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ABSTRACT  
An Irregular coloring is a proper coloring where each vertex on a graph must have a different code. The color 
code of a vertex v is 𝑐𝑜𝑑𝑒(𝑣)  =  (𝑎0, 𝑎1, 𝑎2, . . . , 𝑎𝑘) where 𝑎0 = 𝑐(𝑣) and  𝑎𝑖 = 𝑖, 1 ≤ 𝑖 ≤ 𝑘  is the number of 
vertices that are adjacent to 𝑣 and colored 𝑖. The minimum k-color used in irregular coloring is called the 
irregular chromatic number and denoted by 𝜒𝑖𝑟 . The type of research used in this research is exploratory 
research. In this paper, we discuss the irregular chromatic number of the bull graph, pan graph, sun graph, 
peach graph, and caveman graph.  

Copyright © 2023 by Authors, Published by CAUCHY Group. This is an open access article under the CC BY-
SA License (https://creativecommons.org/licenses/by-sa/4.0/) 
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INTRODUCTION 

A graph 𝐺 = (𝑉, 𝐸) is a pair of a vertex set denoted by 𝑉(𝐺) and an edge set (may 
be empty) denoted by 𝐸(𝐺). More detail definitions and some properties can be seen in 
[1]. In that year, a four-color theorem which discusses maps coloring was discovered. This 
theorem states that there is a separation of a plane into adjacent areas resulting in an 
image called a map. The maximum colors which is needed to color the area on the map so 
that two neighboring areas do not have the same color is four [2].  

𝑐𝑜𝑑𝑒(𝑣) = (𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑘) 
where 𝑎0 = 𝑐(𝑣) and  𝑎𝑖 = 𝑖, (1 ≤  𝑖 ≤  𝑘) is the number of vertices that are 

adjacent to 𝑣, and colored 𝑣, where 𝑐(𝑣) is the color at vertex 𝑣. The minimum color used 
in irregular coloring is called the irregular chromatic number and denoted by 𝜒𝑖𝑟 [2]. An 
Irregular coloring is included proper coloring of G, it follows that [2] 

𝜒(𝐺) ≤ 𝜒𝑖𝑟(𝐺). 
The following are the theorems, corollaries, and observations that will be used in 

this paper. 
Lemma 1. [2] For every pair 𝑎, 𝑏 of integers with  2 ≤ 𝑎 ≤ 𝑏, there is a connected graph 
𝐺 with 𝜒(𝐺) = 𝑎 and 𝜒𝑖𝑟(𝐺) = 𝑏. 
 
Corollary 1. [2] For every graph 𝐺, 𝜔(𝐺) ≤ 𝜒(𝐺) 
The clique number 𝜔(𝐺) of a graph 𝐺 is the maximum order of a complete subgraph of 𝐺. 
 
Observation 1.[2] Let 𝑐 be a (proper) vertex coloring of a nontrivial graph 𝐺 and let 𝑢 and 
𝑣 be two distinct vertices of 𝐺. 
a. If 𝑐(𝑢) ≠ 𝑐(𝑣), then  𝑐𝑜𝑑𝑒(𝑢) ≠  𝑐𝑜𝑑𝑒 (𝑣)  
b. If 𝑑𝑒𝑔𝐺𝑢 ≠ 𝑑𝑒𝑔𝐺𝑣, then 𝑐𝑜𝑑𝑒(𝑢) ≠ 𝑐𝑜𝑑𝑒 (𝑣) 
c. If 𝑐 is irregular coloring and 𝑁(𝑢) = 𝑁(𝑣), 𝑐(𝑢) ≠ 𝑐(𝑣) 
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Lemma 2. [3] Let 𝑐 be an irregular k-coloring of the vertices of a graph 𝐺. The number of 
different possible color codes of the vertices of degree r in G is 

𝑘 (𝑟 +
(𝑘 + 1) − 1
𝑟

) = 𝑘 (
𝑟 + 𝑘 − 2

𝑟
) 

Corollary 2. [3] If c is an irregular k-coloring of a nontrivial connected graph G, then G 

contains at most 𝑘 (
𝑟 + 𝑘 − 2

𝑟
) vertices of degree r. 

Corollary 3. [3] If 𝜒𝑖𝑟(𝐺) = 𝑘 where 𝑛 ≥ 3, then 𝑛 ≤ (𝑘) (
𝑘
2
) =

𝑘2(𝑘−1)

2
  

Corollary 4.[3] Let 𝑘 ≥ 3 be an integer, 𝜒𝑖𝑟(𝐶𝑛) ≥ 𝑘 for all integers n. Such that 
(𝑘 − 1)2(𝑘 − 2) + 2

2
≤ 𝑛 ≤

𝑘2(𝑘 − 1)

2
 

Propotition 1.[3]  𝜒𝑖𝑟(𝐶𝑛) = 4 if n is even and 𝜒𝑖𝑟(𝐶𝑛) = 3 if n is odd for 3 ≤ 𝑛 ≤ 9. 

Lemma 3. [3] Let 𝑘 ≥ 3, if 𝑛 =
𝑘2(𝑘−1)

2
, then 𝜒𝑖𝑟(𝐶𝑛−1) ≥ 𝑘 + 1 

 
A. Rohoni et. al have discussed irregular coloring in the double wheel graph family 

[4], fan graphs families [5], and wheel related graphs [6]. Avudainayaki et. al [7] has 
discussed irregular coloring on central and middle graphs of double star graphs, 
Anderson et. Al [8] discussed irregular coloring on regular graphs, and Kristiana et. al [9] 
has discussed local irregularity coloring of some family graphs. There are some previous 
results of irregular coloring of bipartite graph dan tree graph family [10], star families 
[11], some generalized graph [12], and Mycielskian Graphs [13]. 

In this paper, we observed the irregular coloring of bull graph, pan graph, sun 
graph, peach graph, and caveman graph. The bull Graph is a planar undirected graph with 
5 vertices and 5 edges, in the form of a triangle with two disjoint pendant edges [14]. The 
Pan Pan graph is a graph obtained by combining a cycle graph Cn with a singleton star 
graph K1[15]. The sun graph of order 2𝑛 is a cycle 𝐶𝑛 with an edge terminating in a 
pendent vertex attached to each vertex[16]. A peach graph is a circular graph Cm which 
has 𝑛 pendants at one vertex, which is at vertex 𝑥1 contained in the cycle graph[17]. A 
caveman graph arises by modifying a set of fully connected clusters (caves) by removing 
one edge from each cluster and using it to connect to a neighboring one such that the 
clusters form a single loop [18].  

