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INVERSE RECONSTRUCTION OF CELL PROLIFERATION LAWS IN CANCER

INVASION MODELLING

MAHER ALWUTHAYNANI AND DUMITRU TRUCU

Abstract. The process of local cancer cells invasion of the surrounding tissue is key for the overall

tumour growth and spread within the human body, the past 3 decades witnessing intense mathematical

modelling efforts in this regard. However, for a deep understanding of the cancer invasion process,

these modelling studies require robust data assimilation approaches. While being of crucial importance

in assimilating potential clinical data, the inverse problems approaches in cancer modelling are still in

their early stages. In this regard, questions concerning the retrieval of the characteristics of tumour

cells motility, cells mutations, and cells population proliferation remain widely open. This study

deals with the identification and reconstruction of the usually unknown cancer cell proliferation law

in cancer modelling from macroscopic tumour snapshot data collected at some later stage in the

tumour evolution. Considering two basic tumour configurations, associated with the case of one

cancer cells population and two cancer cells sub-populations that exercise their dynamics within the

extracellular matrix, we combine Tikhonov regularization and gaussian mollification approaches with

finite element and finite differences approximations to reconstruct the proliferation laws for each of

these sub-populations from both exact and noisy measurements. Our inverse problem formulation is

accompanied by numerical examples for the reconstruction of several proliferation laws used in cancer

growth modelling.

1. Introduction

Initiated with mutations in individual normal cells and followed by rapid accumulation of early local-

ized cancer cells mass via intense mitotic activity, the development of solid malignant tumours undergo

several key stages in its evolution. These range from local pre-metastatic invasion, to tumour induced

angiogenesis and metastatic spread towards remote locations within the human body giving rise to sec-

ondary tumours [59]. With its dynamics several spanning spatial and temporal scales, there are several

hallmarks that a malignant tumour progression exhibits. Among these hallmarks, of key importance

for the early pre-metastatic tumour development are the abnormal proliferation, secretion of proteolytic

enzymes, and invasion of the surrounding tissue [22, 23].

Besides the cancer cells population, a malignant solid tumour contains an entire community of cells

(such as immuno-inflammatory cells, stromal cells, fibroblasts) which together with the cancer cells

exercise their coupled dynamics within the extracellular matrix (ECM) [59]. Indeed, while consisting

of a mixture of major fibres (such as collagen and fibronectin) and small fibrils as well as soluble

components (such as calcium ions Ca2+), the ECM not only provides the scaffold for the tissue, but

also represents the environment for the complex cancer dynamics enabled through cell-cell and cell-

matrix interactions that are mediated through intense molecular signalling [25, 26, 27, 46, 45].
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Well-known for significant alterations and damage caused within the human body, the progression of

solid tumours is characterized by sustained cancer cells proliferation, secretion of both growth factors

and matrix degrading enzymes (MDEs), and intense migration within the surrounding tissue [59].

While exploring any space created through the degradation of the ECM by the MDEs, in their collective

migration the cancer cells combine random motility with directional movement triggered by cell-adhesion

processes [37, 41, 58, 60]. Notable here is the well documented process of “durotaxis” of the cancer cells

(i.e., movement towards stiffer ECM regions [46, 45]). In particular we distinguish here the “haptotactic”

motility by which cancer cells migrate against ECM gradients towards higher ECM density regions [36].

Directly involved in underpinning the processes of both local tumour invasion and metastasis, the

cancer cell proliferation plays a central role within the overall cancer growth and spread [22, 23, 59].

Mediated by the internal circadian clock and its relation to cell cycle [9, 19], cancer cell proliferation

takes advantage of favourable metabolic conditions [62] and contributes directly not only to the in-

crease in tumour cell mass but also in its heterogeneity [1, 49]. Indeed, during the mitotic process,

cells can divide not only in two identical daughter cells, but can also give rise to a new lineages of cells

due to genetic mutations during the DNA replication [24, 54]. The emerging cancer cell population

heterogeneity is a key characteristic for all tumours [34], having major implications in the response of

malignant tumour to treatment. Notable here is for instance the situation met in glioma progression

where the multiple sub-populations of glioma cells exhibit non-uniform reaction to most available treat-

ment strategies [12, 21].

