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ABSTRACT 

Leadership is a process of influencing, directing or giving an example of employees in order to achieve the 
objectives of the organization and is a key element in the effectiveness of the organization. In addition to the 
style of leadership, the success of an organization or company in achieving its objectives can also be 
influenced by the commitment of the organization. Where organizational commitment is a commitment 
created by each individual for the betterment of the organization. The purpose of this research is to obtain 
a model of leadership style and organizational commitment to job satisfaction and employee performance, 
and determine the factors that influence job satisfaction and employee performance using SEM with 
Bayesian approach. This research was conducted at Statistics FNI employees in Malang, with 15 people. The 
result of this study showed that the measurement model, all significant indicators measure each latent 
variable. Meanwhile in the structural model, it was concluded there are a significant difference between the 
variables of Leadership Style and Organizational Commitment toward Job Satisfaction directly as well as a 
significant difference between Job Satisfaction on Employee Performance. As for the influence of Leadership 
Style and variable Organizational Commitment on Employee Performance directly declared insignificant.  
  

Keywords: SEM, Bayesian, Leadership Style, Organizational Commitment, Job Satisfaction, Employee 
Performance. 

INTRODUCTION   

Leadership is a process of influencing, directing and giving examples of his subordinates 
in order to achieve organizational goals. Every leader must have style, personality traits, habits, 
character and personality are different. Leadership is a key element in an organization's 
effectiveness [1]. Based on this, it can be said that the role of a leader is very important for 
achieving the vision, mission and goals of an organization. Moreover, the success of an 
organization or company in achieving its objectives can be influenced also by the commitment of 
the organization. Where organizational commitment is a commitment made by each individual to 
the organization's progress. The commitment is visible when individuals can exercise their rights 
and obligations in accordance with the duties and functions of each organization. Therefore, an 
organization must give your full attention and make employees believe the organization, so it will 
obtain high organizational commitment.  

Many ways to measure the impact of leadership style and organizational commitment to 
employee performance, one of which is the structural equation modeling is a multivariate analysis 
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technique that combines the measurement model as in the confirmatory factor analysis with 
structural model on regression analysis or analysis of lines. One of the assumptions that must be 
met in the SEM is the sample size should be large enough. Other assumptions that must be met is 
an indicator to follow a multivariate normal distribution and the indicator variables with latent 
variables and between latent variables have a linear relationship. The use of small sample size in 
a SEM with a classical approach can generate sample covariance matrix is singular. 

If the requirements analysis Structural Equation Modeling (SEM) is not fulfilled such a 
small sample size, it would require alternative methods to resolve the issue is through a Bayesian 
approach. Some of the advantages include: (1) Bayesian methods more emphasis on the use of 
individual data rather than sample covariance matrix, (2) latent variable can be predicted directly 
(3) using prior information. Other virtues are not taking into account the size of the sample that 
will affect the operating costs of research. 

This study was conducted to determine the effect of leadership style and organizational 
commitment to job satisfaction and employee performance in the FNI Statistics using Structural 
Equation Modeling (SEM) through a Bayesian approach. 

 

THEORITICAL REVIEW 

Basic Concepts SEM analysis with Bayesian Approach 

Analysis of the relationship between latent variables need to be developed so that the 
resulting model to be more precise, especially for complex problems. One method of analysis that 
is often used to test whether there is influence between the latent variable is the analysis of 
Structural Equation Modeling (SEM). One of the assumptions that must be fulfilled in such method 
is the sample size should be large enough. According to [2] suggested sample size to use Maximum 
Likelihood Estimation (MLE) is approximately 100-200 or be greater when using asymptotically 
approaches Distribution Free (ADF) to handle the data distribution is not normal.  

