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ABSTRACT 

Most of the Generalized Space Time Autoregressive (GSTAR) models assume the constant error 

variance. In fact, there are many space-time observations whose variability is changing over the 

times. In this study, a GSTAR model is built with an error variance that is not constant or has a 

heteroscedasticity effect, namely the combination of GSTAR–Autoregressive Conditional 

Heteroscedasticity (ARCH). The parameters of the GSTAR–ARCH model are estimated using the 

Generalized Least Square (GLS) method to obtain the efficient parameter estimation. As a case 

study, the GSTAR–ARCH model is applied to the daily mean wind speed data of New Orleans, 

Florida and Mississippi, in order to predict the occurrence of Hurricane Katrina that occurred in 

2005. It is obtained that the heteroscedastic involvement in GSTAR modeling gives the better 

results in predictions, compared to the homoscedastics approach. Furthermore, as the order of 

model is higher, the GSTAR model performances is better, which is shown by the least Mean 

Squared Errors (MSE) and Mean Absolute Percentage Error (MAPE).  The obtained results show 

that the GSTAR model (3;0,0,1)–ARCH(1) predicts the Hurricane Katrina better than the  

GSTAR(3;0,0,1) and GSTAR(1;1)–ARCH(1) models. 

Keywords: GSTAR; ARCH; Conditional Variance; Generalized Least Squares; Heteroskedasticity 

INTRODUCTION 

A hurricane is a natural phenomenon in the form of wind gusts with a speed 
exceeding 119 km/hour. Hurricanes are a type of tropical cyclone that usually forms on 
warm sea surfaces around the equator. The wind speed at one location is influenced by 
the wind speed of the previous time at that location and also influenced by the average 
wind speed at other locations. This means that the wind speed can be modeled with 
space-time models such as STARMA(p,q), STAR(p), STMA(q), GSTAR(p,q) and 
STARMAG(p,q). The model used in this study is the GSTAR model which uses a certain 
weight matrix according to the location conditions. 

http://dx.doi.org/10.18860/ca.v7i1.13097
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The arrival of a storm which is usually predicted by weather satellites will be 
predicted using the GSTAR model. By using the daily average wind speed data one year 
before the storm, it is hoped that the arrival of the storm can be predicted earlier and 
reduce the number of victims, both property and life, due to the storm. However, a large 
increase in wind speed when a storm occur, causes the data to have heteroscedastic 
effect, so that the error generated by the GSTAR model has a non-constant variance. It 
makes the estimation of the initial model parameters being no longer efficient, thus a 
model that explains the variance of the error is not constant, namely the ARCH model is 
should be developed.  The use of the ARCH is to model the variance of errors, such that it 
is expected to eliminate heteroscedastic elements and more efficient parameters can be 
produced. 

The development of GSTAR model in Indonesia is very fast, both theoretically and in 
application. Theoretically, it includes the stationary properties of the process using the 
Inverse Autocovariance Matrix [1] as well as the kernel approach [2, 3] and minimum 
spanning tree approach [4], GSTAR with correlated errors [5, 6], GSTAR with outliers 
[7], GSTAR for discrete data [8], and invertibility of kernel GSTAR model [9].  The 
application of the GSTAR model has been carried out on economic data [10], tea 
plantations [11], palm oil production [12], red chili commodity prices [13], number of 
dengue fever cases [14], predictions of robbery cases in Medan, North Sumatra [15], the 
spread of Covid-19 cases in Java [16], and copper and gold grades vertical distribution 
[17]. On the other hand, the ARCH model, which accommodates the element of 
heteroscedasticity and exogenous variable which make the high volatility of process, is 
widely developed in economic problems. The impact of Covid-19 as the exogenous factor 
to the economic sector be explored by [18].  Sometimes the exogeneous factor cause a 
point of change happen and it should be detected [19]. However, its application has also 
been carried out to predict electric current [20], caterpillar pests in oil palm plantations 
[21], and rice prices [22]. 

The development of the GSTAR model with an error variance by considering the 
heteroscedasticity effect, has been investigated by [23] on the GSTAR(1,1) model with 
application to stock prices. The contruction of GSTAR model with the ARCH effect and 
estimate the parameters using the maximum likelihood method approach be explored 
by [24]. In this study, the GSTAR–ARCH model was developed by estimating the 
parameters using the Generalized Least Square (GLS) approach. 