The past four decades or so have witnessed intense modelling efforts addressing the process of cancer

growth and spread [2, 3, 5, 4, 7, 8, 10, 13, 18, 20, 39, 40, 57]. These proposed a range of local contin-

uum spatio-temporal approaches to address the tissue-scale (macro-scale) tumour dynamics, exploring

increasing levels of tumour complexity by gradually accounting for higher degree of biological infor-

mation enabling spatial transport, namely: undirected random movement, haptotactic directed cancer

cells migration, secretion of MDEs followed by degradation and remodelling of the ECM. More recent

modelling approaches (including those based on the theory of mixtures [11, 44, 47]) explored all these

spatio-temporal dynamics of tumour spread by considering increasingly complex aspects regarding het-

erotypic nature of tumour microenvironment and tumour heterogeneity, including considering the case

of coupled dynamics of multiple sub-populations of cancer cells that arise as a result of mutations from

the initial cancer cell population [6, 15]. However, while most of these models considered the underlining

proliferation process to be of logistic-type [21, 32], with alternative Gompertz and von Bertalanffy laws

for cell population growth also being proposed and explored [14, 31, 56], the precise form of the cancer

cells proliferation law remains a big unknown in cancer modelling.

Given the central role that the proliferation process plays within the entire cancer dynamics, the

retrieval of the unknown proliferation law from measured data is of key importance for the understand-

ing of tumour progression. Mathematically, this proliferation law reconstruction can be regarded as

a source identification problem for a coupled system of parabolic equations. However, despite signif-

icant progress made for source identification problems (mostly for single reaction-diffusion equations

[16, 29, 42, 43] and more recently for systems [30]), to the authors knowledge this particular inverse prob-

lem associated with solution-dependent source identification within systems of reaction-diffusion-taxis

equations (induced by random motility and haptotactic cancer cells movement) with nonlinear coupling

both in the source and the haptotaxis terms is novel and has not been addressed so far by previous works.
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In this paper we address the new inverse problem concerning the retrieval of the unknown prolif-

eration law within tumour invasion modelling that considers both random and directed haptotactic

movement the tumour cells population which degrades and remodels the surrounding ECM density. To

that end, for the tumour cells population, we consider two cases, namely: (1) the case of one cancer

cell population; and (2) the case of two cancer cells sub-populations consisting of a primary tumour

cell subpopulation and a mutated secondary tumour cell subpopulation. Furthermore, we assume the

knowledge of additional information in terms of both exact and noisy measurements of the tumour

constituent density at a later time in the tumour evolution. Finally, we test our inversion approach on

several proliferation laws that are usually used in cancer modelling.

2. A Basic Cancer Invasion Model with a Single Tumour Cells Population

We first consider a simple macro-scale cancer dynamics (similar to the one considered in [5] but

ignoring the matrix degrading enzymes) where the growing malignant tumour consisting of a cancer cell

population c(x, t) mixed with an ECM density v(x, t) is assumed here to develop its coupled dynamics

on a two-dimensional compact tissue domain Ω ∈ R2 over a time interval [0, T ], i.e., (x, t) ∈ Ω× [0, T ].

In the presence of an unknown cancer cell proliferation law f(c, v), per unit time the cancer cells

population is assumed to exercised a spatial transport driven by a combination of random movement

and haptotactic bias against ECM gradients. At the same time, the tumour cells degrade the ECM

density and remodels its spatial distribution. Therefore, mathematically, the basic cancer invasion

model that we consider here is of the form

∂c

∂t
= D1∆c− η1∇ · (c∇v) + f (c, v)︸ ︷︷ ︸

unknown proliferation

(2.1a)

∂v

∂t
= −ρcv + µv (Kc − c− v)

+
(2.1b)

where Kc > 0 represents the tissue carrying capacity, and (Kc − c − v)+ := max((Kc − c − v)+, 0),

ρ > 0 is the rate at which the ECM is degraded in the presence of cancer cells, and µv ≥ 0 is the

