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Abstract  :  Supramolecular  nanostructured  materials,  displaying  Förster  resonance  energy 
transfers  (FRET) signals,  have become the focus of  interest  for  many researchers  across  the 
globe. FRET-based supramolecular systems have extended applications in areas as diverse as 
materials  science,  biochemistry,  analytical  chemistry,  and  nanomedicine.  The  non-covalent 
phenomena operating  in  supramolecular  frameworks  depends  on  many factors  such  as  wide 
range of  time scales,  binding strengths,  distances,  and  concentrations  of  the  supramolecular 
components  (host  and  guest).  Herein,  we focus  in  which  FRET has  been used  to  study non- 
covalent  interactions  having  a  key  role  of  cancer  diagnosis  and  temperature  sensing  in 
supramolecular systems. Furthermore, we have discussed FRET-based architectures with current 
the advancements in the field and provide a perspective on new progress for the future.

Keywords : SUPRAMOLECULAR ARCHITECHTURES, NON-COVALENT INTERACTION, HOST-GUEST 
CHEMISTRY, FRET SIGNALS, DIAGNOSIS.

Cite this article: A. Sohail, S. Hisaindee, I. Shah, A.A. 
Menhali, F. Rasool, OAJ Materials and Devices, Vol 6 #1, 0102 
(2022) – DOI: 10.23647/ca.md20220102



A. Sohail et al, FRET-based supramolecular architectures for temperature sensing and Cancer diagnosis

 OAJ Materials and Devices, Vol.6 # 1, 0102 (2022) -DOI: 10.23647/ ca.md20220102

I. Introduction
Supramolecular chemistry describes chemical systems composed of a discrete number of molecules 
with self-organization tendency through weak and reversible non-covalent interaction. Supramolecular 
science  heavily  relies  on  macrocycle-based  host-guest  chemistry.(1,2)  Typically,  in  a  host-guest 
system, a large macrocyclic host recognizes a small guest molecule, binds to each other through non-  
covalent interactions (hydrophobic forces, electrostatic interactions, hydrogen bonding, Van der Waals 
forces) in a controlled manner.(3) This binding of host and guest molecules leads to the formation of  
host-guest  complex.(1,3,4)  More  importantly,  the guest  molecules should  fit  in  the cavity  of  host 
molecules, emphasizing on selective and spontaneous binding of host and guest, and thus realizing 
the  molecular  recognition.(5–7)  Host−guest  molecular  recognition  has  brought  revolutions  in  the 
development  of  more  sophisticated  supramolecular  systems  or  materials  because  of  their  good 
selectivity  and  stimuli  responsiveness.  Taking  advantage  of  weaker  non-covalent  host-guest 
interactions, the host-guest complexes are more suitable for reversibility and responsiveness towards 
various factors  in the confined surrounding environment such as pH, light  radiation,  temperature, 
competitive factors, chemical signals, and biological interfering, etc.(3,4,6–8) The stimuli-responsive 
property  of  host-guest  systems provide a  favorable  platform for  the developing of  new advanced 
artificial molecular machines and nanoscale smart materials.(9–11)

In the past decades, many FRET-based supramolecular system has been reported with extended 
applications  such  as  optical  sensor,  photo-switches,  artificial  light  harvesting  system etc.(12–15). 
FRET got the attention of many researchers since the concept was first disclosed by Theodor Förster 
with a remarkable discovery of green fluorescent proteins (GFPs).(16) FRET-based approaches are 
considered applicable in the diagnosis of  cancer,  temperature sensing due to  its  high sensitivity, 
versatility and non-invasiveness.(17–19) Förster provided the basis of quantitative description for the 
non-radiative  energy transfer  between the donor  and acceptor  molecules.  Practically,  in  a  FRET 
phenomena, a donor fluorophore after absorption of light energy is excited to high energy state which 
in turn release the absorbed energy as emission of light, transfers its energy non-radiatively to the 
nearby acceptor fluorophore.(20) Moreover, the excitation energy of the donor’s electron is transferred 
to that of the acceptor’s via an induced-dipole movement interaction.(21) FRET is a more powerful  
tool  than  simple  fluorescence  because  it  is  very  sensitive  to  small  changes  in  the  ambient 
environment. There are many conditions that need to be met for the occurrence of FRET phenomena.  
Firstly, to ensure the occurrence of FRET, the process require an efficient spectral overlap of donor 
emission with acceptor fluorophore absorption considering molecular electronic excitation and energy 
release.(1,22,23) Secondly, the donor and acceptor fluorophores should be at favorable distance and 
needs to be less than approximately 10 nm.(24) The third and final criteria for the efficient energy  
transfer is the proper orientation of both the fluorophores to each other. Once all the conditions are  
satisfied,  the FRET efficiency(25)  and thus relying on the number of  photons absorbed by donor 
fluorophores that has a key role in contribution of FRET and can provide highly sensitive, temporally  
specific  information  on molecular  distance  and orientation.  These features broaden the scope of  
FRET  and  are  well  suited  to  study  a  wide-range  of  supramolecular  phenomena  with  extended 
application in many fields. Moreover, FRET depends strongly on the distance between the donor and 
acceptor as given by Equation (1).
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(1)

