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ANALYSIS OF THERMAL STRESSES TO 2D PLANE THERMOELASTIC

INHOMOGENEOUS STRIP

ABHIJEET B. ADHE, KIRTIWANT P. GHADLE, AND UDAY S. THOOL

Abstract. This paper deals with study of the plane elasticity of thermoelastic problems for inho-

mogenous strip. Here, the original problems are reduced to set the governing equations in the volterra

integral equations by making the use of direct integration method. Further using the iteration tech-

nique the numerical calculations have been performed. The stress distribution obtained and calculated

numerically and shown graphically.

1. Introduction

A large development of the subject, thermoelasticity is motivated by various fields of engineering

sciences, during the last few decades. The main physical drawback in the theory of uncoupled ther-

moelasticity is that an elastic body has no effect on the temperature and vice versa. The interest of

researchers to study elasticity and thermo-elasticity problems has grown very fast due to wide applica-

tions to real world.

Biot [3] derived the equation of thermal conductivity by including the coupling between thermal fields

and strain fields. A novel work done by Lord et.al. [10] introduced two generalizations to the coupled

theory of thermoelasticity and given successful alternate to Fourier’s law in heat conduction. Tokovyy

et.al. in [15] emphasized on analytical treatment of the one dimensional and two dimensional elasticity

and thermoelasticity problems using direct integration method, for a long hollow cylinder and a long

annular radially non-homogeneous cylinder respectively. Babich et al. [2] solved the plane problem of

a horizontal concentrated load by using the linearized elasticity theory from an infinite inhomogeneous

stringer to an elastic infinite strip with initial stresses clamped at one edge. The problem is reduced to

system of integro-differential equations which then solved by means of Fourier Transform. Manthena

et. al. [12] analysed the same problems for a mixture of metals like copper and zinc. Jafari et al. [6]

discussed the stress analysis in an orthotropic infinite plate with a circular hole using complex variable

technique to the two dimensional thermoelastic problem. Kalynyak et al.[7] focused on development

by Prof. Vihak in the field of direct and inverse problems of heat conduction and thermomechanics

which are important in investigating problems of thermal power engineering. By considering an inverse

thermoelastic problem in [8] Prof. Kalyanyak discussed the presence of a stationary temperature field

for a long rectangular beam of inhomogeneous nature. Mahakalkar et. al. [11] studied thermoelastic

transient heat conduction problem with internal heat by using classical method. They investigated

results on temperature distibution, thermal deflection and stresses by integral transform. Iqbal Kaur

et.al.[5] studied recent thermoelastic theories and models related to micro-nano beams and bars, their

uses and limitations.
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Tokovyy [16, 17] discussed an analytical solution of plane themroelasticity inhomogeneous problem for

planes, half-planes and strips with the aid of direct integration method, here, the governing equations

reduced to an integral equations which are then solved by using iteration method which produces a

solution of the problem in explicit form. And extended their work in [18] in terms of stresses for a

infinite strip for a case of inhomogeneous isotropic material. Solution is found using Fourier transforms

and iteration method. Kushnir [9] used direct integration method for generalization of the original

equations of solution of 2D problems of thermoelasticity for solids with corner points and they are

reduced to a governing integrodifferential equations for a key function, an explicite form solution is

found. Tianhu [19] investigated the magneto-thermoelastic response of a homogeneous and isotropic

finite thin slim strip subjected to a moving heat source by using Lord-Shulman theory and Laplace

transform. Vigak [20, 21, 22] has been developed a method to find solution of the elasticity problems in

a semi-plane using the method of direct integration of equilibrium equation. Equilibrium conditions for

tractions and compatibility equations for the displacements has been found correct. In [23] Vigak et. al.

invented a new analytic method for solving quasi-static thermoelastic problem for stresses in rectangular

region, the initial problem is reduced to governing integral differential equations for stress components.