  

METHODS  

Generalized STAR Model 

The GSTAR model is a generalization of the STAR model where the model parameters 
for each location that were initially considered homogeneous can be different. An 
observation at location i at time t are expressed as 𝑍𝑖,𝑡. If the observations between 

locations are related, then these observations can be modeled using the GSTAR model. 
The general form of GSTAR is, 

𝒁𝑡 = ∑ ∑ 𝚽𝑗𝑙

λ𝑘

ℓ=0

𝑘

𝑗=1

𝑾(𝓵)𝒁𝑡−𝑗 + 𝒆𝑡 
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with 𝒁𝑡 is a N-dimensional column vector ( 𝑍1,𝑡, 𝑍2,𝑡, … , 𝑍𝑁,𝑡)′, 𝑾(𝓵) is a N-dimensional 

weight matrix for spatial lag-ℓ𝑡ℎ , 𝚽𝑗𝑙  is N-dimensional matrix of autoregressive 

parameters for spatial lag ℓ and time lag j, and 𝒆𝑡 is a N-dimensional vector of errors 

respective to the observations inside vector 𝒁𝑡. For homoscedastic GSTAR, the 𝒆𝑡 is a 

white noise vector whose mean and variance are constant, and follows normal 

multivariate distribution, meanwhile for heteroscedastics case, the variance is not 

constant.    

The GSTAR modeling stage follows the Box-Jenkins iteration [1], consist of model 

identification, parameter estimation and diagnostic checking. Before doing GSTAR 

modeling, the data of process must have stationary properties. If it is not stationary, a 

differentiation process should be performed on the data until the data is stationary. In 

estimating the parameters of the GSTAR model, it can be done using the Ordinary Least 

Square (OLS) method by constructing the GSTAR model into a linear form 𝒀 = 𝐗𝜷 + 𝒆, 

so that the OLS estimator obtained is  �̂� = (𝐗′𝐗)−1𝐗′𝒀 [1] 

 

ARCH(1) Model 

Consider a process {Yt} which follows AR(p) model such that can be written as: 

𝑌𝑡 = 𝜙0 + 𝜙1𝑌𝑡−1 + ⋯ + 𝜙𝑝𝑌𝑡−𝑝 +  𝑒𝑡 

which 𝑒𝑡 is uncorrelated errors but has inconstant variance or depend on time. Based on 

Engle (1982), the error  𝑒𝑡 can be expressed as,  

𝑒𝑡 = 𝑎𝑡𝜎𝑡        (1) 

with 𝑎𝑡 is random sample which independent and has identical standard normal 

distribution, and 

𝜎𝑡
2 = 𝛼0 + 𝛼1𝑒𝑡−1

2 + ⋯ + 𝛼𝑝𝑒𝑡−𝑝
2     (2) 

If the erros are known until (t-1) the the conditional variance of 𝑒𝑡 is stated as: 

𝑉𝑎𝑟𝑡−1(𝑒𝑡) = 𝐸𝑡−1[𝑒𝑡
2] = 𝐸[𝑒𝑡

2|𝑒𝑡−1
2 , 𝑒𝑡−2

2 , … ] = 𝜎𝑡
2 

From Eq. (2), it can be said that the conditional variance of 𝑒𝑡 depends on squares of the 

past errors and inconstant. Tthis condition is named as ARCH(p) model [25]. 

The simplest form of the ARCH(p) model and used in this study is the ARCH(1) model. In 

this model, the error variance at time t is affected by the square of the error of the 

previous one time lag. The ARCH(1) model is formulated as: 

𝑒𝑡 = 𝑎𝑡𝜎𝑡 and 𝜎𝑡
2 = 𝛼0 + 𝛼1𝑒𝑡−1

2  

with 𝛼0 and 𝛼1 are non-negative parameters of ARCH(1) model. 
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The variance of ARCH(1) errors is, 

Var(𝑒t) = 𝐸[𝑒𝑡
2] − (𝐸[𝑒𝑡])2 = 𝐸[𝑒𝑡

2] = 𝐸[𝑎𝑡
2]𝐸[𝜎𝑡

2] = 𝐸[𝛼0 + 𝛼1𝑒𝑡−1
2 ]

= 𝐸[𝛼0] + 𝐸[𝛼1𝑒𝑡−1
2 ]  = 𝛼0 + 𝛼1Var(𝑒𝑡) 

Then it is obtained, 

Var(𝑒𝑡) =
𝛼0

1−𝛼1
       (3) 

 Since the variance is positive then, based on Eq. (3),  𝛼0 > 0 and 0 ≤ 𝛼1 < 1, be the 
stationary condition of ARCH(1) model. 