The classical method in the analysis of SEM depends on the matrix variance covariance 
sample S and not on the response variable vector. The structure of matrix Σ(θ) is the variance 
covariance matrix containing the parameter θ with large dimensions. Estimation of θ  by 
minimizing some objective function to calculate Σ(θ)  Estimation methods commonly used in 
standard SEM is the maximum likelihood estimation (MLE) or generalized least squares (GLS). 
Analysis of variance covariance based heavily dependent on the asymptotic normality of the 
matrix S. Using a small sample in SEM with a classical approach can produce a negative variance 
[3] as well as the sample covariance matrix is singular [4]. In addition, the use of MLE when the 
small sample size could lead to biased results of estimation parameters [3]. Based on this, we need 
an alternative method to solve the problem of small sample size, namely through a Bayesian 
approach. Development of Bayesian SEM is intended to allow estimation of the model can be done 
even if some assumptions are not met. 

SEM testing method with the Bayesian approach is not based on the variance covariance 
matrix but based on the number of individual data (observations). In SEM with maximum 
likelihood approach, θ is not considered as a random variable where θ is Φ, Ψ, Λ, Γ, Β. While the 
Bayesian approach SEM, θ is considered as a random variable that has a distribution. 
Furthermore, the distribution referred to as the prior distribution. If M is a SEM equation with 
vector parameter θ is unknown, the density function chances of θ is 𝑝(θ|𝑀). If the Bayesian 
inference is based on data observations Y then the joint distribution of Y and θ on M is 𝑝(Y, θ|𝑀). 
With 

𝑝(Y, θ|𝑀) = 𝑝(𝑌|𝜃, 𝑀)𝑝(θ)  = 𝑝(θ|Y, 𝑀)𝑝(Y|𝑀) (2.1) 
and that 𝑝(Y|𝑀) does not depend on θ and with regard Y has been determined and constant, then: 

𝐿𝑜𝑔𝑝(θ|Y, 𝑀) ∝ log 𝑝(Y|θ, 𝑀) + log 𝑝(θ) (2.2) 
where, 
M  : any form of SEM with a vector parameter θ is unknown  
Y : Data observations of size n 
𝑝(θ|𝑀) : prior distribution of  θ in M model 
𝑝(Y, θ|𝑀) : probability join distribution from Y and θ with M model is known,  
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𝑝(θ|Y, 𝑀) : probability distribution from posterior 
𝑝(Y|θ, 𝑀) : likelihood function 

In equation (2.2) 𝑝(Y|θ, 𝑀) is influenced by the number of instances while p (θ) is not. For 
a large number of examples of the log 𝑝(Y|θ, 𝑀) will dominate log 𝑝(θ), so it has little prior and 
posterior density function will be approaching the log-likelihood function of 𝑝(Y|θ, 𝑀). On the 
contrary, for a small sample, prior distribution of θ has a significant role. 

 

Prior Distribution 

Prior was the initial information parameter values in the model. Basically there are two 
types of prior distribution is non-informative prior distribution and the distribution of 
informative priors. 

For example, 𝑌 = (𝑦1, … . . , 𝑦𝑛) is the matrix of the data observation and Ω = (𝜔1, … . , 𝜔𝑛) 
is the matrix of factor score of latent variable and θ is the structure of vector parameter which 
cover unknown element of Λ, Ψ𝜀 , Π, Γ, Φ, Ψ𝛿 . In posterior analysis, data observations Y was added 
with matrix of latent variable Ω and the joint posterior distribution [𝜃, Ω|Y]. To derive the formula 
p[θ|Ω, Y], is required prior to the distribution of the components θ and Lee (2007) using a type of 
conjugate prior distribution. Λ𝑘

𝑇  is row of-k Λ so that conjugate prior distribution from (Λk, ψek)  
are as follows:  

𝜓𝑒𝑘

𝐷
⇒ 𝐼𝑛𝑣𝑒𝑟𝑡𝑒𝑑𝐺𝑎𝑚𝑚𝑎 (𝛼∗

0𝑒𝑘 , 𝛽∗
0𝑒𝑘

) 

or equivalent with 

𝜓𝑒𝑘
−1 𝐷

⇒ 𝐺𝑎𝑚𝑚𝑎 (𝛼∗
0𝑒𝑘 , 𝛽∗

0𝑒𝑘
) 

and 

[Λ𝑘|𝜓𝑒𝑘]
𝐷
⇒ 𝑁[Λ0𝑘 , 𝜓𝑒𝑘Hoyk] (2.3) 