The solution is obtained as the series expansion according to Saint-Venant’s principle. Youssef et al.[24]

developed a new model of three dimensional generalized thermoelasticity problem by using classic L-

S model. The double Fourier transform and Laplace technique had been applied to the governing

equations subjected to rectangular traction free surface, with the study of the temperature analysis,

stresses, strain and displacement in a three dimensional half-space. Zhihe et. al. [25] emphasizes on

characterization of FGM strip using thermoelastic problem.

In the thermoelasticity one can determine the stresses produced due to the temperature field and

moreover to find the temperature distribution by internal forces which vary with time. Our intent of

this paper is to extend our own work [1, 4] for obtaining an analytical solutions to the thermoelastic

problems which occures in isotropic and inhomogeneous strip under some thermal condition applied.

2. Problem Formulation

Consider, 2D plane thermoelastic problem in the strip of inhomogeneous isotropic material with

infinite width R = {(x, y) ∈ (−∞,∞)× (−a, a)}, where a > 0 is dimensionless parameter.

Thermoelastic equillibrium of plane R is ruled by the equillibrium equations,
∂σxx
∂x

+
∂σxy
∂y

+ Fx = 0,

∂σxy
∂x

+
∂σyy
∂y

+ Fy = 0,

(2.1)

strain-compability equations,

∂2εyy
∂x2

+
∂2εxx
∂y2

=
∂2εxy
∂x∂y

, (2.2)

stress strain relations, 

εxx =
σxx
E1(x)

− v1(x)σyy
E1(x)

+ α(x)T (x, y),

εyy =
σyy
E1(x)

− v1(x)σx
E1(x)

+ α(x)T (x, y),

εxy =
σxy
G(x)

,

G1(x) =
E1(x)

2(1 + v1(x))
.

(2.3)
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Figure 1. Schematic diagram of strip under consideration.

Here, σxx, σyy, σxy are stress-tensor components, εxx, εyy, εxy denotes strain components, Fx, Fy are

stress dimensional projections of forces in dimensionless components respectively, and E1, G1, α, v1
denotes Young’s modulus, shear modulus, coefficient of thermal expansion and poisson’s ratio.

Due to temperature distribution, the normal and shearing stresses arise on the boundarres y = ±a in

the strip R,

σyy(x,−a) = −p1(x), σyy(x, a) = p2(x), (2.4)

σxy(x,−a) = −q1(x), σxy(x, a) = q2(x).

The two dimensional steady-state temperature T (x, y) can be found from the heat conduction equation

[13]
∂2T

∂x2
+
∂2T

∂y2
= −w(x, y), (2.5)

under conditions imposed on the boundary in the region −∞ ≤ x ≤ ∞

∂T

∂x
= 0 at x = ±∞,

T (x, y) + k1
∂T

∂y
= 0 at y = a,

T (x, y)− k2
∂T

∂y
= 0 at y = −a,

(2.6)

where, w(x, y) = q(x,y)
k and q(x, y) denoting the heat generated due to internal heat generated and

k1, k2 are coefficient of thermal conductivity.

Using equilibrium condition (2.1) we have

∂2σxx
∂x2

− ∂2σyy
∂y2

+
∂Fx
∂x
− ∂Fy

∂y
= 0.

Differentiating first equation in (2.1) with respect to x and second equation with respect to y and

subtracting, we get
∂2σxx
∂x2

+
∂Fx
∂x

=
∂2σyy
∂y2

+
∂Fy
∂y

.

Adding
∂2σyy

∂x2 on both sides which yields

∆σyy =
∂2σ

∂x2
+
∂Fx
∂x
− ∂Fy

∂y
(2.7)

where

∆ =
∂2

∂x2
+

∂2

∂y2
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denotes the two-dimensional Laplace differential operator. Putting stress-strain relations (2.3) and

equillibrium conditions (2.1), equation (2.2) can be written as

∆

[
(1− v1)

2G
σ + α(1 + v1)T

]
=
σyy
2

d2

dy2

(
1

G

)
− Fy

d

dy

(
1

G

)
− 1

2G

(
∂Fx
∂x

+
∂Fy
∂y

)
. (2.8)

The equations (2.7) and (2.8) are bounded by two boundary conditions (2.4) for σyy and for their

derivatives which satisfies equilibrium condition (2.1) at y = ±a:
σyy
∂y

= −∂q1
∂x
− Fy(x) at y = −a,

σyy
∂y

= −∂q2
∂x
− Fy(x) at y = a.

