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Abstract : In this theoretical work, the Raman spectra were analyzed by considering the origin of the G peak, its 

shape, position and relative intensity as a function of the number of graphene layers. By using the spectral moment’s 

method, the Raman spectra of mono, bi and few-layers of graphene are calculated and a good agreement was found 
with group theory concerning the number of the Raman-active modes and the Raman measurements. Our results 

provide a Raman analysis to evaluate the number of layers in multilayer graphene. 
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Introduction 

Since its discovery, graphene has attracted considerable 
interest due to some of its extraordinary properties [1, 2]. 

Graphene can be synthetized using micromechanical cleavage 
of graphite [1, 2], epitaxial growth [3, 4], chemical vapour 

deposition [4, 5] or to be appealing, a characterization tool 
must be nondestructive, fast and give the maximum 

structural and electronic information. Raman spectroscopy 

can fulfill these requirements.  

Raman spectroscopy has thus become a standard 
characterization tool in the fast growing field of graphene 

studies. The difficult point in Raman measurements of 
graphene is spectral interpretation. The Raman spectra of all 

carbon systems show only a few prominent features. The 
spectra appear deceivingly simple: just a couple of very 

intense bands in the 1000-2000 cm−1 spectral range and 
some other bands at 2500-2800 cm−1. However, the 

accurate analysis of their shape, intensity and positions allow 

discriminating between hard amorphous carbon or metallic 

and semiconductor nanotubes. This has resulted in an 

enormous amount of work on the vibrational spectroscopy of 
graphene [7, 8, 9, 10] and also renewed the interest in its 

vibrational properties. The relation of phonon dispersion and 
the vibrational density of states (VDOS) are still an open issue 

in the field, as it can be ascertained from several publications. 
Gruneis et al.[11] parameterized the popular 4th-nearest-

neighbor force constant (4NNFC) approach [7]. Dubay and 
Kresse [12] performed calculations using density-functional 

theory (DFT) within the local-density approximation (LDA) for 

the exchange correlation function.  

In this work, using the spectral moments method (SMM) [14, 
15, 16, 17], and in the framework of the bond-polarization 

theory, the polarized Raman spectra of mono-, bi- and tri-layer 
graphene, were calculated. The dependence of the Raman active 

modes on the number of sheets was investigated. The results of 

calculations were compared with experimental Raman data. 

Models and methods 

Most models used to describe the phonon bands, the valence 
force field (VFF) method, and the force constant model (FCM). 

The latter has the lowest computation time requirements. In the 
FCM model, the dynamics of atoms are simply described by a 

few force springs connecting an atom to its surroundings up to 
a given number of neighbours. In contrast, the VFF method is 

based on the evaluation of the force constants, which requires 

longer computational times. FCM uses a small set of empirical 

measurements. Despite its simplicity, it can provide accurate 
and robust tools to investigate thermal properties of crystals and 
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in particular graphene nanostructures. The FCM employed 

model involves a fourth  

nearest neighbor approximation. This model was previously 
used by our group to study the nonresonant Raman spectra 

of (single walled carbon nanotubes (SWNTs), double walled 
carbon nanotubes (DWNTs), dimers of two SWNTs ans 

oligomers encapsuled in graphene (pT@G). [18, 19, 20, 21, 

22, 23, 22]. 

 We also performed calculations of the potential reliefs of 
interlayer interaction energy in bi-layer and tri-layer 

graphene, as well as in graphite using the Lennard-Jones 

potential. 

V(r) = 4ε[(σ/r)12 –(σ/r)6]     (1) 

The values of Lennard-Jones parameters are ε = 2.964 and 
σ = 3.407. Note that the Lennard-Jones potential was 

successfully used to describe the van der Waals energy in 

graphite-based systems [24]. 

The Raman efficiency of modes was calculated according to 
the nonresonant Raman scattering approach by using the 

bond-polarizability (BP) model [25, 26, 27]. In this model, 
the polarization is only modulated by the nearest-neighbor 

bonds and the components of the induced polarizability 

tensor [26, 27]. 