ECM remodelling rate. While the general proliferation law f(c, v) is considered here to be unknown

and its identification will be our main focus in this work, most modelling papers assume this law to

be of logistic or Gompertz type [21, 32, 53]. These widely used proliferation laws are of the following

forms:

• Logistic proliferation:

f̄ (c, e) := µcc (Kc − c− e) , (2.2)

• Gompertz proliferation:

f̄ (c, e) := µcc log

(
Kc

c+ e

)
, (2.3)

where µc > 0 is an intrinsic proliferation rate that is usually taken to be either constant or ECM

dependent, and e is the tissue environment density (that include ECM density), and which unless

otherwise specified, this is taken to be the ECM density, i.e., e := v, as it is the case for instance in

model (2.1).

Finally, the cancer invasion coupled dynamics expressed in (2.1a) and (2.1b) is started with the initial

conditions

c(x, 0) := c0(x) and v(x, 0) := v0(x), (2.4)

where c0(·) and v0(·) are positive functions representing initial densities of cancer cells and ECM,

respectively. Furthermore, as during the dynamics, the cells are not supposed to leave the tissue
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region Ω, we assume here that the coupled dynamics (2.1a) and (2.1b) takes place in the presence of

zero Neumann boundary conditions, namely:

∂c

∂n

∣∣∣∣
∂Ω

= 0 and
∂v

∂n

∣∣∣∣
∂Ω

= 0, (2.5)

where n(ξ) is the usual normal direction at any given tissue boundary point ξ ∈ ∂Ω. Finally, in the

following sections, the tumour dynamics (2.1) together with the initial and boundary conditions and

(2.4) and (2.5) with be referred to as the “forward model”.

3. Inverse Problem for the Unknown Cancer Cells Proliferation Law in Model (2.1)

Considering here the forward model defined by the tumour dynamics (2.1) in the presence of the initial

and boundary conditions (2.4) and (2.5), we aim to reconstruct the unknown cancer cells proliferation

law f(c, v) from additional information enabled by measurements of the cancer cells and ECM densities

taken at a later time tf > 0 in the tumour evolution. These measurements are therefore given in the

form of two functions on Ω that are considered to be known in advance, namely

c∗(·) : Ω→ R for the cancer density, (3.1a)

v∗(·) : Ω→ R for the ECM density. (3.1b)

In the following, we will explore the reconstruction of the unknown cancer cells proliferation law f(c, v)

when the known measurements c∗(x) and v∗(x) will be given both as exact (accurate) data and as noisy

data, ∀x ∈ Ω.

3.1. Inverse Problem Setup: Forward Solver Computational Formulation. Assuming a uni-

form discretization GΩ := {(xi, yj)}i,j=1...N of step size ∆x = ∆y > 0 for a square maximal tissue

region Ω ⊂ R2 where the tumour exercise its dynamics, at any given time t ∈ [0, tf ] the discretizations

of cancer densities c(·, t) and v(·, t) are therefore given by the N ×N matrices c̃(t) := {c̃i,j(t)}i,j=1...N

and ṽ(t) := {ṽi,j(t)}i,j=1...N , with c̃i,j(t) := c((xi, yj), t) and ṽi,j(t) := v((xi, yj), t), ∀ i, j = 1 . . . N .

Using the a priori knowledge that the cumulated ECM and cancer densities could not exceed the

tissue carrying capacity Kc, the unknown proliferation law can therefore be written-down in terms of

an unknown (for the moment) function Sc
∗,v∗ : [0,Kc] × [0,Kc] → [0,∞). Moreover, this unknown

function Sc
∗,v∗ will be appropriately identified within a suitable family of function S such that the

corresponding solution for the tumour model (2.1) will match the measurements given in (3.1). Thus,

denoting through f c
∗,v∗(·, ·) the unknown proliferation for which the corresponding solution of model

(2.1) matches measurement (3.1), at each (xi, yj) we can write this as

f c
∗,v∗(c̃i,j(t), ṽi,j(t)) := Fi,j(c̃(t), ṽ(t), Sc

∗,v∗),

where F(·, ·, ·) := {Fi,j(·, ·, ·)}i,j=1...N , F(·, ·, ·) : RN×N × RN×N × S → RN×N , represents a “trial

proliferation operator”, which will be specified below alongside the family of functions S. Indeed,

assuming an uniform discretization for the domain [0,Kc] × [0,Kc] given by an equally spaced grid