 
Where 𝛼0𝑒𝑘, 𝛽0𝑒𝑘 , 𝛼∗

0𝑒𝑘
, 𝛽∗

0𝑒𝑘
 and the element of Λ0𝑘  and Hoyk is the hyperparameters 

and Hoyk is the matrix definite positive. Conjugate prior distribution from Φ−1 is follow Wishart 

distribution with q dimension and be define Φ−1 ~𝑊𝑞[𝑅0, 𝜌0] or equivalent with Φ ~𝐼𝑊𝑞[𝑅∗
0, 𝜌0]                                                  

(2.4) 
Where 𝑊𝑞[𝑅0, 𝜌0] is Wishart distribution q dimension with 𝜌0 and matrix definite positive 

𝑅0 as hyperparameters while 𝐼𝑊𝑞[𝑅∗
0, 𝜌0] is inverse from Wishart distribution with 𝜌0 and matrix 

definite positive 𝑅0 as hyperparameters. 
 

MCMC Application with Gibbs Sampling 

In this research, MCMC application with Gibbs Sampling is done to get the estimation of 
the posterior distribution on each of the unknown parameters including latent variables. To get 
the required characteristics of the posterior distribution of observation sufficient. For that, raised 
a number of observations such that the resulting empirical distribution approaches the actual 
distribution.  

An example for a SEM model with Y = (y1 … . yn) is the matrix of data observation, Ω =
(ω1 … . ωn) is the matrix of latent variable, and θ is the vector matrix which consist of unknown 
parameter are Λ, Ψ, Φ. The stages of Gibbs Sampling in raising the posterior distribution is as 
follows: 

1. Take an initiation Ω(𝑗), Λ(j),  Ψε
(𝑗), Φ(𝑗) 

2. Generating value Ω(𝑗+1) dari 𝑝(Ω| Ψε
(𝑗), Λ(𝑗), Φ(j), Y) 

3. Generating value Ψε
(𝑗+1) dari 𝑝(Ψε| Ω(𝑗+1), Λ(𝑗), Φ(j), Y) 

4. Generating value Λ(𝑗+1) dari  𝑝(Λ| Ω(𝑗+1), Ψε
(𝑗+1), Φ(j), Y) 

5. Generating value  Φ(𝑗+1) dari  𝑝(Φ| Ω(𝑗+1), Ψε
(𝑗+1), Λ(𝑗+1), Y) 
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Posterior Distribution 

Concept of probability distribution with Gibbs Sampling in Bayesian SEM applying the 
parameters are θ = (θ1, … , θa) is (Λ, Φ, Ψε). As for the set of latent variables Ω where Ω =
(Ω1, … , Ω𝑏) a set of latent variables(Ω1, Ω2), with Ω1 is a set of endogenous latent variable and Ω2 
is a set of exogenous latent variable. As for the members of each set Ω1 and Ω2 can be written by 
ωi. Iterations are performed in the algorithm Gibbs Sampler used by probability distribution 
𝑝(Ω|Ψε, Λ, Φ, Y) with 𝑝(Ω|Ψε, Λ, Φ, Y) = 𝑝(Ω|θ, Y) and the equation is based on the definition of the 
conditional distribution of random vectors yi and ωi, provided that 𝑖 = 1, … , 𝑛 and ωi is free 
(mutually independent) and yi is free of (ωi, θ), will be obtained equation (Lee,2007): 

𝒑(Ω|θ, Y) = ∏ 𝑝(

n

i=1

ωi|yi, θ)  ∝ ∏ 𝑝(

n

i=1

ωi|θ)𝒑(yi|ωi, θ) (𝟐. 𝟓) 

Probability distribution ωi is known with θ and yi conditional (ωi, θ) follow normal 
distribution 𝑁(0, Φ) and 𝑁(Λωi, Ψ𝜀). Thus, distribution ωi conditional (yi, θ) is: 