 
METHOD  
The type of research used in this research is exploratory research. This research is 
research conducted to dig up data and find new things that you want to know so that the 
results obtained can be used as knowledge development. The following is a description of 
the steps taken to determine irregular chromatic numbers: (1) determining the graph that 
will be researched; (2) determining the cardinality of the graph that is used as research; 
(3) do vertex coloring of the researched graph; (4) create a code from each vertex in the 
graph. Specifically, 𝑐𝑜𝑑𝑒 (𝑣) = (𝑎0, 𝑎1, … , 𝑎𝑘) =, where 𝑎0 = 𝑐(𝑣) and 𝑎𝑖 (1 ≤ 𝑖 ≤ 𝑘) are 
the number of vertices of color 𝑖 adjacent to 𝑣; (5) if the codes are the same for each vertex, 
proceed to step 3. (6) determining irregular chromatic numbers. 
 
 
RESULT AND DISCUSSION 
This research is focused on finding irregular chromatic numbers in the unicyclic graph 
family, including bull graph, pan graph, sun graph, peach graph, and caveman graph.  
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Theorem 1.  The irregular chromatic number of bull graph 𝑩𝟑,𝒏 is 𝒏 + 𝟏. 

Proof: This graph has the vertex set 𝑉(𝐵3,𝑛)  = {𝑥𝑖| 1 ≤ 𝑖 ≤ 3} ∪ {𝑦2𝑖|1 ≤ 𝑖 ≤ 𝑛} ∪

{𝑦3𝑖|1 ≤ 𝑖 ≤ 𝑛} and edge set is 𝐸(𝐵3,𝑛) = {𝑥1𝑥𝑖| 2 ≤ 𝑖 ≤ 3} ∪ {𝑥2𝑥3} ∪ {𝑥2𝑦2𝑖| 1 ≤ 𝑖 ≤

𝑛} ∪ {𝑥3𝑦3𝑖| 1 ≤ 𝑖 ≤ 𝑛}. |𝑉(𝐵3,𝑛)| = 2𝑛 + 3 and  |𝐸(𝐵3,𝑛)| = 2𝑛 + 3. 

We need to prove the upper bound 𝜒𝑖𝑟(𝐵3,𝑛) ≤ 𝑛 + 1 and the lower bound 

𝜒𝑖𝑟(𝐵3,𝑛) ≥ 𝑛 + 1. First, we prove that the lower bound of the irregular chromatic number 

of bull graph is 𝜒𝑖𝑟(𝐵3,𝑛) ≥ 𝑛 + 1. Assume that 𝜒𝑖𝑟(𝐵3,𝑛) < 𝑛 +  1. We have some 

condition as follows. 
(1) 𝑐(𝑥𝑖) =  𝑐(𝑦2𝑖) and 𝑐(𝑥𝑖) 𝑐(𝑦2𝑖) ∈ 𝐸(𝐵3,𝑛). It's contradicting. 
(2) 𝑐(𝑥𝑖) =  𝑐(𝑦3𝑖) and 𝑐(𝑥𝑖) 𝑐(𝑦3𝑖) ∈ 𝐸(𝐵3,𝑛). It's contradicting. 

(3) 𝑐(𝑥2𝑘) =  𝑐(𝑦2𝑙) and 𝑘 ≠ 𝑙. It's contradicting. 
(4) 𝑐(𝑥3𝑘) =  𝑐(𝑦3𝑙) and 𝑘 ≠ 𝑙. It's contradicting. 

Based on (1), (2), (3), and (4), we get the lower bound of the irregular coloring on a 
bull graph is 𝜒𝑖𝑟(𝐵3,𝑛) ≥ 𝑛 + 1. Furthermore, we prove that the upper bound of the 

irregular chromatic number of  the bull graph is 𝜒𝑖𝑟(𝐵3,𝑛) ≤ 𝑛 + 1. The color function 𝑐 

on this graph is defined as follows. 
𝑐(𝑥𝑖) = 𝑖, 1 ≤ 𝑖 ≤ 3 

𝑐(𝑦2𝑖) = {
𝑖 𝑖 = 1

𝑖 + 1 2 ≤ 𝑖 ≤ 𝑛
 

𝑐(𝑦3𝑖) = {
𝑖 1 ≤ 𝑖 ≤ 2

𝑖 + 1 3 ≤ 𝑖 ≤ 𝑛
 

Based on the color function, the code for each vertex in the bull graph is obtained as 
follows. 

𝑐𝑜𝑑𝑒(𝑥1) = (𝑐(𝑥1), 0,1,1,0,0, … ,0⏟        
𝑛+1

) 

𝑐𝑜𝑑𝑒(𝑥2) = (𝑐(𝑥2), 2,0,2,1,1, … ,1⏟        
𝑛+1

) 

𝑐𝑜𝑑𝑒(𝑥3) = (𝑐(𝑥3), 2,1,0,1,1, … ,1⏟        
𝑛+1

) 

𝑐𝑜𝑑𝑒(𝑦2𝑖) = (𝑐(𝑦2𝑖), 0,1,0,0,0, … ,0⏟        
𝑛+1

) 

𝑐𝑜𝑑𝑒(𝑦3𝑖) = (𝑐(𝑦3𝑖), 0,0,1,0,0, … ,0⏟        
𝑛+1

) 

Based on the color function and vertex code obtained, each neighboring vertex has a 
different color and each vertex in the graph has a different color code. Therefore, the 
upper bound of the irregular chromatic number on the bull graph is 𝜒𝑖𝑟(𝐵3,𝑛) ≤ 𝑛 + 1. 

The lower and upper bound of the irregular chromatic number of  bull graph is 
𝑛 + 1 ≤ 𝜒𝑖𝑟(𝐵3,𝑛) ≤ 𝑛 + 1. So, 𝜒𝑖𝑟(𝐵3,𝑛) = 𝑛 + 1. 