 

Results and discussions 

The calculations were first performed on an infinite sheet of 
graphene which was obtained by applying periodic conditions 

on the unit cells of the graphene. Figure 1 shows the 
calculated ZZ polarized Raman spectra of infinite graphene. 

The symmetries of the Raman active modes were directly 
derived from the polarized ZZ in the spectra. Indeed, it was 

established that the A1g Raman mode of graphene is active in 
the ZZ polarization. The number of calculated active modes 

is in agreement with group theory calculations [28]. The ZZ 
polarized spectrum is dominated by a strong A1g Raman 

active mode calculated in the Tangential Mode (TM) region 
calculated around 1588 cm−1. The Raman spectrum of 

graphene bilayer (2-LG) was also calculated with Bernal AB 
layer stacking. The G-band is calculated to occur 1588.4 cm−1 

and corresponds to the atomic motion of nearest neighbor 
carbon atoms moving against each other within the plane and 

in phase between the two layers (figure 2-d). 

 

 
 

 
 

 
 

 

 
 

 
 

 
 

 

 
    Figure1: Raman spectra of graphene mono-layer. 
 

 

 

Table 1: The Raman active modes in 1-LG, 2-LG and 3-LG 

 

 Three other Raman active modes are found, one located at 

58cm−1 and the two others at 89 cm−1 and 866cm−1. Figure 2 
shows the eigenvector displacements of the Raman active 

modes in a graphene bi-layer. The van der Waals interactions 
lead to new Raman active modes associated to single-layer 

graphene. Note that the atomic motion of the mode located at 
89 cm−1 (figure 5-a) is similar to that of the counter phase radial 

breathing mode of double walled carbon nanotubes [32].  

 

 

Figure2: The atomic motions of Raman active modes in 

graphene bi-layer. 

 

For the Trilayer graphene (3-LG), the G-band mode is calculated 
at 1589 cm−1. As in the case of bi-layer graphene, additional 

Raman active modes are also calculated in 3-LG. The atomic 
motion of these Raman active modes is shown in Figure 3. In 

table 1, we present calculated Raman active mode frequencies 
in 1-LG, 2-LG and 3-LG systems. We note that our calculated 

1-LG - - - - - - 1588cm 1 

2-LG - - - 58cm 1 89cm 1 866cm 1 1588.4cm 1 

3-LG 42cm 1 64cm 1 74cm 1 112cm 1 866cm 1 1588.4cm 1 1589.06cm 1 
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frequencies of the Raman-active modes are in good 

agreement with group theory predictions [28].  

 

Figure3: The atomic motions of Raman active modes in 

graphene tri-layer. 

 

Finally, we calculate the ZZ Raman spectrum of graphite. 

Figure 4 presents the G-bands of the Raman spectrum of 
mono-layer, bi-layer, tri-layer graphene and graphite. We 

found that the A1g mode up-shifted with increasing number of 
layers. The G peak also showed a small shift upon increasing 

the number of layers. For instance, the G band frequency 

ω(G) of single-layer graphene is 1588cm−1, that of bi-layer 

graphene is 1588.4cm−1 and for trilayer is 1589.4cm−1. 

 

Figure4: Raman spectra of graphene mono-, bi- and tri-layer 
and graphite. 

 

Conclusion 

In this paper, the evolution of calculated Raman active modes 

as a function of the number of graphene layers are analyzed and 
general good agreement is found between our calculations and 

group theory. The high frequency regions of the Raman spectra 
of graphene multilayer are characterized by a splitting of the 

A1g mode of graphene mono-layer. The additionnal modes that 

originate from the monolayers A1g modes are strongly coupled 
through the van der Waals interlayer interactions. These 

predictions are useful for understanding the experimental 
Raman spectra of multilayer graphene.
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