(ωi| yi, θ)~N [(Φ−1 + ΛTΨε
−1Λ)

−1
 ΛTΨε

−1yi,  (𝛷−1 + 𝛬𝑇𝛹𝜀
−1𝛬)

−1
 ] (2.6) 

Thus, the conditional distribution Ω with (Y, θ) is known can be compute based on the 
equation (2.5) and (2.6). Posterior analysis of conditional distribution where θ with the provision 
of (Y, Ω) proportional to𝑝(θ) 𝑝(Y, Ω|θ). Model yi = Λωi + εi is known with Ω is the result of 
regression model of yi and Ω only depend of Λ and Ψε while Φ only involving ωi distribution. So it 
is known that the prior distribution (Λ, Ψε) and Φ is independent and can be written by: 

𝑝(θ) = 𝑝(Λ, Φ, Ψε) = 𝑝(Λ, Ψε) 𝑝(Φ) (2.7) 

Conditional distribution Y which is given Ω only depend on Λ and Ψε, while Ω distribution 
is depend on Φ. Based on these case, can be conclude that:  

𝑝(Λ, Ψε, Φ|Y, Ω) = 𝑝(θ|Y, Ω) ∝ 𝑝(Y, Ω |θ)𝑝(θ)

= 𝑝(Y|θ, Ω) 𝑝(Ω|θ) 𝑝(θ)

= 𝑝(Y|θ, Ω) 𝑝(Ω|θ) 𝑝(Λ, Ψε) 𝑝(Φ)

= [𝑝(Y|Λ, Ψε, Ω) 𝑝(Λ, Ψε)][𝑝(Ω|Φ) 𝑝(Φ)]  (2.8)

 

Prior join distribution is used in prior distribution of (Λ, Ψε) and Φ can be explain with the 

illustration if element 𝜓𝜀𝑘  is a diagonal element from Ψε and Λk
T  is the k-row from Λ. So it can be 

written: 
𝜓𝜀𝑘

−1 ~ 𝐺𝑎𝑚𝑚𝑎 (𝛼0𝑒𝑘, 𝛽0𝑒𝑘) (2.9) 

(Λ𝑘| 𝜓𝜀𝑘) ~ 𝑁(Λ0𝑒𝑘 , 𝜓𝜀𝑘 H𝑜𝑦𝑘) (2.10) 

Φ−1 ~ 𝑊𝑞 (R0, 𝜌0) (2.11) 

To get 𝑝(Φ|Y, Ω) based on the equation (2.8) with ωi is free, then obtained a conditional 
distribution 𝑝(Φ|Y, Ω) as follows: 

𝑝(Φ|Y, Ω) ∝ 𝑝 (Φ) ∏  𝑝(ωi|Φ)

n

i=1

(2.12) 

Based on prior distribution of Φ−1 in the equation (2.11) can be conclude that Φ is follow 

Invers Wishart distribution with q dimension: Φ~𝐼𝑊𝑞(R0
−1, 𝜌0). Based on ωi distribution with 

conditional Φ is 𝑁(0, Φ) then the resulting: 

𝑝( Φ|Y, Ω)  ∝   |Φ|
−(n+ρ0+q+1)

2⁄  exp (−
1

2
tr[Φ−1 (ΩΩT + R0

−1)]) 

so that, 
(Φ|Y, Ω) ~ IWq[(ΩΩT + R0

−1, n + ρ0)] (2.13) 

Likelihood function Is known from Y is (Lee, 2007): 
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𝑝(Y|Λ, Ψ𝛿 , Ω) ∝ |Ψ𝛿|
−𝑛

2⁄ exp [−
1

2
∑(𝑦𝑖 − Λωi)

𝑇Ψ𝛿
−1(𝑦𝑖 −

𝑛

𝑖=1

Λωi)] (2.14) 

 

 

Based on likelihood and join prior from Λωk and 𝑣𝛿𝑘 then posterior distribution of 
(Λωk, 𝑣δk) with given Y, Ω is (Lee, 2007): 