 

Theorem 2. Let (𝒌 − 𝟏) (
𝒌 − 𝟏
𝟐

) + 𝟏 ≤ 𝒏 ≤ 𝒌(
𝒌
𝟐
) and  𝒌 ≥ 𝟒. Irregular chromatic 

number of pan graph 𝑷𝒂𝒏 is 

𝜒𝑖𝑟(𝑃𝑎𝑛) = {

3 𝑓𝑜𝑟 𝑛 𝑜𝑑𝑑, 3 ≤ 𝑛 ≤ 9

3 𝑓𝑜𝑟 𝑛 = 4

4 𝑓𝑜𝑟 𝑛 𝑒𝑣𝑒𝑛, 6 ≤ 𝑛 ≤ 9
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Proof: This graph has the vertex set 𝑉(𝑃𝑎𝑛) = {𝑥𝑖|1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑦} and the edge set is 
𝐸(𝑃𝑎𝑛) = {𝑥𝑖𝑥𝑖+1|1 ≤ 𝑖 ≤ 𝑛 − 1} ∪ {𝑥1𝑥𝑛} ∪ {𝑥𝑖𝑦}. |𝑉(𝑃𝑎𝑛)| = 𝑛 + 1 and |𝐸(𝑃𝑎𝑛)| = 𝑛 +
1. The pan graph contains the 𝐶𝑛 subgraph where 𝐶𝑛 is a cycle graph. In this case, the 𝐶𝑛 
subgraph is labeled according to the 𝐶𝑛 graph. There are three cases in this proof. 
 
Case 1. 𝜒𝑖𝑟(𝑃𝑎𝑛) = 3, 𝑓𝑜𝑟 𝑛 𝑜𝑑𝑑, 3 ≤ 𝑛 ≤ 9  
We need to prove the upper bound 𝜒𝑖𝑟(𝑃𝑎𝑛) ≤ 3 and the lower bound 𝜒𝑖𝑟(𝑃𝑎𝑛) ≥ 3. First, 
we prove that the lower bound of the irregular chromatic number on the pan graph is 
𝜒𝑖𝑟(𝑃𝑎𝑛) ≥ 3. Assume that 𝜒𝑖𝑟(𝑃𝑎𝑛) < 3, for example 𝜒𝑖𝑟(𝑃𝑎𝑛) = 2, we get the color on 𝑥𝑖  
is 1,2,1,2, . . . ,1 or 2,1,2, . . . ,2 periodically. Since 𝑐(𝑥1) = 𝑐(𝑥𝑛) and 𝑥1𝑥𝑛 ∈ 𝐸(𝑃𝑎𝑛). This 
contradicts the definition of proper coloring where each pair of adjacent vertices must 
have different colors. Therefore, 𝜒𝑖𝑟(𝑃𝑎𝑛) ≥ 3. Furthermore, we prove that the upper 
bound of the irregular chromatic number on the pan graph is 𝜒𝑖𝑟(𝑃𝑎𝑛) ≤ 3 where 3 ≤
𝑛 ≤ 9.  Define the color function 𝑐: 𝑣 → {1,2,3,… , 𝜒𝑖𝑟}, 𝑆 = {1,2,3,… , 𝜒𝑖𝑟} and 𝑝, 𝑞 ∈ 𝑁.   

𝑥(𝑝(𝑚𝑜𝑑 𝑛))+1, 𝑥(𝑝+1(𝑚𝑜𝑑 𝑛))+1, 𝑥(𝑝+2(𝑚𝑜𝑑 𝑛))+1 ∈ 𝑉(𝑃𝑎𝑛), with 𝑐 (𝑥(𝑝(𝑚𝑜𝑑 𝑛))+1), 

𝑐 (𝑥(𝑝+1(𝑚𝑜𝑑 𝑛))+1) , 𝑐 (𝑥(𝑝+2(𝑚𝑜𝑑 𝑛))+1) ∈ 𝑆.  If 𝑐 (𝑥(𝑝(𝑚𝑜𝑑 𝑛))+1) , 𝑐 (𝑥(𝑝+2(𝑚𝑜𝑑 𝑛))+1) ≠

𝑐 (𝑥(𝑞(𝑚𝑜𝑑 𝑛))+1) , 𝑐 (𝑥(𝑞+2(𝑚𝑜𝑑 𝑛))+1), then 𝑐 (𝑥(𝑝+1(𝑚𝑜𝑑 𝑛))+1) = 𝑐 (𝑥(𝑞+1(𝑚𝑜𝑑 𝑛))+1). The 

color of y is 𝑐(𝑦), for 𝑐(𝑦) ∈ 𝑆, 𝑐(𝑥𝑖) ≠ 𝑐(𝑦), 𝑥𝑖𝑦 ∈ 𝐸(𝑃𝑎𝑛). Based on the color function, it 

can be written, if it is known that 𝑐𝑜𝑑𝑒(𝑥𝑝) = (𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑘), and 𝑐𝑜𝑑𝑒(𝑥𝑞) =

(𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑘), 𝑐𝑜𝑑𝑒(𝑥𝑝) ≠ 𝑐𝑜𝑑𝑒(𝑥𝑞).  

We get the upper bound of the irregular chromatic number on the pan graph is 𝜒𝑖𝑟(𝑃𝑎𝑛) ≤
3. The lower and upper bound of the irregular chromatic number of pan graph is 3 ≤
𝜒𝑖𝑟(𝑃𝑎𝑛) ≤ 3. So, 𝜒𝑖𝑟(𝑃𝑎𝑛) = 3. 
 