 

GSTAR(1;1) – ARCH (1) Model 

Consider  𝒁𝑡 = (𝑍1,𝑡, 𝑍2,𝑡, . . . , 𝑍𝑁,𝑡)′ as a vector of observations in N location at time t, 

can be modeled as GSTAR(1;1)–ARCH(1), if it can be expressed as: 

𝒁𝑡 = (𝜱𝟎 + 𝜱𝟏𝑾)𝒁𝑡−1 + 𝒆𝑡     (4) 

where 𝒆𝑡~ 𝑁(𝟎, Ωt), is vector of errors which follows normal distribution with zero 

mean and inconstant variance over the time. The covariance matrix Ωt is defined as Ωt = 

diag(h1,t, h2,t, . . . , hN,t) and hi,t is a vector of erros variance on location i at time t, which 

can be modeled as ARCH(1), that is 

𝒉𝑖,𝑡 = 𝜶0𝑖 + 𝜶1𝑖𝒆𝑖,𝑡−1
𝟐  

with 𝜶𝑘𝑖 is parameter of model for location  i and k = 0, 1. 

The assumption used in this model is that the errors between locations are 
uncorrelated with each other so that the error variance at location i at time t is affected 
by the square of the errors on that location at time (t – 1) , but is not affected by the 
errors on the other locations. Meanwhile, the observation value of location i is 
influenced by the observations on that location and also the neighbor locations. The 
method used to estimate this model is the Generalized Least Square (GLS) method. 

Suppose that the matrix Ω has eigenvalues, 𝜆1, 𝜆2, … , 𝜆𝑇 . By Cholesky's 
decomposition, it can be written as 𝛀 = 𝐂𝚲𝐂′, with 𝚲 = diag(𝜆1, 𝜆2, … , 𝜆𝑇) is a diagonal 
matrix, and C is an orthogonal matrix.  

Consider the matrix 𝐂 = 𝐏−1𝚲−
1

2 , with 𝚲
1

2 = diag(√𝜆1, √𝜆2, … , √𝜆𝑇). Thus , 

𝛀−1 = 𝐏−1𝚲−1(𝐏′)−1 = 𝐏−1𝚲−
1

2𝚲′−
1

2(𝐏′)−1 = 𝐂𝐂′. 

Let the transformed linear model, 𝒀∗ = 𝐗∗𝜷 + 𝒆∗ be defined with 𝒀∗ = 𝐂𝒀, 𝐗∗ = 𝐂𝐗, and 

𝒆∗ = 𝐂𝒆. Then, unbiased estimator of GSTAR–ARCH model parameters are presented as: 

�̂�GLS = (𝐗′𝛀−1𝐗)−1𝐗′𝛀−1𝒀      (5) 
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with 𝛀 = diag(ℎ1(1), … , ℎ1(𝑇), … , ℎ𝑁(1), … , ℎ𝑁(𝑇)) is NT-dimentional of diagonal [26]. 

Furthermore, the stages of GSTAR-ARCH modeling is illustrated in a flow chart as 

presented in Fig. 1. 

 

Figure 1. Flowchart of the GSTAR-ARCH modeling stage. Modeling is carried out to obtain a 

homoscedastic error. The equation for the mean is modeled by the GSTAR model 

while the variance is modeled by the ARCH model. 

RESULTS AND DISCUSSION  

 As a case study, the data used are the average daily wind speed in three states of 

the United States (N = 3) from September 1, 2004 to August 24, 2005 (T = 358) obtained 

from the National Oceanic and Atmospheric Administration (NOAA) that belongs to the 

United States. Geographically, the United States is located around the equator, so some 

areas of the country are often hit by storms. Hurricane Katrina was one of the deadliest 

hurricanes that occurred in 2005. According to the United States Department of Oceanic 

and Atmospheric Research, the total loss caused by Hurricane Katrina was over a 
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thousand million dollars and more than 1,800 people died. The states of interest are 

New Orleans (Louisiana), Florida, and Mississippi, each of which can be seen in Fig. 2. 

 The modeling is carried out with the help of the R application. The data will be 

modeled with the space-time model and must meet the stationary properties first. The 

stationary data can be seen from the plot of the row of observations at each location as 

in Fig. 3(a). From the figure, it can be seen that there are several wind speed values that 

are higher than other observations. In addition, there is also a slight downward and 

rising pattern, which indicates a data pattern that is not stationary on average. 