(2.9)

The shear stress is found by integrating the equilibrium conditions which gives

2σxy = q1 + q2 −
∫ a

−a
(
∂σxx
∂x

+ Fx)sgn(y − ξ)dξ −
∫ a

−a
(
∂σyy
∂y

+ Fy)sgn(x− η)dη (2.10)

where,

sgn =


1, for x > 0,

0, for x = 0,

−1, for x < 0.

3. Solution of Thermoelastic Problem

To find the solution of the formulated problem, we apply the Fourier transform [14] with respect to

x defined by

f̄(y;ω) =

∫ ∞
−∞

f(x, y) exp(−iωx)dx (3.1)

where f(x, y) is an arbitrary function, i2 = −1; ω is a parameter. We choose σyy and σ to be the

governing functions.

To calculate the key stresses, we apply the Fourier transform (3.1) to equation (2.7) to get(
d2

dy2
− ω2

)
σ̄yy = −ω2σ̄ + iωF̄x −

d

dy
F̄y. (3.2)

Applying Fourier integral transform (3.1) to equation (2.8) with the conditions in (2.4), we obtain(
d2

dy2
− ω2

)[
(1− v1)

2G
σ̄ + α(1 + v1)T̄

]
=
σ̄yy
2

d2

dy2

(
1

G

)
− F̄y

d

dy

(
1

G

)
− 1

2G

(
iωF̄x
∂x

+
∂F̄y
∂y

)
,

(3.3)

σ̄yy(x,−a) = −p̄1, σ̄yy(x, a) = p̄2 (3.4)

∂σ̄yy
∂y

(x,−a) = −iωq̄1 − F̄y(x,−a),
∂σ̄yy
∂y

(x, a) = iωq̄2 + F̄y(x, a).

The solution of differential equation (3.2) is

σ̄yy = c1coshωy + c2sinhωy +
1

ω

∫ y

−a

(
iωF̄x −

dF̄y
dy
− ω2σ̄

)
sinh(ω(y − ξ))dξ (3.5)
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where c1 and c2 are the constants of integration. Using the first two boundary conditions in (2.4), the

solution can be expressed as

σ̄yy = −p̄2cosh(ω(y + a))−
(
iq̄2 +

F̄x(x,−a)

ω

)
sinh(ω(y + a))

+
1

ω

∫ y

−a

(
iωF̄x −

dF̄y
dy
− ω2σ̄

)
sinh(ω(y − ξ))dξ.

(3.6)

It satisfies two integral conditions:∫ a

−a
σ̄sinhωξdξ = i(q̄1 + q̄2)

sinhωa

ω
+ (p̄2 − p̄1)

coshωa

ω
+
(
F̄y(x, a) + F̄y(x,−a)

) sinhωa
ω2

+
1

ω

∫ a

−a

(
iF̄x −

1

ω

dF̄y
dξ

)
sinhωξdξ,

(3.7)

and ∫ a

−a
σ̄coshωξdξ = i(q̄1 − q̄2)

coshωa

ω
− (p̄2 + p̄1)

sinhωa

ω
+
(
F̄y(x, a)− F̄y(x,−a)

) coshωa
ω2

+
1

ω

∫ a

−a

(
iF̄x −

1

ω

dF̄y
dξ

)
coshωξdξ.