Case 2. 𝜒𝑖𝑟(𝑃𝑎𝑛) = 3, 𝑛 = 4 
We need to prove the upper bound 𝜒𝑖𝑟(𝑃𝑎𝑛) ≤ 3 and the lower bound 𝜒𝑖𝑟(𝑃𝑎𝑛) ≥ 3. First, 
we prove that the lower bound of the irregular chromatic number on the pan graph is 
𝜒𝑖𝑟(𝑃𝑎𝑛) ≥ 3. Assume that 𝜒𝑖𝑟(𝑃𝑎𝑛) < 3, for example 𝜒𝑖𝑟(𝑃𝑎𝑛) = 2. Define the color 
function 𝑐: 𝑣 → {1,2} is 𝑐(𝑥1) = 1, 𝑐(𝑥2) = 2, 𝑐(𝑥3) = 1, 𝑐(𝑥4) = 2, 𝑐(𝑦) = 2.  The color 
code obtained is 𝑐𝑜𝑑𝑒(𝑥1) = (1,0,3), 𝑐𝑜𝑑𝑒(𝑥2) = (2,2,0), 𝑐𝑜𝑑𝑒(𝑥3) = (1,0,2), 𝑐𝑜𝑑𝑒(𝑥4) =
(2,2,0), 𝑐𝑜𝑑𝑒(𝑦) = (2,1,0). Based on the code obtained, there is the same code, namely 
𝑐𝑜𝑑𝑒(𝑥2) = 𝑐𝑜𝑑𝑒(𝑥4). This contradicts the definition of irregular colorin that each vertex 
in a graph must have a different color code. So, 𝜒𝑖𝑟(𝑃𝑎𝑛) ≥ 3. Furthermore, we prove that 
the upper bound of the irregular chromatic number on the pan graph is 𝜒𝑖𝑟(𝑃𝑎𝑛) ≤ 3.   
Define the color function 𝑐: 𝑣 → {1,2,3} is 𝑐(𝑥1) = 1, 𝑐(𝑥2) = 3, 𝑐(𝑥3) = 1, 𝑐(𝑥4) =
2, 𝑐(𝑦) = 2. The color code obtained is 𝑐𝑜𝑑𝑒(𝑥1) = (1,0,2,1), 𝑐𝑜𝑑𝑒(𝑥2) =
(3,2,0,0), 𝑐𝑜𝑑𝑒(𝑥3) = (1,0,1,1), 𝑐𝑜𝑑𝑒(𝑥4) = (2,2,0,0), 𝑐𝑜𝑑𝑒(𝑦) = (2,1,0,0). So, it can be 
concluded that 𝜒𝑖𝑟(𝑃𝑎𝑛) ≤ 3.  
We get the upper bound of the irregular chromatic number on the pan graph is 𝜒𝑖𝑟(𝑃𝑎𝑛) ≤
3. The lower and upper bound of the irregular chromatic number of pan graph is 3 ≤
𝜒𝑖𝑟(𝑃𝑎𝑛) ≤ 3. So, 𝜒𝑖𝑟(𝑃𝑎𝑛) = 3. 
 
Case 3. 𝜒𝑖𝑟(𝑃𝑎𝑛) = 4, 𝑓𝑜𝑟 𝑛 𝑒𝑣𝑒𝑛, 6 ≤ 𝑛 ≤ 9 
We need to prove upper bound 𝜒𝑖𝑟(𝑃𝑎𝑛) ≤ 4 and lower bound 𝜒𝑖𝑟(𝑃𝑎𝑛) ≥ 4. First, we 
prove that the lower bound of the irregular chromatic number on the pan graph is 
𝜒𝑖𝑟(𝑃𝑎𝑛) ≥ 4. According to Lemma 3, if 𝑘 =  3, then 𝜒𝑖𝑟(𝐶𝑛−1) ≥ 4.  We get an odd n, so 
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𝑛 − 1 is even. Since Pan has the subgraph Cn, where Cn is a cycle graph labeled as Cn. So, 
based on Lemma 3, we can conclude that 𝜒𝑖𝑟(𝑃𝑎𝑛) ≥ 4. Next, 𝜒𝑖𝑟(𝑃𝑎𝑛) ≥ 4. Furthermore, 
we prove that the upper bound of the irregular chromatic number on the pan graph is 
𝜒𝑖𝑟(𝑃𝑎𝑛) ≤ 4 where 3 ≤ 𝑛 ≤ 9.  Define the color function 𝑐: 𝑣 → {1,2,3, … , 𝜒𝑖𝑟}, 𝑆 =
{1,2,3, … , 𝜒𝑖𝑟} and 𝑝, 𝑞 ∈ 𝑁.  𝑥(𝑝(𝑚𝑜𝑑 𝑛))+1, 𝑥(𝑝+1(𝑚𝑜𝑑 𝑛))+1, 𝑥(𝑝+2(𝑚𝑜𝑑 𝑛))+1 ∈ 𝑉(𝑃𝑎𝑛), with 

𝑐 (𝑥(𝑝(𝑚𝑜𝑑 𝑛))+1) , 𝑐 (𝑥(𝑝+1(𝑚𝑜𝑑 𝑛))+1) , 𝑐 (𝑥(𝑝+2(𝑚𝑜𝑑 𝑛))+1) ∈ 𝑆. 

  If 𝑐 (𝑥(𝑝(𝑚𝑜𝑑 𝑛))+1) , 𝑐 (𝑥(𝑝+2(𝑚𝑜𝑑 𝑛))+1) ≠ 𝑐 (𝑥(𝑞(𝑚𝑜𝑑 𝑛))+1) , 𝑐 (𝑥(𝑞+2(𝑚𝑜𝑑 𝑛))+1), then 

𝑐 (𝑥(𝑝+1(𝑚𝑜𝑑 𝑛))+1) = 𝑐 (𝑥(𝑞+1(𝑚𝑜𝑑 𝑛))+1). The color on y is 𝑐(𝑦), for 𝑐(𝑦) ∈ 𝑆, 𝑐(𝑥𝑖) ≠

𝑐(𝑦), 𝑥𝑖𝑦 ∈ 𝐸(𝑃𝑎𝑛). Based on the color function, it can be written, if it is known that 

𝑐𝑜𝑑𝑒(𝑥𝑝) = (𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑘), and 𝑐𝑜𝑑𝑒(𝑥𝑞) = (𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑘), 𝑐𝑜𝑑𝑒(𝑥𝑝) ≠ 𝑐𝑜𝑑𝑒(𝑥𝑞).  

So, we get the upper bound of the irregular chromatic number on the pan graph is 
𝜒𝑖𝑟(𝑃𝑎𝑛) ≤ 4. The lower and upper bound of the irregular chromatic number of pan graph 
is 4 ≤ 𝜒𝑖𝑟(𝑃𝑎𝑛) ≤ 4. So, 𝜒𝑖𝑟(𝑃𝑎𝑛) = 4. 
 