(𝑣δk|Y, Ω)  ~ 𝐺𝑎𝑚𝑚𝑎 (
𝑛

2
+ 𝛼0𝛿𝑘 , 𝛽𝛿𝑘) (2.15) 

(Λ𝜔𝑘| 𝑌, Ω, 𝑣δk) ~ 𝑁(a𝜔𝑘 , 𝜓𝛿𝑘
−1A𝜔𝑘) (2.16) 

 
 

Parameter Significance Test 

Significance testing parameters on Bayesian method is done by using credible interval 
which generated by the predictive posterior distribution of Bayesian MCMC approach (Ntzoufras 
2009). Credible interval is the interval region or area of the posterior distribution opportunities. 

The parameter value on Bayesian methods indicated by the mean value obtained from the 
average value of the resurrection of the posterior distribution. 95% credible interval indicated by 
the lower limit percentiles of 2.5% and the upper limit percentiles 97.5% of the value of the 
resurrection of the posterior distribution. Here is a hypothesis that is used to test the significance 
of the parameters in the Bayesian SEM methods: 
1. 𝐻0: 𝛾𝑖𝑗 = 0 ; there is no influence of exogenous variables on the endogenous variables 

𝐻1: 𝛾𝑖𝑗 ≠ 0 ; there is the influence of exogenous variables on the endogenous variables 

2. 𝐻0: 𝛽𝑖𝑗 = 0 ; there is no influence of endogenous variables on the endogenous variables 

𝐻1: 𝛽𝑖𝑗 ≠ 0 ; there is the influence of endogenous variables on the endogenous variables 

The acceptance or rejection of based on the presence or absence of zero value in a credible 
interval on each parameter. Parameter is said to be significant (reject 𝐻0)) if credible interval does 
not contain the zero value and means that there are significant predictor variables on the response 
variable. Conversely, a parameter is said to be not significant (accept 𝐻0)) if credible interval 
includes zero value means there is no influence on the response variable predictor variables. 
 

Research Method 

Data that used in this study are primary data obtained from interviews with employees 
FNI Statistics in Malang which totaled 15 people on Leadership Styles, Job Satisfaction and 
Organizational Commitment well as interviews with corporate leaders regarding employee 
performance. 

 Analysis of structural equation modeling (SEM) using a Bayesian approach with 
the following steps: 
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Determining Diagram Research 

JS

X1.4

λX1.4

X1.5

Y1.1

λX1.5

λy1.1

Y1.2

Y1.3

λy1.3

λy1.2

LS

EP

OC

X1.3

X1.1

X1.2

λx1.3

λx1.2

λx1.1
X2.2

X2.3

Y2.3 Y2.7Y2.4 Y2.5

X2.1

X2.4

λy2.4

λx2.4

λx2.3

λx2.2

λx2.1

λy2.3

γ11

γ21

β21

Y2.2

λy2.2

γ12

γ22

λy2.7

λy2.5

δ6

δ7

δ8

δ9

ζ2

ε8ε7ε6ε5
ε4

ζ1

δ1

δ2

δ3

δ4

δ5

ε1

ε2

ε3

 
a. Determine parameter model 

x  : vector indicator for exogenous latent variable  
y  : vector indicator for endogenous latent variable 
Ω  : matrix of exogenous and endogenous latent variable 

 
Furthermore, there will be estimating the parameters in the model are unknown, namely 

θ consisting of: 
Φ : covariance matrix of 𝜉(exogenous latent variable 𝜉1: Leadership Style, 𝜉2: Organizational 

Commitment) 
Ψ  : covariance matrix of 𝜁(measurement error of endogenous latent variable Job Satisfaction 

(𝜁1) and Employee Performance (𝜁2)) 
Λ  : matrix of factor loading from exogenous and endogenous indicator 
Γ  : matrix coefficient  of relationship between exogenous to endogenous latent variables  
Β  : matrix coefficient  of relationship between endogenous to endogenous latent variables 

b. Prior Choice 
Prior used in this study refers to Lee (2007) is a conjugate prior distribution  

c. Calculations posterior Bayesian SEM  
d. MCMC Application with Gibbs Sampling to get the estimation of the posterior distribution. 
e. Parameter Significance Test 

Significance testing parameters on Bayesian method is done by using credible interval. 
f. Parameter Accuracy Test 

The accuracy test of the parameters is done by seeing MC error value where the smaller 
MC error or getting close to zero mean that parameter estimation value is better. 
 