Therefore, the data differentiation is done first. The series plot after one-time 

differentiation can be seen in Fig. 3(b). The stationary data is then centered so that it has 

a zero mean (centralized process). The process variability which occasionally increases, 

indicates that the variance is not constant. This will be accomodated in the modeling 

with heteroscedastic effect. 

 In GSTAR modeling, one of the important elements that characterizes the 

relationship between locations is the presence of a weight matrix. The  weight matrix 

has entries 𝑤𝑖𝑗, which represents the weight of location-j to location-i. This matrix has 

zeros entries in the main diagonal and the total weight in one row is equal to one. In this 

study, the weight matrix used is uniform and binary weights. The spatial lag used is 

limited to only one spatial lag. For simplicity, the uniform and binary weight matrix be 

used, respectively, are 

𝑾(𝟏) = (
0 0.5 0.5

0.5 0 0.5
0.5 0.5 0

)  and  𝑾(𝟏) = (
0 0 1
1 0 0
1 0 0

) 

 

 

 

Figure 2. Map of the United States and the states where the observations are located (Source: 

https://greatpersie.wordpress.com). New Orleans (Louisiana), Florida, and 

Mississippi are referred to as Location 1, Location 2, and Location 3, respectively 

 

 

(1) 

(2) 

(3) 
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Figure 3. Plot series for each location, (a) before differentiation and (b) after differentiation by 
one time lag. After differentiation, the data become centered with a more stationary 
pattern in the mean 

The first stage in the modeling is model identification with the help of Space-Time 

ACF and PACF plots, called STACF and STPACF. However, because the model has 

been determined at the beginning, namely the GSTAR(1;1) model, the model 

identification stage can be skipped. The STACF and STPACF plots obtained are used 

to see whether there is a relationship between time and location from the daily 

average wind rate data. The plots of STACF and STPACF can be seen in Fig. 4.  

From Fig. 4 it can be seen that the data have time and spatial dependence, 

although the GSTAR(1;1) model is not very appropriate to model this data. From the 

STPACF plot, the best possible model for the data is GSTAR(3;0,0,1). Thus, the 

modeling be considered are GSTAR(1;1) and GSTAR(3;0,0,1) model. First, the 

obtained estimated parameters using Ordinary Least Squares (OLS) method for the 

GSTAR(1;1) model can be seen in Table 1.  

Table 1. The OLS parameter estimation of  GSTAR(1;1) model 

Parameter 𝝓𝟎𝟏 𝝓𝟏𝟏 𝝓𝟎𝟐 𝝓𝟏𝟐 𝝓𝟎𝟑 𝝓𝟎𝟑 
Estimation -0.15 0.08 -0.08 -0.04 -0.28 0.20 

 

 

(a) (b) 
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The next step is to test the presence of the ARCH effect on the error of each 
location. The existence of the ARCH effect can be detected from the plot of the 
squared error of each location which can be seen in Fig. 5. 

 

Figure 4. STACF (left) and STPACF (right) plot based on uniform weight matrix. The STACF 

has more patterned values than STPACF. Thus the autoregressive model is more 

appropriate 

 

 

Figure 5. The square errors plot of the GSTAR(1;1) model. It can be seen that the error 

variance is not constant, indicating the presence of the ARCH 

 

 



The Generalized STAR Modeling with Heteroscedastic Effects 

Utriweni Mukhaiyar 166 

To confirm the existence of the ARCH effect, the ARCH-LM test will be used 
(Engle, 1982). The presence of ARCH effect on the error is indicated by the p-value 
which is smaller than 1% ≤ α ≤ 10%. The ARCH-LM test results for the first six time 
lags in Table 2, show that the p-value is smaller in almost all locations and time lags. 
So it can be concluded that there is an ARCH effect on the GSTAR(1;1) model, means 
that the variance of errors is not constant over time. A slight difference found at 
Location 2, Florida. The p-values obtained are less than 9.2% until the third time lag, 
indicates that the wind speed value in this area tends to be more constant in average 
and variance than the other two observation locations. At a time lag of more than 
three, the wind speed in Florida did not show any ARCH effect on the process. 
However, the presence of heteroscedasticity effects in two other locations, also in 
Florida until the first three-time lags, be the reason to consider the inconstant 
variance in this case. 