 

Figure 1. 𝜒𝑖𝑟(𝑃𝑎7) = 3 

Theorem 3. Let (𝒌 − 𝟏) (
𝒌 − 𝟏
𝟐

) + 𝟏 ≤ 𝒏 ≤ 𝒌(
𝒌
𝟐
) Irregular chromatic number of pan 

graph 𝑷𝒂𝒏 for 𝒏 ≥ 𝟑, 𝒌 ≥ 𝟒 is 

𝜒𝑖𝑟(𝑃𝑎𝑛) = {
𝑘 𝑓𝑜𝑟 𝑛 ≠ 𝑘 (

𝑘
2
) − 1

𝑘 + 1 𝑓𝑜𝑟 𝑛 = 𝑘 (
𝑘
2
) − 1

 

Proof: This graph has the vertex set 𝑉(𝑃𝑎𝑛) = {𝑥𝑖|1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑦} and the edge set is 
𝐸(𝑃𝑎𝑛) = {𝑥𝑖𝑥𝑖+1|1 ≤ 𝑖 ≤ 𝑛 − 1} ∪ {𝑥1𝑥𝑛} ∪ {𝑥𝑖𝑦}. |𝑉(𝑃𝑎𝑛)| = 𝑛 + 1 and |𝐸(𝑃𝑎𝑛)| = 𝑛 +
1. The pan graph contains the 𝐶𝑛 subgraph where 𝐶𝑛 is a cycle graph. In this case, the 𝐶𝑛 
subgraph is labeled according to the 𝐶𝑛 graph. There are two cases in this proof. 

Case 1. 𝜒𝑖𝑟(𝑃𝑎𝑛) = 𝑘, 𝑓𝑜𝑟 𝑛 ≠ 𝑘 (
𝑘
2
) − 1  

We need to prove upper bound 𝜒𝑖𝑟(𝑃𝑎𝑛) ≤ 𝑘 and lower bound 𝜒𝑖𝑟(𝑃𝑎𝑛) ≥ 𝑘. First, we 
prove that the lower bound of the irregular chromatic number on the pan graph is 
𝜒𝑖𝑟(𝑃𝑎𝑛) ≥ 𝑘. According to Corollary 4, if 𝑘 ≥  3 is an integer, then 𝜒𝑖𝑟(𝐶𝑛) ≥ 𝑘.  Since 
𝑃𝑎𝑛 has the subgraph 𝐶𝑛, where 𝐶𝑛 is a cycle graph labeled as 𝐶𝑛. Therefore, we get 
𝜒𝑖𝑟(𝑃𝑎𝑛) ≥ 𝑘.  Next, we prove that the upper bound of the irregular chromatic number on 
the pan graph is 𝜒𝑖𝑟(𝑃𝑎𝑛) ≤ 𝑘. Color function 𝑐: 𝑣 → {1,2,3, … , 𝜒𝑖𝑟}, 𝑆 = {1,2,3, … , 𝜒𝑖𝑟} and 
𝑝, 𝑞 ∈ 𝑁.  𝑥(𝑝(𝑚𝑜𝑑 𝑛))+1, 𝑥(𝑝+1(𝑚𝑜𝑑 𝑛))+1, 𝑥(𝑝+2(𝑚𝑜𝑑 𝑛))+1 ∈ 𝑉(𝑃𝑎𝑛), with 

𝑐 (𝑥(𝑝(𝑚𝑜𝑑 𝑛))+1) , 𝑐 (𝑥(𝑝+1(𝑚𝑜𝑑 𝑛))+1) , 𝑐 (𝑥(𝑝+2(𝑚𝑜𝑑 𝑛))+1) ∈ 𝑆. 
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  If 𝑐 (𝑥(𝑝(𝑚𝑜𝑑 𝑛))+1) , 𝑐 (𝑥(𝑝+2(𝑚𝑜𝑑 𝑛))+1) ≠ 𝑐 (𝑥(𝑞(𝑚𝑜𝑑 𝑛))+1) , 𝑐 (𝑥(𝑞+2(𝑚𝑜𝑑 𝑛))+1), then 

𝑐 (𝑥(𝑝+1(𝑚𝑜𝑑 𝑛))+1) = 𝑐 (𝑥(𝑞+1(𝑚𝑜𝑑 𝑛))+1). The color on y is 𝑐(𝑦), for 𝑐(𝑦) ∈ 𝑆, 𝑐(𝑥𝑖) ≠

𝑐(𝑦), 𝑥𝑖𝑦 ∈ 𝐸(𝑃𝑎𝑛). Based on the color function, it can be written, if it is known that 

𝑐𝑜𝑑𝑒(𝑥𝑝) = (𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑘), and 𝑐𝑜𝑑𝑒(𝑥𝑞) = (𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑘), 𝑐𝑜𝑑𝑒(𝑥𝑝) ≠ 𝑐𝑜𝑑𝑒(𝑥𝑞).  

So, we get the upper bound of the irregular chromatic number on the pan graph is 
𝜒𝑖𝑟(𝑃𝑎𝑛) ≤ 𝑘. The lower and upper bound of the irregular chromatic number of pan graph 
is 𝑘 ≤ 𝜒𝑖𝑟(𝑃𝑎𝑛) ≤ 𝑘. So, 𝜒𝑖𝑟(𝑃𝑎𝑛) = 𝑘. 
 

Case 2. 𝜒𝑖𝑟(𝑃𝑎𝑛) = 𝑘 + 1, 𝑓𝑜𝑟 𝑛 = 𝑘 (
𝑘
2
) − 1  

We need to prove upper bound 𝜒𝑖𝑟(𝑃𝑎𝑛) ≤ 𝑘 + 1 and lower bound 𝜒𝑖𝑟(𝑃𝑎𝑛) ≥ 𝑘 + 1. 
First, we prove that the lower bound of the irregular chromatic number on the pan graph 

is 𝜒𝑖𝑟(𝑃𝑎𝑛) ≥ 𝑘 + 1. According to Lemma 3, if 𝑛 =
𝑘2(𝑘+1)

2
= 𝑘 (

𝑘
2
), then 𝜒𝑖𝑟(𝐶𝑛−1) ≥ 𝑘 +

1. Since 𝑃𝑎𝑛 has the subgraph 𝐶𝑛, where 𝐶𝑛 is a cycle graph labeled as 𝐶𝑛. Therefore,  if 

𝑛 − 1, then 𝑘 (
𝑘
2
) − 1. So, if 𝑛 = 𝑘 (

𝑘
2
) − 1, then 𝜒𝑖𝑟(𝑃𝑎𝑛) ≥ 𝑘 + 1.  