where energy transfer efficiency is represented by E and r stands for the donor-acceptor distance. R0 

is the Förster radius and varies with the size of donor-acceptor pairs and depends on the spectral 
overlap.
In general, three types of fluorescent activities have been noted in a FRET phenomenon, namely, the 
turn-off effect on the donor, the switch-on fluorescence of the acceptor and, sometimes the acceptor  
quench the emission of donor and acceptor.

Surprisingly, the functioning of FRET inside the host-guest system facilitates donor-acceptor pair 
association and dissociation with flexibility and controllability due to the stimuli-responsiveness and 
selectivity exhibited by host-guest non-covalent interactions. The combination of FRET with host- 
guest science possesses more advanced applications in many fields such as real-time in vivo 
monitoring of biomolecules, and structural manipulation,(26,27) cell imaging and drug delivery,(28,29) 
chemical and biological sensing(30–33) and photosynthesis mimicking.(18,34–36)

Herein, we particularly focus on FRET operating supramolecular systems used for the diagnosis of 
cancer,  and temperature sensing.  To  ensure the current  developments in the field,  an up-to-date 
literature  study  was  carried  for  signifying  our  understanding  of  cellular  processes  and  help  in  
advanced approaches applied in synthetic supramolecular systems and their in vivo applications.

2. Applications of supramolecular FRET System Based 
on Host-Guest Chemistry

2.1. Temperature Sensing

Recently, Amir et al. reported the preparation of a bioactive, supramolecular carbohydrate polymer. 
The latter was formed by grafting cucurbit[7]uril macrocycle (CB7)-encapsulated dequalinium chloride 
hydrate  (DCH)  onto  alginic  acid  carbohydrates  (ALG)  via  amide  linkage  formation.  The 
supramolecular assembly was shown to have the capability of light energy transfer which can be 
controlled by varying polymer temperature without changing the polymer.(4)

To validate energy transfer, DCHALG and DCH/CB7ALG polymer was titrated with ANS. No FRET 
signals were observed as no significant decrease in the excited lifetime was recorded while titrating 
DCHALG  with  ANS  as  shown  in  Figure  2a  and  2c.  To  confirm  FRET  signals  occurrence  in 
DCH/CB7ALG upon titration with ANS, a substantial decrease in the excited state was recorded and 
thus showing the FRET signals between DCH/CB7ALG and ANS as depicted in Figure 2b and 2d.

Prior to any emission signal measurements, energy transfer was induced by introducing 0.5 µM ANS 
at 298 K to guarantee the integrity of the examination. Following that, the temperature was reduced to  
278 K, increased to 378 K, and then returned to 278 K. After ANS addition, the process was repeated 
three times with an ANS concentration rise of 2.75 µM every cycle (up to 8.75 μM). The technique 
shown in Figure 3 was used to obtain the emission data.
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Figure 1:Schematic representation of supramolecular carbohydrates polymer 
synthesis and modulation of FRET signals by altering temperature.(4)

FRET signals were generated using DCH (donor) and 2-anilinonaphthalene-6-sulfonic acid (ANS, acceptor). The 
modified carbohydrate platform's stationary and time-resolved photoluminescence spectra indicated that FRET 
resulted  in  a  color  change from violet  (387  nm) to  blue  (429 nm),  which  could  be switched on  and off  to 
temperature stimuli at 298-368 K. DCH alginate polymer was prepared by covalent linkage of DCH to alginic acid 
(via amide linkage) with/without CB7. In the first step, alginic acid was activated in DMSO with the coupling 
reagent N, N′-dicyclohexylcarbodiimide (DCC), and 4-dimethylaminopyridine (DMAP) as catalyst for 24 hours 
under constant nitrogen purging (as depicted in Figure 1).