RESULTS AND DISCUSSION 

Prior Distribution 

Hyperparameters value on each prior determined using a type of conjugate prior 
distribution, and pseudo informative priors. Determination of the proper prior analysis will 
produce a more accurate and precise prediction. Hiperparameter any prior structure is presented 
in Table 4.1: 

Table 4.1. Hyperparameters and Distribution Prior Used 

No  Parameters Distribution  

1 Θ𝛿 ~ Invers Gamma (9,8) 
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No  Parameters Distribution  

2 Θ𝜀 ~ Invers Gamma (9,8) 

3 Θ𝜂 ~ Invers Gamma (9,8) 

5 [Λ𝑥|𝜃𝛿] ~ Normal (0.393, 𝜃𝛿) 

6 [Λ𝑦|𝜃𝜀] ~ Normal (0.393, 𝜃𝜀) 

7 [𝛾1.1| 𝜓] ~ Normal (0.326, 4𝜓) 

8 [𝛾1.2| 𝜓]  ~ Normal (0.380, 4𝜓) 

9 [𝛾2.1| 𝜓]  ~ Normal (0.138, 4𝜓) 

10 [𝛾2.2| 𝜓]  ~ Normal (0.348, 4𝜓) 

11 [𝛽2.1| 𝜓]  ~ Normal (0.679, 10𝜓) 

12 𝜓 ~ Invers Gamma (9,8) 

 

Significance Testing Parameters and Building Model 

In Structural Equation Modeling (SEM), significance testing carried out on the model 
parameter measurement model and structural model. In the measurement model, significance 
testing was conducted to determine whether each of the significant indicators measure the latent 
variable or not. While the structural model, the parameter significance testing was conducted to 
determine whether there is influence between exogenous variables on endogenous variables or 
between variables endogen itself. 

Parameter estimation using SEM method with the Bayesian approach is done with the help 
of WinBugs14 program. Summary predictive value of each parameter models and their 
significance testing parameters are presented in Table 4.2 and is graphically shown in Figure 4.1. 

 
Table 4.2. Summary of Parameter Estimation Values and Significance 

Parameter Mean SD Percentile 2.5% Percentile 97.5% Summary 

𝜆𝑥1.1 1.000 - - - Significant  

𝜆𝑥1.2 0.623 0.146 0.346 0.923 Significant  

𝜆𝑥1.3 0.890 0.194 0.538 1.308 Significant  

𝜆𝑥1.4 0.688 0.152 0.408 0.999 Significant  

𝜆𝑥1.5 0.721 0.158 0.426 1.047 Significant  

𝜆𝑥2.1 1.000 - - - Significant  

𝜆𝑥2.2 0.734 0.163 0.431 1.074 Significant  

𝜆𝑥2.3 0.803 0.176 0.475 1.173 Significant  

𝜆𝑥2.4 0.723 0.163 0.418 1.060 Significant  

𝜆𝑦1.1 1.000 - - - Significant  

𝜆𝑦1.2 0.632 0.158 0.344 0.964 Significant  

𝜆𝑦1.3 0.826 0.188 0.487 1.214 Significant  

𝜆𝑦2.2 1.000 - - - Significant  

𝜆𝑦2.3 0.743 0.163 0.4505 1.094 Significant  

𝜆𝑦2.4 0.633 0.146 0.3657 0.9428 Significant  

𝜆𝑦2.5 0.739 0.156 0.4559 1.069 Significant  
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Parameter Mean SD Percentile 2.5% Percentile 97.5% Summary 