G
M

:= {(ηl, ζk)}l,k=1...M of step size ∆η = ∆ζ > 0, the unknown function Sc
∗,v∗ will be identified

through a suitable approximation within the following M×M−dimensional space of functions associated

with G
M

, namely

S :=

{
s : [0,Kc]× [0,Kc]→ R

∣∣∣∣ s|El,k
=

∑
p,q=0,1

s(ηl+p, ζk+q)φl+p,k+q, ∀El,k ∈ GtilesM

}
(3.2)

where Gtiles
M

:= {El,k := [ηl, ηl+1]× [ζk, ζk+1] | l, k = 1 . . .M − 1}, and ∀ El,k ∈ GtilesM
, {φl+p,k+q}p,q=0,1

are the usual bilinear shape functions on El,k. Thus, for any candidate function s ∈ S, the corresponding
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trial proliferation operator F has each of its components Fi,j , ∀ i, j = 1 . . . N , given by

Fi,j(c̃s(t), ẽs(t), s) :=
∑

p,q=0,1

s(ηl+p, ζk+q)φl+p,k+q(c̃
s
i,j(t), ẽ

s
i,j(t)),

with (l, k) being independent of its choice within the associated set of indices Λi,j , namely:

Λi,j :=
{
(l′, k′)∈{1, . . . ,M−1}×{1, . . . ,M−1} |∃El′,k′ ∈ GtilesM

such that (c̃si,j(t), ẽ
s
i,j(t))∈El′,k′

}
.

(3.3)

where c̃s(t) represents the proliferating cell population, and ẽs(t) represents the tissue environment. In

particular, here the proliferating cells population c̃s(t) := {c̃si,j(t)}i,j=1...N and the tissue environment

ẽs(t) = ṽs(t) := {ṽsi,j(t)}i,j=1...N represent the solutions at the grid points and time t > 0 for the cancer

cells and ECM densities obtained with model (2.1) when this uses Fi,j(c̃s(t), ṽs(t), s) as proliferation

law given in (3.3). Thus, model (2.1) can be recasted in space-discretized form as

∂

∂t

[
c̃s

ṽs

]
=

[
H1(c̃s, ṽs, s)

H2(c̃s, ṽs, s)

]
. (3.4)

Here, H1(·, ·, ·) = {H1
i,j(·, ·, ·)}i,j=1...N represents the spatial discretization corresponding to the first

equation in (2.1), and each of its components H1
i,j(·, ·, ·), ∀ i, j = 1 . . . N , are given by

H1
i,j(c̃

s(t), ṽs(t), s) :=

D1

(∆x)
2

(
c̃si−1,j(t) + c̃si+1,j(t) + c̃si,j−1(t) + c̃si,j+1(t)− 4c̃si,j(t)

)
− η1

2 (∆x)
2

((
c̃si,j(t) + c̃si+1,j(t)

) (
ṽsi+1,j(t)− ṽsi,j(t)

)
−
(
c̃si,j(t) + c̃si−1,j(t)

) (
ṽsi,j(t)− ṽsi−1,j(t)

)
+
(
c̃si,j(t) + c̃si,j+1(t)

) (
ṽsi,j+1(t)− ṽsi,j(t)

)
−
(
c̃si,j(t) + c̃si,j−1(t)

) (
ṽsi,j(t)− ṽsi,j−1(t)

))
+ Fi,j(c̃s(t), ṽs(t), s).