Next, we prove that the upper bound of the irregular chromatic number on the pan graph 
is 𝜒𝑖𝑟(𝑃𝑎𝑛) ≤ 𝑘 + 1. Color function 𝑐: 𝑣 → {1,2,3, … , 𝜒𝑖𝑟}, 𝑆 = {1,2,3, … , 𝜒𝑖𝑟} and 𝑝, 𝑞 ∈ 𝑁.  

𝑥(𝑝(𝑚𝑜𝑑 𝑛))+1, 𝑥(𝑝+1(𝑚𝑜𝑑 𝑛))+1, 𝑥(𝑝+2(𝑚𝑜𝑑 𝑛))+1 ∈ 𝑉(𝑃𝑎𝑛),with 𝑐 (𝑥(𝑝(𝑚𝑜𝑑 𝑛))+1), 

𝑐 (𝑥(𝑝+1(𝑚𝑜𝑑 𝑛))+1) , 𝑐 (𝑥(𝑝+2(𝑚𝑜𝑑 𝑛))+1) ∈ 𝑆. If 𝑐 (𝑥(𝑝(𝑚𝑜𝑑 𝑛))+1) , 𝑐 (𝑥(𝑝+2(𝑚𝑜𝑑 𝑛))+1) ≠

𝑐 (𝑥(𝑞(𝑚𝑜𝑑 𝑛))+1) , 𝑐 (𝑥(𝑞+2(𝑚𝑜𝑑 𝑛))+1), then 𝑐 (𝑥(𝑝+1(𝑚𝑜𝑑 𝑛))+1) = 𝑐 (𝑥(𝑞+1(𝑚𝑜𝑑 𝑛))+1). The 

color on y is 𝑐(𝑦), for 𝑐(𝑦) ∈ 𝑆, 𝑐(𝑥𝑖) ≠ 𝑐(𝑦), 𝑥𝑖𝑦 ∈ 𝐸(𝑃𝑎𝑛). Based on the color function, it 

can be written, if it is known that 𝑐𝑜𝑑𝑒(𝑥𝑝) = (𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑘), and 𝑐𝑜𝑑𝑒(𝑥𝑞) =

(𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑘), 𝑐𝑜𝑑𝑒(𝑥𝑝) ≠ 𝑐𝑜𝑑𝑒(𝑥𝑞).  

So, we get the upper bound of the irregular chromatic number on the pan graph is 
𝜒𝑖𝑟(𝑃𝑎𝑛) ≤ 𝑘 + 1. The lower and upper bound of the irregular chromatic number of pan 
graph is 𝑘 + 1 ≤ 𝜒𝑖𝑟(𝑃𝑎𝑛) ≤ 𝑘 + 1. So, 𝜒𝑖𝑟(𝑃𝑎𝑛) = 𝑘 + 1. 
 
 
Theorem 4.  The irregular chromatic number of sun graph 𝑺𝒏 for 𝒌𝟐 + 𝒌 + 𝟏 ≤ 𝒏 ≤
𝒌𝟐 + 𝟑𝒌 + 𝟐 and 𝒌 ∈ 𝑵 is 𝒌 + 𝟐.  

Proof: This graph has the vertex set 𝑉(𝑆𝑛) = {𝑥𝑖|1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑦𝑖|1 ≤ 𝑖 ≤ 𝑛} and the edge 
set is 𝐸(𝑆𝑛) = {𝑥𝑖𝑥𝑖+1|1 ≤ 𝑖 ≤ 𝑛 − 1} ∪ {𝑥1𝑥𝑛} ∪ {𝑥𝑖𝑦𝑗|1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛}. |𝑉(𝑆𝑛)| =

2𝑛 and |𝐸(𝑆𝑛)| = 2𝑛.  
We need to prove upper bound 𝜒𝑖𝑟(𝑆𝑛) ≤ 𝑘 + 2 and lower bound  𝜒𝑖𝑟(𝑆𝑛) ≥ 𝑘 + 2. 

First, we prove that the lower bound of the irregular chromatic number on the sun graph 
is 𝜒𝑖𝑟(𝑆𝑛) ≥ 𝑘 + 2. Assume that 𝜒𝑖𝑟(𝑆𝑛) < 𝑘 + 2. If 𝑥𝑖  colored with k+1-color, then at most 
k + 1 vertex of the same color. Because of 𝑥𝑘𝑦𝑘 ∈ 𝐸(𝑆𝑛) and 𝑦𝑘 are colored with k+1-color, 
then there are two neighboring vertices having the same color, namely 𝑐(𝑥𝑘) =  𝑐(𝑦𝑘). 
This contradicts the definition of proper coloring, where each neighboring vertex must 
have a different color. Thus, it can be concluded that the upper bound of the irregular 
chromatic number of a sun graph is 𝜒𝑖𝑟(𝑆𝑛) ≥ 𝑘 + 2.  

Next, we prove that the upper bound of the irregular chromatic number on the sun 
graph is 𝜒𝑖𝑟(𝑆𝑛) ≤ 𝑘 + 2. The color function c on this graph is defined as follows.  
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 For 𝑥𝑖  vertices, where 𝑛 ≡ 1(𝑚𝑜𝑑 𝑘 + 2) the color of the vertices 1,2,3, … , 𝑘 +
2,1,2,3, … , 𝑘 + 2 periodically.  

 For 𝑥𝑖  vertices, where n not equivalent 1(𝑚𝑜𝑑 𝑘 + 2) the color of the vertices 
1,2,3, … , 𝑘 + 2,1,2,3, … , 𝑘 + 2,… ,1,2,3, … , 𝑘 + 2,2 periodically.  

