It was introduced by Krivelevich and Yuster [2].

Let G be a connected graph, n be the size of G, and diameter of G denoted by diam(G), then they stated that

$$liam(G) - 1 \le rvc(G) \le n - 2 \tag{1}$$

Besides that, if *G* has *c* cut vertices, then

$$rvc(G) \ge c$$

In fact, by coloring the cut vertices with distinct colors, we obtain $rvc(G) \ge c$. It is defined that rvc(G) = 0 if *G* is a complete graph

There are many interesting results about rainbow vertex-connection numbers. Some of them were stated by Li and Liu[3] and Simamora and Salman[4] and Bustan [5]. Li and Liu determined the rainbow vertex-connection number of a cycle C_n of order $n \ge 3$. Based on it, they proved that for a connected graph G with a block decomposition B_1, B_2, \ldots, B_k and c cut vertices, $rvc(B_1) + rvc(B_2) + \cdots + rvc(B_k) + t$. In 2015 Simamora and Salman determined the rainbow vertex-connection number of pencil graph. In 2016 Bustan determined the rainbow vertex-connection number of star cycle graph.

In this paper, we introduce a new class of graph that we called star fan graphs and we determine the rainbow vertex-connection number of them. Star fan graphs are divided into two classes based on the selection of a vertex of the fan graph ie a vertex with *n* degree and vertex with 3 degree.

Figure 1. $S(6, F_6, v_{i,1})$

Figure 2. $S(6, F_6, v_{i,7})$

RESULTS AND DISCUSSION

Definition 1. Let m and n be two integers at least 3, S_m be a star with m + 1 vertices. F_n be a fan with n + 1 vertices, $v \in V(F_n)$ and v is a vertex with n degree. A star fan graph is a graph obtained by embedding a copy of F_n to each pendant of S_m , denoted by $S(m, F_n, v_{i,1})$ $i \in [1, m]$, such that the vertex set and the edge set, respectively, as follows.

$$V\left(S(m, F_n, v_{i,1})\right) = \{v_{i,j} | i \in [1, m], j \in [1, m + 1]\} \cup \{v_{m+1}\},\$$

$$E\left(S(m, F_n, v_{i,1})\right) = \{v_{m+1}v_{i,1} | i$$

$$\in [1, m]\} \cup \{v_{i,1}v_{i,j} | i \in [1, m], j \in [2, m + 1]\} \cup \{v_{i,j}v_{i,j+1} | i \in [1, m], j$$

$$\in [2, m]\}$$

Theorem 1. Let *m* and *n* be two integers at least 3 and $S(m, F_n, v_{i,1})$ be a star fan graph, then

$$rvc\left(S(m, F_n, v_{i,1})\right) = m + 1$$

Proof.

Based on equation (2), we have

$$rvc\left(S(m, F_n, v_{i,1})\right) \ge c = m+1$$
(3)

In order to proof $rvc(S(m, F_n, v_{i,1})) \le m + 1$, define a vertex-coloring $\alpha: V(S(m, F_n, v_{i_1})) \to [1, m + 1]$ as follows.

$$\alpha(v_{i,j}) = \begin{cases} \mathbf{i}, & \text{for } j = 1\\ \mathbf{m} + \mathbf{1}, & \text{others} \end{cases}$$

We are able to find a rainbow path for every pair vertices u and v in $V(S(m, F_n, v_{i,1}))$ as shown in table 1

Tabel 1. The rainbow vertex u –	v path for graph S	$(m, F_n, v_{i,1})$	

u	v	Condition	Rainbow-v	vertex path
<i>u</i> is adjace	ent to v		Trivial	
$v_{i,j}$	$v_{k,l}$	$i, k \in [1, m]$ $j, l \in [1, m + 1]$		$v_{i,j}, v_{i,1}, v_{m+1}, v_{k,1}, v_{k,l}$

So we conclude that

$$rvc\left(S(m, F_n, v_{i,1})\right) \le m + 1 \tag{4}$$

From equation (3) and (4), we have $rvc(S(m, F_n, v_{i,1})) = m + 1$

Definition 2. Let m and n be two integers at least 3, S_m be a star with m + 1 vertices. F_n be a fan with n + 1 vertices, $v \in V(F_n)$ and v is a vertex with 3 degree. A star fan graph is a graph obtained by embedding a copy of F_n to each pendant of S_m , denoted by $S(m, F_n, v_{i,j})$ $i \in [1, m], j \in [2, m]$ such that the vertex set and the edge set, respectively, as follows.

$$V\left(S(m, F_n, v_{i,j})\right) = \{v_{i,j} | i \in [1, m], j \in [, m + 1]\} \cup \{v_{m+1}\},\$$

$$E\left(S(m, F_n, v_{i,j})\right) = \{v_{m+1}v_{i,j} | i \in [1, m], j$$

$$\in [2, m + 1]\} \cup \{v_{i,1}v_{i,j} | i \in [1, m], j \in [2, m + 1]\} \cup \{v_{i,j}v_{i,j+1} | i \in [1, m], j$$

$$\in [2, m]\}$$

Theorem 2. Let *m* and *n* be two integers at least 3 and $S(m, F_n, v_{i,j})$ be a star fan graph, then

$$rvc\left(S(m, F_n, v_{i,j})\right) = m + 2$$

Proof.