(3.5)

On the other hand H2(·, ·) = {H2
i,j(·, ·)}i,j=1...N represents the discretization of the ECM equation

corresponding to the second equation in (2.1), and each of its components H2
i,j(·, ·), ∀ i, j = 1 . . . N , are

given by

H2
i,j(c̃

s(t), ṽs(t)) := −αc̃si,j(t)ṽsi,j(t) + µ2(Kc − c̃si,j(t)− ṽsi,j(t))+. (3.6)

Finally, considering a uniform time discretization {tn}n=0...L, with of time step ∆t := T/(L − 1), for

each n ∈ {1, . . . , L}, a simple Euler time marching step for system (3.4) can be formalized as usual via

the associated operator K̃s : RN×N × RN×N → RN×N × RN×N given by

K̃s

([
c̃s,n

ṽs,n

])
:=

[
c̃s,n

ṽs,n

]
+ ∆t

[
H1(c̃s,n, ṽs,n, s)

H2(c̃s,n, ṽs,n)

]
, (3.7)

where c̃s,n := c̃s(tn), and ṽs,n := ṽs(tn), while the right hand side operators are correspondingly given

H1(c̃s,n, ṽs,n, s) := H1(c̃s(tn), ṽs(tn), s) and H2(c̃s,n, ṽs,n) := H2(c̃s(tn), ṽs(tn)). This however, enables

us to formulate the “forward operator” K between the family of function S where we search for the

appropriate cancer cells proliferation function Sc
∗,v∗ and the space where the discretized measurements

(3.1) are recorded. Hence, the forward operator K : S → RN×N × RN×N is defined as

K(s) := K̃s ◦ K̃s ◦ · · · · · · ◦ K̃s︸ ︷︷ ︸
L−1 times

([
c̃0
ṽ0

])
(3.8)

where c̃0 := {c0(xi, yj)}i,j=1,...,N and c̃0 := {c0(xi, yj)}i,j=1,...,N are the discretized initial conditions

(2.4) for the governing tumour forward model. Hence, for each s ∈ S, the forward operator K gives

the spatio-temporal progression of the initial condition [c̃0, ṽ0]T under the invasion model (2.1), which
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is obtained when the cell proliferation law at each instance of time t is given by the trial proliferation

operator F evaluated on the 3rd variable at s (i.e., the proliferation law is given by F(c̃s(t), ṽs(t), s)).

3.2. The Inverse Problem Regularization Approach. As we can immediately observe, from (3.7)

and (3.8) we have that our forward operator K is given as a finite composition of affine functions of the

form

S 3 s 7−→ K̃s ∈ `2(`2(E × E); `2(E × E)), (3.9)

with `2(`2(E×E); `2(E×E)) being the usual finite-dimensional Bochner space of square integrable vector-

value functions [61] with respect to the counting measure (see [48], p. 27) that are defined on `2(E ×E)

and take values in `2(E × E), where E := {Ei,j}i,j=1...N represents the standard basis of elementary

matrices associated with the grid G
Ω

. As a direct consequence, we immediately obtain that this is

both continuous and compact, from where we obtain that K is also closed and sequentially bounded

[61]. Therefore, we obtain that K satisfies the hypotheses assumed in [17] that ensure convergence

for the nonlinear Tikhonov regularization strategy given by the functionals {Jα}α>0, where for α > 0,

Jα : S → R is defined by

Jα (s) :=

∥∥∥∥K(s)−
[
c̃∗

ṽ∗

] ∥∥∥∥2

2

+ α‖s‖22, ∀s ∈ S. (3.10)

This enables us to identify Sc
∗,v∗ as the limit as α → 0 of the points of minimum sα of Jα. The two

norms involved in (3.10) represent the usual Euclidean norms on the corresponding finite dimensional

spaces. Indeed, while the first is the standard Euclidean norm on RN×N ×RN×N , the second is also the

Euclidean norm induced on the M×M−dimensional space of functions S via the standard isomorphism

that can be established between S and RM×M by which each s ∈ S is uniquely represented through its

nodal values {s(ηl, ζk)}l,k=1...M with respect to the bilinear basis functions {φ̄l,k}l,k=1...M associated to

GM [28], i.e.,

since s =
∑

l,k=1...M

s(ηl, ζk)φ̄l,k, we therefore make the identification: s ≡ {s(ηl, ζk)}l,k=1...M . (3.11)

Finally, in (3.10), c̃∗ and ṽ∗ represent the discretized measurements of the densities of cancer cells and

ECM given in equations (3.1a)-(3.1b), i.e., c̃∗ := {c∗(xi, yj)}i,j=1,...,N and ṽ∗ := {v∗(xi, yj)}i,j=1,...,N .