Table 2. The p-values of  heteroscedastic effect existence using ARCH-LM test 

Time 
lag 

New Orleans 
(× 10−4) 

Florida 
Mississippi 

(× 10−2) 
1 0.0019 0.0304 0.0300 

2 0.0085 0.0731 0.0980 

3 0.0067 0.0917 0.2000 

4 0.0224 0.1550 0.4300 

5 0.0666 0.2170 0.8000 
6 0.1490 0.2950 0.9300 

Next, the inconstant erros variance of GSTAR(1;1) be modeled by ARCH(1). The 

obtained parameter estimation of model ARCH(1) model using Maximum Likelihood 

(ML) method, can be seen in Tabel 3. 

Table 3. The ML parameter estimation of ARCH(1) model. The i-th parameter of location-

j is presented by 𝜶𝑖𝑗  for 𝑖 = 0,1 and 𝑗 = 1,2,3. 

Parameter 𝜶𝟎𝟏 𝜶𝟏𝟏 𝜶𝟎𝟐 𝜶𝟏𝟐 𝜶𝟎𝟑 𝜶𝟏𝟑 
Estimation 1.01 0.25 0.66 0.18 0.60 0.30 

 

Thus, the  variances of errors for each location are obtained as:: 

𝜎1,𝑡
2 = 1.01 + 0.25𝑒1,𝑡−1

2  

𝜎2,𝑡
2 = 0.66 + 0.18𝑒2,𝑡−1

2  

𝜎3,𝑡
2 = 0.60 + 0.30𝑒3,𝑡−1

2  

Furthermore, the variances of errors of each location, for t=1,2,..., T be the entries of 𝑁𝑇 

dimenstional of diagonal matrix, Ω(t) = diag(𝜎1,𝑡
2 , 𝜎2,𝑡

2 , 𝜎3,𝑡
2 ). This matrix is used for 

parameter estimation of GSTAR(1;1) – ARCH (1) model by using the GLS mehod. The 

estimated parameters are presented in Table 4. 
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Table 4. The GLS parameter estimation of GSTAR(1;1) model with the errors variance follows 

ARCH(1) model 

Parameter 𝝓𝟎𝟏 𝝓𝟏𝟏 𝝓𝟎𝟐 𝝓𝟏𝟐 𝝓𝟎𝟑 𝝓𝟎𝟑 
Estimation -0.11 0.08 -0.05 -0.05 -0.27 0.22 

The estimated parameters of the model obtained using the GLS method in Table 4, 
are not much different from the estimated parameters obtained using the OLS method in 
Table 1. This is probably because the ARCH(1) model is not the right model to model the 
error variance of the GSTAR(1;1) model. 

For comparison, the modeling with the same steps was carried out again using a 
binary weight matrix and a weight matrix based on wind direction. Determination of the 
best model is done by comparing the value of the Mean Squared Error (MSE) of each 
model. From Table 5 it can be concluded that the use of a uniform weight matrix in the 
GSTAR(1;1)–ARCH (1) modeling is slightly better than the binary weight matrix. The 
three locations involved in modeling give the composition of the uniform and binary 
weight matrix are quite similar. 

 
Table 5. The MSE values of GSTAR(1;1) – ARCH(1) model with two types of thw weight 

matrix. The results using uniform weight matrix is slightly better than binary, 

although the difference is not significant 

Weight Matrix MSE 
Uniform 0.975 
Binary 0.978 

The comparison between the original and estimated data using the GSTAR(1;1)–
ARCH(1) model can be seen in Fig. 6. From this figure, it can be seen that there is a big 
difference between the original data and estimated results. This is because the STPACF 
plot in Fig. 4 indicates that the GSTAR(1;1) model is not appropriate for the data. 

From the STPACF plot, the possible next space-time model is the GSTAR (3;0,0,1) 
with a fixed error variance be modeled by the ARCH(1) model. This model explains that 
the condition of location i at t is influenced by its own condition at-(t – 1), (t – 2), (t – 3) 
and the conditions of other locations which are its closest neighbors at (t – 3). The 
modeling is carried out following the similar steps in modeling GSTAR(1;1) – ARCH (1) 
until the parameters are obtained before and after the ARCH element is calculated. The 
estimation parameter results can be seen in Table 6. The estimation parameters 
obtained from the GSTAR(3;0,0,1) modeling are not much different from the GSTAR 
estimation parameters GSTAR (3;0,0,1)–ARCH(1) so that the estimation results obtained 
will also not far different. 
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Figure 6. Plot of original series (red) and estimation (blue, green) using GSTAR(1;1) – ARCH(1) model. 

The large errors indicate that the GSTAR(1;1) model is not suitable.  