• *Case 1.* m = 3

Based on equation (1), we have $rvc(S(3, F_3, v_{i,4})) \ge diam - 1 = 6 - 1 = 5$. We may define a rainbow vertex 5-coloring on $S(m, F, v_{i,7})$ as shown in Figure 2.

• Case 2. $m \ge 4$

Based on equation (2), we have $rvc(S(m, F_n, v_{i,j})) \ge m + 1$. Suppose that There is a rainbow vertex m + 1-coloring on $S(m, F_n, v_{i,j})$. Without loss of generality, color the vertices as follows:

 $\beta'(v_{m+1}) = m + 1$ $\beta'(v_{i,m+1}) = i, i \in [1, m]$

Look at the vertex $v_{1,2}$ and $v_{2,2}$ who can not use the same color. To obtain rainbow vertex path between them, should be passed the path of $v_{1,2}$, $v_{1,1}$, $v_{1,m+1}$, v_{m+1} , $v_{2,m+1}$, $v_{2,1}$, $v_{2,2}$. Certainly $v_{1,1}$ should be colored by the color which used at the cut vertices, beside color 1, m + 1 and 2. Suppose that $v_{1,1}$ being color with k. It's impacted there is no rainbow vertex path between vertex $v_{k,2}$ and $v_{i,2}$ for $i \neq k$. So that, graph $S(m, F_n, v_{i,j})$ cannot be colored with m + 1 colors, so we obtain

$$rvc\left(S(m, F_n, v_{i,j})\right) \ge m + 2$$
(5)
In order to proof $rvc\left(S(m, F_n, v_{i,j})\right) \le m + 2$, define a vertex-coloring
 $\beta: V\left(S(m, F_n, v_{i,j})\right) \to [1, m + 2]$ as follows.
 $\beta(v_{m+1}) = m + 2$
 $\beta(v_{i,j}) = (i + j)mod(m + 1), i \in [1, m], j \in [1, m + 1]$
We are able to find a rainbow path for every pair vertices u and v in $V\left(S(m, F_n, v_{i,j})\right)$ as

We are able to find a rainbow path for every pair vertices u and v in V (S(n) shown in table 2.

Table 2. The randow vertex $u = v$ path for graph $S(m, r_n, v_{i,j})$				
u	v	Condition Rainbow-vertex path		
<i>u</i> is a	djacen	t to v	Trivial	
v _{i,j}	$v_{k,l}$	$i, k \in [1, m]$ $j, l \in [1, m + 1]$ $k \neq i + l, k \neq i - l, k$ $\in [2, m - 1]$	$u, v_{i,j+1,}, v_{i,j+2}, \dots, v_{i,m+1}, v_{m+1,}, v_{k,m+1}, v_{k,m+1}$	
		If $i = 1, k \neq m$ others	$u, v_{i,1}$, $v_{i,m+1}, v_{m+1,}v_{k,m+1}, v_{k,1}, v$	

Tabel 2. The rainbow vertex $u - $	v path for grap	h S(m. F., v	, ;)
	v putilition grup		<i>n</i> , <i>n</i> , <i>v</i>	1,11

So we conclude that

(6)

Figure 4. $S(6, F_6, v_{i,7})$

REFERENCES

- [1] R. Diestel, Graph Theory 4th Edition, Springer, 2010.
- [2] M. Krivelevich and R. Yuster, "The rainbow connection of a graph is (at reciprocal to its minimum degree," *Journal of Graph Theory*, Vol. 63, no. 2, pp 185-191, 2010.
- [3] X. Li and S. Liu, "Rainbow vertex-connection number of 2-connected graphs," *ArXiv* preprint arXiv: 1110.5770, 2011.
- [4] D. N. Simamora and A. N. M. Salman, "The rainbow (vertex) connection number of pencil graphs," *Procedia Computer Science*, vol. 74, pp 138-142, 2015.
- [5] A. W. Bustan, "Bilangan terhubung titik pelangi untuk graf lingkaran bintang (*SmCn*)," *Barekeng: Jurnal Ilmu Matematika dan Terapan*, vol. 10, no. 2, pp. 77-81, 2016.