𝜆𝑦2.7 0.634 0.144 0.3727 0.9391 Significant  

𝛾1.1 0.440 0.216 0.02218 0.8674 Significant  

𝛾1.2 0.510 0.225 0.07161 0.9622 Significant  

𝛾2.1 0.185 0.239 -0.2801 0.6511 Not Significant  

𝛾2.2 0.384 0.252 -0.1086 0.8775 Not Significant  

𝛽2.1 0.676 0.171 0.337 1.012 Significant  

 
Based on the results presented in Table 4.2 and Figure 4.1 is known that the measurement 

model, all significant indicators to measure each of the latent variables. While the structural 
model, it is known that of the five parameters tested, there are three significant parameters that 
𝛾1.1, 𝛾1.2 and 𝛽2.1. It can be concluded that there are significant differences between the variables 
of Leadership Style and Organizational Commitment toward Job Satisfaction directly as well as a 
significant difference between Job Satisfaction on Employee Performance. As for the influence of 
Leadership Style and variable Organizational Commitment on Employee Performance directly 
declared insignificant. 

Job 
Satisfaction

X1.4

X1.5

Y1.1

1.000

Y1.2

Y1.3

0.8256

0.6319

Leadership 
Style

Employee 
Performance

Organizational 
Commitment

X1.3

X1.1

X1.2

0.8898

1.000 X2.2

X2.3

Y2.3
Y2.7

Y2.4 Y2.5

X2.1

X2.4

0.6327

0.7229

0.8029

0.7236

1.000

0.7431

0.4398

0.1850

0.6757

Y2.2

1.000

0.5102

0.3844

0.6339

0.7393

0.6228

0.6875

0.7213
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Gambar 4.1. Full Model Structural Equation Modeling 

 

Parameter Estimation Test 

One way to check the accuracy of parameter estimation in Bayesian SEM is to look at the 
MC error is generated, where the smaller the value MC error or getting close to zero then the better 
parameter estimation results. Error MC value for each parameter can be seen in Table 4.3: 

 
Table 4.3. MC Error Value of Each Parameter 

Parameter MC Error Parameter MC Error 

𝜆𝑥1.2 0,002327 𝜆𝑦2.3 0,003308 

𝜆𝑥1.3 0,003417 𝜆𝑦2.4 0,002648 

𝜆𝑥1.4 0.002139 𝜆𝑦2.5 0.002527 
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Parameter MC Error Parameter MC Error 

𝜆𝑥1.5 0.002136 𝜆𝑦2.7 0.002352 

𝜆𝑥2.2 0.002271 𝛾1.1 0.004573 

𝜆𝑥2.3 0.002907 𝛾1.2 0.00446 

𝜆𝑥2.4 0.002294 𝛾2.1 0.00494 

𝜆𝑦1.2 0.002345 𝛾2.2 0.005634 

𝜆𝑦1.3 0.00339 𝛽2.1 0.002884 

 
It is seen that the MC error of all parameters on the structural equation model is very small 

or approaching closer 0 (zero) value, so the results of estimation parameters generated a good 
result parameter estimation. 

 

CONCLUSION 

Based on the analysis and discussion, it can be concluded as follows: 
1. Model of leadership style and organizational commitment to job satisfaction and employee 

performance using the estimation method parameters Structural Equation Modeling (SEM) 
through a Bayesian approach mathematically is Job Satisfaction = 0.4398 Leadership Style + 
0.5102 Organizational Commitment + 0.0835 and Employee Performance = 0.1850 
Leadership Style + 0.3844 Commitments organizations + Job Satisfaction 0.6757 + 0.0595.  

2. In the measurement model, all significant indicators to measure latent variables respectively. 
While the structural model, it was concluded that the five parameters tested, there are three 
significant parameters that 𝛾1.1, 𝛾1.2 and 𝛽2.1. That there are a significant difference between 
the variables of Leadership Style and Organizational Commitment toward Job Satisfaction 
directly as well as a significant difference between Job Satisfaction on Employee Performance. 
As for the influence of Leadership Style and variable Organizational Commitment on 
Employee Performance directly declared insignificant. 
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