 For 𝑦𝑖 vertices, 𝑐(𝑥𝑖) ≠  𝑐(𝑦𝑗) where 𝑥𝑖𝑦𝑗 ∈ 𝐸(𝑆𝑛), and 𝑐(𝑥𝑖) ≠  𝑐(𝑥𝑗) for 𝑥𝑖𝑦𝑘, 𝑥𝑗𝑦𝑙 ∈

𝐸(𝑆𝑛), with 𝑐(𝑦𝑘) =  𝑐(𝑦𝑙), 𝑘 ≠ 𝑙. 

We know that the 𝑐𝑜𝑑𝑒(𝑥𝑝) = (𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑘) and 𝑐𝑜𝑑𝑒(𝑥𝑞) = (𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑘), then 

based on the color function obtained, 𝑐𝑜𝑑𝑒(𝑥𝑝) ≠ 𝑐𝑜𝑑𝑒(𝑥𝑞). Thus, the upper bound of the 

irregular chromatic number on a sun graph is 𝜒𝑖𝑟(𝑆𝑛) ≤ 𝑘 + 2. The ilustration of irregular 
coloring of sun graph can be seen in Figure 2. The lower and upper bound of the irregular 
chromatic number of caveman graph is 𝑘 + 2 ≤ 𝜒𝑖𝑟(𝑆𝑛) ≤ 𝑘 + 2. So, 𝜒𝑖𝑟(𝑆𝑛) = 𝑘 + 2.  

 
Figure 2. 𝜒𝑖𝑟(𝑆𝑛) = 4 

 
Theorem 5.  Irregular chromatic number of peach graph 𝑪𝒎

𝒎 for 𝒎 ≥ 𝟑  is 𝒎+ 𝟏. 

Proof: This graph has the vertex set 𝑉(𝐶𝑚
𝑚) = {𝑥𝑖|1 ≤ 𝑖 ≤ 𝑚} ∪ {𝑦𝑖|1 ≤ 𝑖 ≤ 𝑚} and the 

edge set is 𝐸(𝐶𝑚
𝑚) = {𝑥𝑖𝑥𝑖+1|1 ≤ 𝑖 ≤ 𝑚 − 1} ∪ {𝑥1𝑥𝑚} ∪ {𝑥1𝑦𝑖|1 ≤ 𝑖 ≤ 𝑚}. |𝑉(𝐶𝑚

𝑚)| = 2𝑚 
and |𝐸(𝐶𝑚

𝑚)| = 2𝑚.  
We need to prove upper bound 𝜒𝑖𝑟(𝐶𝑚

𝑚) ≤ 𝑚 + 1 and lower bound  𝜒𝑖𝑟(𝐶𝑚
𝑚) ≥ 𝑚 + 1. 

First, we prove that the lower bound of the irregular chromatic number on the peach 
graph is 𝜒𝑖𝑟(𝐶𝑚

𝑚) ≥ 𝑚 + 1. Assume that 𝜒𝑖𝑟(𝐶𝑚
𝑚) < 𝑚 + 1. We have the following cases.  

Case 1. 𝑐(𝑥𝑖) =  𝑐(𝑦𝑗), 𝑥𝑖𝑦𝑗 ∈ 𝐸(𝐶𝑚
𝑚). It’s contradicts. 

Case 2. 𝑐(𝑥𝑘) =  𝑐(𝑦𝑙), 𝑘 ≠ 𝑙, 𝑦𝑘𝑥1, 𝑦𝑗𝑥1 ∈ 𝐸(𝐶𝑚
𝑚). It’s contradicts. 

Based on case 1 and case 2 above, the lower bound is obtained from the irregular 
chromatic number on the peach graph is 𝜒𝑖𝑟(𝐶𝑚

𝑚) ≥ 𝑚 + 1.  
 Next, we prove that the upper bound of the irregular chromatic number on the peach 
graph is 𝜒𝑖𝑟(𝐶𝑚

𝑚) ≤ 𝑚 + 1. The color function c on this graph is defined as follows. 
𝑐(𝑥𝑖) = 𝑖, 1 ≤ 𝑖 ≤ 𝑚 

𝑐(𝑦𝑗) = {
𝑗 𝑓𝑜𝑟 2 ≤ 𝑗 ≤ 𝑚

𝑚 + 1 𝑓𝑜𝑟 𝑗 = 1
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Based on the color function above, the code for each vertex in the peach graph is obtained 
as follows.  

𝑐𝑜𝑑𝑒 (𝑥𝑖) =

{
 
 

 
 
(𝑐(𝑥𝑖), 0,2,1,1,1,1,0,0, … ,1,1,2⏟              

𝑚+1

𝑓𝑜𝑟 𝑖 = 1

(𝑐(𝑥𝑖), 0, … ,0⏟  ,
𝑖−2

1,0,1, 0, … ,0⏟  ,
𝑚−1

𝑓𝑜𝑟 2 ≤ 𝑖 ≤ 𝑚 − 1

(𝑐(𝑥𝑖), 1,0,0,0,0,0,0, … ,0,0,1,0⏟              
𝑚+1

𝑓𝑜𝑟 𝑖 = 𝑚

 

 
𝑐𝑜𝑑𝑒(𝑦𝑖) = (𝑐(𝑦𝑖), 1,0,0,0, … ,0,0,0)⏟          

𝑚+1

 

Based on the color function and vertex code obtained, each neighboring vertex has a 
different color and each vertex in the graph has a different color code. Therefore, the 
upper bound of the irregular chromatic number on the peach graph is 𝜒𝑖𝑟(𝐶𝑚

𝑚) ≤ 𝑚 + 1. 
The illustration of irregular coloring of sun graph can be seen in Figure 3. The lower and 
upper bound of the irregular chromatic number of peach graph is 𝑚 + 1 ≤ 𝜒𝑖𝑟(𝐶𝑚

𝑚) ≤
𝑚 + 1. So, 𝜒𝑖𝑟(𝐶𝑚

𝑚) = 𝑚 + 1.  

 
Figure 3. 𝜒𝑖𝑟(𝐶8

8) = 9 
 
Theorem 6.  Irregular chromatic number of caveman graph 𝑲𝒎,𝟑 for 𝒌𝟐 + 𝒌 + 𝟏 ≤ 𝒎 ≤

𝒌𝟐 + 𝟑𝒌 + 𝟐 and 𝒌 ∈ 𝑵 is 𝒌 + 𝟐. 