(3.8)

Hence, the solution of equation (3.3) can be found as

σ̄ =
2G1

1− v1
[
c1coshωy + c2sinhω − α(1 + v1)T̄ + Θ(y) + Φ(y) +Q(y) + Ψ(y)

+

∫ y

−a
σ̄(η)K(y, η)dη

] (3.9)

where,

Θ(y) = − p̄2
2ω

∫ y

−a

d2

dξ2

(
1

G(ξ)

)
cosh(w(a+ ξ))sinh(w(y − ξ))dξ,

Φ(y) = − iq̄2
2ω

∫ y

−a

d2

dξ2

(
1

G(ξ)

)
sinh(w(a+ ξ))sinh(w(y − ξ))dξ,

Q(y) =
1

2ω

∫ y

−a

d2

dξ2

(
1

G(ξ)

)
sinh(ω(y − ξ))

∫ ξ

−a

(
iF̄x −

1

ω

dF̄y
dξ

)
sinh(ω(ξ − η))dηdξ,

Ψ(y) = − 1

ω

∫ y

−a

(
F̄y(ξ)

(
1

G(ξ)

)
+

1

2G1(ξ)
(isF̄x +

dF̄y
dξ

)

)
sinh(ω(y − ξ))dξ

− F̄y(−a)
q̄2

2ω2

∫ y

−a

d2

dξ2

(
1

G(ξ)

)
sinh(w(a+ ξ))sinh(w(y − ξ))dξ,

K(y, η) =

∫ y

−η

d2

dξ2

(
1

G(ξ)

)
sinh(w(y − ξ))sinh(w(ξ − η))dξ.

Different types of techniques can be used to determine the solution of equation (3.9). Here we use

the method of resolvent kernel

σ̄ = 2G1

1−v1

[
c1ncoshωy + c2nsinhω − α(1 + v1)T̄ + Θ(y) + Φ(y) +Q(y) + Ψ(y)

+
∫ y
−a σ̄n(η)K(y, η)dη

]
.

The resolvent kernel is calculated as

<(y, η) =

∞∑
n=0

Kn+1(y, η) (3.10)
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where 
K1(y, ξ) = K(y, ξ),

Kn+1 =

∫ y

−a
K(y, ξ)Kn(ξ, η)dη, n = 1, 2, · · · .

We have a fact that the recurring kernels Kn+1 −→ 0 as n −→ ∞ which shows the initial condition

for convergence holds . Consequently, for a natural number N,

<(y, ξ) ≈ <N (y, ξ) =

N∑
n=0

Kn+1(x, ξ) (3.11)

We construct a solution of equation (3.9) by using resolvent-kernel technique, yields,

σ̄ =
2G1

1− v1
[
Cs1(y) +Ds2(y) + τ(y)− α(1 + v1)T̄

]
(3.12)

where,

s1(y) = coshωy +

∫ y

−a
coshωξ<(y, ξ)dξ,

s2(y) = sinhωy +

∫ y

−a
sinhωξ<(y, ξ)dξ,

τ(y) = Θ(y) + Φ(y) +Q(y) + Ψ(y) +

∫ y

−a
(Θ(ξ) + Φ(|xi) +Q(ξ) + Ψ(ξ))<(y, ξ)dξ,

C =
D2R1 −D1R2

D2D3 −D2
1

,

D =
D3R2 −D1R1

D2D3 −D2
1

,

R1 =
1

2

∫ a

−a
σ̄ coshωξ<(y, ξ)dξ,

R2 =
1

2

∫ a

−a
σ̄ sinhωξ<(y, ξ)dξ,

D1 =

∫ a

−a

G(ξ)

1− v1(ξ)
sinhωξ coshωξdξ,

D2 =

∫ a

−a

G(ξ)

1− v1(ξ)
sinh2 ωξdξ,

D3 =

∫ a

−a

G(ξ)

1− v1(ξ)
cosh2 ωξdξ.