Figure 2:  At various concentrations, energy transfer from (a) DCHALG (1.5 mg L-1 

aqueous suspension) and (b) DCH/CB7ALG (2.75 mg mL-1 aqueous suspension) to 
ANS. Corresponding 320 nm emission decays indicated by the estimated average 
excited-state lifetime in the absence and presence of CB7 (c) and (d).
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Figure  3:  Schematic  representation  of  FRET  signal  regeneration  in  aqueous 
suspensions and  FRET signal  on/off  switching between 298  and 368  K  in  20  K 
increments was monitored by the rise in the unquenched/quenched lifespan ratio 
following temperature reduction (FRET ON) and increase in temperature (FRET OFF)

The results in Figure 3 demonstrate the reversible response of DCH/CB7ALG to a temperature change 
from 278 to 378 K after adding an incremental quantity of ANS (7 M, from 8.75 to 33.3 M) four times to  
create  five  sensing  cycles.  The  results  validated  the  novel  supramolecular  polymers'  response  to 
temperature stimuli at 298-368 K in aqueous environments. It should be emphasized that in Figure 3, the 
unquenched/quenched  lifespan  ratio  (τo/τ)  was  determined  in each  cycle  by  simply  changing  the 
temperature from 298 to 368 K. Furthermore, the excited- state lifetime was assessed rather than the 
steady-state  spectrum since  the  former  was more  suitable  for  validating  FRET signal  modulation  in 
response  to  a  thermal  change.  Furthermore,  the  physiological  activity  and  toxicity  of  the  proposed 
supramolecular polymers should be assessed, in view of their application to a wide range of biomedical  
uses in the future.

2.2. Cancer diagnosis

Wang and colleagues demonstrated that supramolecular fluorescent nanoparticles can be used for FRET 
detection of hydrogen peroxide (H2O2) in cancer cells.(37) Supramolecular fluorescent nanoparticles self-
assembled from fluorescein isothiocyanate modified β-cyclodextrin (FITC-β-  CD)/rhodamine B modified 
ferrocene (Fc-RB) amphiphile were employed for H2O2 detection in cancer cells as depicted in Figure 4.

The self-assembled nanoparticles based on numerous non-covalent  contacts in an aqueous medium 
demonstrated great sensitivity to H2O2 while being stable under physiological conditions. The addition of 
H2O2  resulted  in  a  noticeable  fluorescence  shift  of  nanoparticles  from red  (RB)  to  green  (FITC)  in 
fluorescent tests due to the fluorescence resonance energy transfer (FRET) phenomenon. Furthermore, 
in vitro results clearly indicate that fluorescent nanoparticles may be effectively absorbed by cancer cells 
through endocytosis and then destroyed by endogenous H2O2, accompanied by FRET from “on” to “off.”.
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Figure 4: The amphiphile FITC-b-CD/Fc-RB and its H2O2-activated behavior(37)

These supramolecular fluorescent nanoparticles, which were created through a series of non-covalent 
interactions,  are  likely  to  have applications in  the diagnosis  and imaging of  illnesses induced by 
oxidative stress, in which there is a cellular accumulation of reactive oxygen species such as hydroxyl  
radicals.