 

Table 6. The comparison of GSTAR(3;0,0,1) parameter estimation before and after the errors 

variance be modeled by ARCH(1). Generally, there is no difference of both models. 

Parameter 𝝓𝟏𝟎
𝟏  𝝓𝟐𝟎

𝟏  𝝓𝟑𝟎
𝟏  𝝓𝟑𝟏

𝟏  𝝓𝟏𝟎
𝟐  𝝓𝟐𝟎

𝟐  𝝓𝟑𝟎
𝟐  𝝓𝟑𝟏

𝟐  𝝓𝟏𝟎
𝟑  𝝓𝟐𝟎

𝟑  𝝓𝟑𝟎
𝟑  𝝓𝟑𝟏

𝟑  

Before -0.24 -0.40 -0.15 -0.07 -0.17 -0.32 -0.27 -0.02 -0.31 -0.37 -0.13 -0.07 
After  -0.21 -0.36 -0.13 -0.09 -0.13 -0.33 -0.24 -0.03 -0.30 -0.34 -0.10 -0.03 

 

The comparison of the original and estimated data using the GSTAR(3;0,0,1)–
ARCH(1) model can be seen in Fig. 7. By comparing the plots in Fig. 6 and Fig. 7, it can be 
seen that the estimation results generated by this model are better than the 
GSTAR(1;1)–ARCH(1) model. The GSTAR(3;0,0,1)–ARCH(1) model can capture the 
pattern of process variability. However, this model is not the best model for the data. 
From Fig. 7 it can be seen that the estimation results cannot reach the very high either 
low value of the original data. This may be due to the inaccurate selection of the 
ARCH(1) model as a model that explains the error variance for each location. 
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Figure 7. Plot of the original series (red) and estimation (green) GSTAR(3;0,0,1) – ARCH(1) 

model 

The MSE value for the GSTAR(3;0,0,1)–ARCH(1) model is 0.875. This value is smaller 
than the MSE value of the GSTAR(1;1)–ARCH (1) model, so the model that will be used 
for short-term prediction is the GSTAR(3;0,0,1)–ARCH(1) model. To make sure the 
selection of the GSTAR(3;0,0,1)–ARCH(1) model, a comparison was made with the 
GSTAR(3;0,0,1) model without the effect of heteroscedasticity. Table 7 shows the 
comparison of MSE, MAD and MAPE values for the two models. Although those values 
were not significant different, the model used for short-term prediction is the 
GSTAR(3;0,0,1)–ARCH(1) model, since it is slightly better. 

 

Table 7. The comparison of GSTAR(3;0,1,1) and GSTAR(3;0,0,1)–ARCH(1) model 

 

 

 

From Table 8, it can be concluded that the GSTAR (3;0,0,1)–ARCH (1) model is not very 

good for estimating the changes in the daily average wind speed, which are too large. In 

a relatively short period of time, August 25 – 29, 2005, there was an increase in the daily 

average wind speed. If this speed increase is assumed to be the beginning of Hurricane 

Katrina, then Hurricane Katrina is expected to hit New Orleans and Mississippi on 

September 1, 2005, which is three days later than the actual time of hurricane landfall in 

New Orleans and Mississippi. 

  

 GSTAR(3;0,0,1) GSTAR(3;0,0,1)–ARCH(1) 
MSE 0.88 0.86 
MAD 0.70 0.70 

MAPE 7.48 6.86 
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Table 8. The comparison of real data and its estimation using GSTAR(3;0,0,1)–ARCH(1) model 

CONCLUSIONS 

The daily average wind speed data in New Orleans, Florida, and Mississippi of the United 

States are not only influenced by the wind speed at the previous days in the same 

location, but the influenced of the wind speed in neighbor states can not be ignored. 

Through the previous modeling, it was found that the GSTAR(3;0,0,1)–ARCH(1) model is 

a better model than the GSTAR(3;0,0,1) model. It means that, the wind speed in three-

previous days of the closest neighbors will influence today’s wind speed in the reference 

location. This model can capture the pattern of the wind speed volatilities compare to 

other observed models. However, the GSTAR(3;0,0,1)–ARCH(1) model is still not good 

enough to predict wind speeds that are extrme high nor low. This can be caused because 

the ARCH(1) model is not the right model to model the model error variance. Further 

analysis of the error variance model such as GARCH(p,q) is also needed so that the error 

variance can be modeled better. As for the application of the GSTAR model with the 

ARCH effect, it can also be developed in weather cases in Indonesia, as well as in other 

fields of science. 
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