Integral conditions of σ̄ can be computed using equation (3.7)-(3.8) as

σ̄yy = −p̄2cosh(ω(y + a))−
(
iq̄2 +

F̄x(x,−a)

ω

)
sinh(ω(y + a))

+ ω

∫ y

−a

1

1− v1
[2G (C coshωξ +D sinhωξ − τ(ξ)) + α(ξ)E1(ξ)] sinh(ω(y − ξ))dξ.

(3.13)

After the total plane stress is found in the form of equation (3.12), the normal stress σ̄yy can be found

by using equation (3.6). Then the stress σ̄xx is computed by

σ̄xx = σ̄ − σ̄yy. (3.14)
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If E1, G1 and v1 are constant, then equation (3.12) gives the same expressions for σ and σyy. Then,

equation (3.9) takes the form

σ̄ = E1

[
Ccoshωy +Dsinhω − α(1 + v1)T̄ + Θ(y) + Φ(y) +Q(y) + Ψ(y)

+

∫ y

−a
σ̄(η)K(y, η)dη

]
(3.15)

which is an analytic solutions to the given thermoelastic problem in R. The shear stress can be

determined from equation (2.1) as

σ̄xy =
i

ω

(
dσ̄yy
dy

+ F̄y

)
,

which yields

σ̄xy = −i
[
p̄2 sinh(ω(y + a))− i

(
iq̄2 +

F̄x(x,−a)

ω

)
cosh(ω(y + a))

+ω

∫ y

−a

1

1− v1
[2G (C coshωξ +D sinhωξ − τ(ξ)) + α(ξ)E1(ξ)] cosh(ω(y − ξ))dξ + F̄y

]
.

(3.16)

We can see that, the stresses σ̄ and σ̄xy are depending only on Poisson’s ratio which is deviating in

y-coordinate. The stress-tensor components (3.13) − (3.16) can be found by means of the inversion

formula

f(x, y) =
1√
2π

∫ ∞
−∞

f̄(y, ω) exp(iωx)dω

4. Numerical Results

Consider a strip loaded by

p1 = p2 = Aµ(x) , µ(x) = exp(−bx2) (4.1)

where, q1 = q2 = 0 at Fx = Fy = 0 for T = 0. Here, A, b are constants and a > 0. Numerical

computations have been done using Python programming language. Let, G = G0 exp(ky), v1 =

constant, where, k is constant and G0 = E0/2(1 + v0). Distribution of a function µ(x) for b = 2 is

depicted in Figure 2. It shows equation (4.1) gives smooth curve and highest value for x → 0 and

vanishes for x→ ±∞ rapidly, which makes the equation more useful to verify analytic solution.

Introduce the parameter

v0 = 1 +
1

1− by
Figure 3 demonstrates the distribution of dimensionless stresses in R for different valus of b. The solid

line curve shows the case of the homogeneous material properties i.e. b=0. The case b = 0.5 and b = 1

corresponds to dotted and dashed lines respectively on stress distribution. As the expection the curves

are symmetric about y = 0 which clearly shows an effect of inhomogeneity. Thus, transversal stress σ̄yy
should have maximum value at x = 0 which is shifted towards the direction of inhomogeneity increase.

5. Conclusions

This article develops an approach for solving an analytic solution of the plane two dimensional

thermoelastic problems in terms of inhomogeneous isotropic strip. In this study we arrive at following

conclusions.

• The original thermoelastic problem is reduced to that of solution of integral equations using

direct integration method.
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Figure 2. Distribution of µ(x)

Figure 3. Distribution of σ̄yy for b=0, 0.5, 1

• It provides the solution of volterra integral equation of second kind which is then solved by

resolvent kernel method which provides an efficient technique for analysis of inhomogeneous

thermoelastic problems in terms of stress components in the strip R.

• The presesnted technique can be applied without any restrictions for material properties .

• One can solve corresponding inverse thermoelastic problem in displacements using constructed

solutions.

• In the present article, analytical solution of thermal stresses is constructed by assuming the

fact that, stresses are vanishing at infinity. We can see that, same technique can be used for

problems with different loading conditions, instead of Fourier transform.
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