For many years, nanocarriers have been particularly designed for the transport and controlled release 
of drugs and biological molecules. However, cargo loading and release of frequently utilized carriers 
are  difficult  to  monitor,  particularly  in  vivo.  Huang  and  colleagues  described  in  their  study,  a 
[2]rotaxane complexation with pillar[5]arene (P5) to achieve mitochondria imaging and drug delivery 
materials.(28) In this work, aggregation-induced emission (AIE) and aggregation-caused quenching 
(ACQ) were introduced in a host-guest controlled FRET investigation. A [2]rotaxane with increased 
fluorescence  was  produced  by  attaching  a  tetraphenylethylene  (TPE)  unit,  a  typical  AIE-active 
luminophore, as a stopper on one end of the axle with pillar[5]arene acting as the wheel. The anti- 
cancer medication Doxorubicin (DOX), as well as the ACQ agent, were covalently attached to the 
wheel through imine bridges and therefore positioned near to TPE, resulting in a significant failure of 
the fluorescence emission owing to the ACQ effect, which happened during FRET from TPE to DOX. 
Because of the additional negative membrane potential of mitochondria, it may be identified by the  
[2]rotaxane via electrostatic interactions and lighted up as a result of the recognition.

Based on the above foundation, they started to create FRET-capable SNPs for DOX delivery that 
were constructed using pillar[5]arene-based amphiphilic  supramolecular  brush copolymers (SBPs)
(29) TPE and 4,4′-bipyridinium derivative (M) moieties were alternately implanted onto the polymer. 
The  host-guest  interactions  formed between the  M entities  and PEG-Biotin  (targeting  group),  as 
illustrated in Figure 5a, functionalized P5. As a result, SBPs were produced and then self-assembled 
into SNPs, which displayed an AIE effect caused by the aggregation of TPE units in the particles'  
center.  The system's emission decreased when DOX was encapsulated in the SNPs because of 
FRET from TPE to DOX and the ACQ of the DOX units, resulting in dual-fluorescence quenching.  
When the guest M was reduced by the intracellular reductase NAD(P)H in an acidic environment from 
a  bicationic  entity  to  its  radical  cationic  state,  the  binding  between  them  and  P5  was  severely 
weakened,  with  the  association  constant  dwindling  by  two  orders  of  magnitude,  resulting  in  the 
detachment of the host-guest pair and the dis-association of the SNPs. 
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DOX was therefore liberated from the confinement  of  the particles,  and led to  the restoration of  
fluorescence  as  well.  Figure  5b–e  demonstrates  the  controlled  drug  releasing  characteristics, 
distributions in normal tissues, and cancer cell inhibition efficiency, indicating the good encapsulation 
and cancer targeting capabilities (DOX concentration was higher in tumor treated with DOX-loaded 
SNPs than with DOX alone in contrast to that in other organs). In this work, the proximity/separation of 
the FRET pair was regulated in a very circuitous, but subtle, way by modulating the assembly of SBPs 
and FRET at the same time, producing an exquisite collaboration between stimuli-responsiveness of 
host-guest chemistry and fluorescence signaling of FRET.

Figure 5: (a) Procedure for the creation and disassembly of SNPs with DOX loading and 
dual fluorescence quenching; (b–e) Graphical depiction of the drug-delivering SNPs' in 
vivo effects: (b) blood circulation time of DOX.HCl and DOX-loaded SNPs as measured by 
DOX plasma concentration after  injection;  (d)  Tumor growth inhibition curves on the 
HeLa tumor model  treated with phosphate buffered saline (PBS),  DOX.HCl,  and DOX- 
loaded SNPs,  in that  order.  (e)  The average weight of  tumors in mice carrying HeLa 
tumors following the three different treatments indicated above [29]. 2016. Copyright. The 
Royal Society of Chemistry has granted permission for this reprint

3. Conclusion and future Perspectives

The innovative collaboration between FRET effects and host-guest chemistry has brought significant 
changes in  the fabrication of  a  wide range of  smart  fluorescent  materials  with  stimuli-responsive 
properties.  However,  in  this  emerging  field,  there  are  still  many  challenges  for  researchers  to 
overcome in order to play better light tricks. These supramolecular fluorescent nanoparticles, which 
were created through a non-covalent interaction, are likely to have applications in the diagnosis of  
cancer  disease  and  temperature  sensing.  Moreover,  the  amazing  evolution  of  dynamically 
constructed  FRET systems backed by  supramolecular  macrocyclic  chemistry  has  resulted  in  the 
creation of a wide range of smart fluorescent materials with extended applications. Furthermore, it is 
believed that more advanced supramolecular frameworks will have numerous biomedical applications 
in the future.
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