Proof: This graph has the vertex set 𝑉(𝐾𝑚,3) = {𝑥𝑖|1 ≤ 𝑖 ≤ 2𝑚} ∪ {𝑦𝑗|1 ≤ 𝑗 ≤ 𝑚} and the 

edge set is 𝐸(𝐾𝑚,3) = {𝑥𝑖𝑥𝑖+1|1 ≤ 𝑖 ≤ 2𝑚 − 1} ∪ {𝑥1𝑥2𝑚} ∪ {𝑥𝑖𝑦𝑖|1 ≤ 𝑖 ≤ 2𝑚, 𝑖 =

𝑜𝑑𝑑, 1 ≤ 𝑗 ≤ 𝑚}. |𝑉(𝐾𝑚,3)| = 3𝑚 + 6 and |𝐸(𝐾𝑚,3)| = 3𝑚 + 6.  

We need to prove upper bound 𝜒𝑖𝑟(𝐾𝑚,3) ≤ 𝑘 + 2 and lower bound  𝜒𝑖𝑟(𝐾𝑚,3) ≥ 𝑘 + 2. 

First, we prove that the lower bound of the irregular chromatic number on the caveman 
graph is 𝜒𝑖𝑟(𝐾𝑚,3) ≥ 𝑘 + 2. Assume that 𝜒𝑖𝑟(𝐾𝑚,3) ≤ 𝑘 + 2, for example is 𝜒𝑖𝑟(𝐾𝑚,3) = 𝑘 +

1. If 𝑥𝑖 , where deg(𝑥𝑖) =  3 is colored with k+1-color, then at most k+1 vertex of the same 
color. Because of 𝑥𝑖𝑦𝑗 ∈ 𝐸(𝐾𝑚,3) and 𝑦𝑗  are colored with k+1-color, then there are two 

neighboring vertices having the same color, namely 𝑐(𝑥𝑖) =  𝑐(𝑦𝑗). This contradicts the 

definition of proper coloring, where each neighboring vertex must have a different color. 
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Thus, it can be concluded that the lower bound of the irregular chromatic number of a 
caveman graph is 𝜒𝑖𝑟(𝐾𝑚,3) ≥ 𝑘 + 2. 

Next, we prove that the upper bound of the irregular chromatic number on the 
caveman graph is 𝜒𝑖𝑟(𝐾𝑚,3) ≤ 𝑘 + 2. The color function c on this graph is defined as 

follows.  
 For 𝑥𝑖  vertices, where deg(𝑥𝑖) = 3, the color of the vertices 1,2,3, … , 𝑘 +

2,1,2,3, … , 𝑘 + 2 periodically.  
 For 𝑥𝑖  and 𝑥𝑗  vertices, with deg(𝑥𝑖) = deg(𝑥𝑗) = 2,  𝑥𝑖 = 𝑥(𝑝+1(𝑚𝑜𝑑 𝑛))+1and 𝑥𝑗 =

𝑥(𝑝+1(𝑚𝑜𝑑 𝑛))+1. If 𝑆 = {1,2,3,… , 𝑘 + 2}, 

𝑥(𝑝(𝑚𝑜𝑑 𝑛))+1, 𝑥(𝑝+1(𝑚𝑜𝑑 𝑛))+1, 𝑥(𝑝+2(𝑚𝑜𝑑 𝑛))+1 ∈ 𝑉(𝐾𝑚,3) ≥ 𝑘 + 1, with 

𝑐 (𝑥(𝑝(𝑚𝑜𝑑 𝑛))+1) , 𝑐 (𝑥(𝑝+1(𝑚𝑜𝑑 𝑛))+1) , 𝑐 (𝑥(𝑝+2(𝑚𝑜𝑑 𝑛))+1) ∈ 𝑆. If 

𝑐 (𝑥(𝑝(𝑚𝑜𝑑 𝑛))+1) , 𝑐 (𝑥(𝑝+2(𝑚𝑜𝑑 𝑛))+1) ≠ 𝑐 (𝑥(𝑞(𝑚𝑜𝑑 𝑛))+1) , 𝑐 (𝑥(𝑞+2(𝑚𝑜𝑑 𝑛))+1), then 

𝑐 (𝑥(𝑝+1(𝑚𝑜𝑑 𝑛))+1) = 𝑐 (𝑥(𝑞+1(𝑚𝑜𝑑 𝑛))+1). 

 For 𝑦𝑗  vertices, 𝑐(𝑥𝑖) ≠  𝑐(𝑦𝑗) for 𝑥𝑖𝑦𝑗 ∈ 𝐸(𝐾𝑚,3) 

 For 𝑦𝑗  vertices, 𝑐(𝑦𝑘) =  𝑐(𝑦𝑙) when 𝑥𝑖𝑦𝑗 , 𝑥𝑗𝑦𝑙 ∈ 𝐸(𝐾𝑚,3) and 𝑐(𝑥𝑖) ≠  𝑐(𝑦𝑗) 

We know that the 𝑐𝑜𝑑𝑒(𝑥𝑝) = (𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑘) and 𝑐𝑜𝑑𝑒(𝑥𝑞) = (𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑘) then 

based on the color function obtained, 𝑐𝑜𝑑𝑒(𝑥𝑝) ≠ 𝑐𝑜𝑑𝑒(𝑥𝑞). Thus, the upper bound of the 

irregular chromatic number on a caveman graph is 𝜒𝑖𝑟(𝐾𝑚,3) ≤ 𝑘 + 2.  The illustration of 

irregular coloring of caveman graph can be seen in Figure 4. The lower and upper bound 

of the irregular chromatic number of peach graph is 𝑘 + 2 ≤ 𝜒𝑖𝑟(𝐾𝑚,3) ≤ 𝑘 + 2. So, 

𝜒𝑖𝑟(𝐾𝑚,3) = 𝑘 + 2.  
 

 

Figure 4. 𝜒𝑖𝑟(𝐾4,3) = 3 
 

CONCLUSIONS 

In this paper, we get the irregular chromatic number of the unicyclic graph family, namely 
bull graph, pan graph, sun graph, peach graph, caveman graph. 
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