Here we consider that the measurements data given in (3.12a)-(3.12b) are either exact or are corrupted

by a certain level δ ≥ 0. Thus, maintaining for simplicity the measurement notation unchanged, these

measurements data are given by

c̃∗(x) = c̃∗exact(x) + δγc(x), (3.12a)

ṽ∗(x) = ṽ∗exact(x) + δγv(x), (3.12b)

where, ∀ x ∈ Ω, we have that c̃∗exact(x) and ṽ∗exact(x) are assumed to be the exact data, and γc(x) and

γv(x) are signal-independent noise generated from a Gaussian normal distribution with mean zero and

standard deviations σc and σv, respectively, given by

σc :=
1

λ (Ω)

∫
Ω

c̃∗exact(x) dx, (3.13a)

σv :=
1

λ (Ω)

∫
Ω

ṽ∗exact(x) dx, (3.13b)

with λ (·) being the usual Lebesgue measure. In the numercial results below, we generate the ran-

dom variables γc(x) and γv(x) via MATLAB function normrnd by taking {γc(xi, yj)}i,j=1...N :=

normrnd (0, σc, N ×N) and {γv(xi, yj)}i,j=1...N := normrnd (0, σv, N ×N).
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3.3. Reconstruction of the logistic and Gompertz laws in cancer model (2.1). We explore now

the inversion approach that we formulated so far in the context of forward model (2.1) by proceeding

with the reconstruction of two of the most widely used cancer cells proliferation laws, namely: (1)

logistic proliferation; and (2) Gompertz proliferation.

Initial Conditions. The initial conditions (2.4) that we consider in the computations for the forward

model (2.1) are taken here to be of the form

c0(x) := 0.5

(
exp

(
−‖x− (2, 2) ‖22

0.03

)
− exp (−9.407)

)
, (3.14a)

v0(x) := 0.5 + 0.3 · sin (4π · ‖x‖2) , ∀x ∈ Ω (3.14b)

To identify the cancer cells proliferation law, we consider both exact and noisy measurement data (3.12)

as additional information for the forward model (2.1) in the presence of initial conditions (3.14) and

boundary conditions (2.5). Specifically, we consider that the exact data (namely c̃∗exact(x) and ṽ∗exact(x))

that appear in (3.12) are given by the solution c̄ and v̄ at the final time tf := T for the forward model

(2.1), i.e.,

c̃∗exact(x) := c̄(x, tf ) and ṽ∗exact(x) := v̄(x, tf ), ∀x ∈ Ω, (3.15)

which is obtained when (2.1) uses a known proliferation law f(c, v) that is specified as appropriate for

each of the two cases, namely:

Case 1: for the reconstruction of the logistic cancer cell proliferation law, model (2.1) uses the logistic

cell proliferation law f̄(c, v) given in (2.2), i.e., f(c, v) := f̄(c, v);

Case 2: for the reconstruction of the Gompertz cancer cell proliferation law, model (2.1) uses the Gom-

pertz cell proliferation law f̄(c, v) given in (2.3), i.e., f(c, v) := f̄(c, v).

For each regularization parameter α > 0 considered here, the minimisation process for Jα is initiated

with s0 = I × 10−3, (where I represents the M ×M matrix of ones), and for the actual minimisation

we employed here the nonlinear minimisation MATLAB function lsqnonlin. Finally, since there are no

data to test the trial proliferating operators beyond the maximal accessible region Ac defined by the

minimum and maximum values of the solution, i.e.,

Ac := [c̄min, c̄max]× [v̄min, v̄max], with:

c̄min := min
(x,t)∈Ω×[0,T ]

c(x, t), c̄max := max
(x,t)∈Ω×[0,T ]

c(x, t),

v̄min := min
(x,t)∈Ω×[0,T ]

v(x, t), v̄max := max
(x,t)∈Ω×[0,T ]

v(x, t),

the reconstructions in this section will be attempted only for the restriction of the sought proliferation

laws to Ac. An acceptable numerical reconstruction of the proliferation law Sc
∗,v∗ , i.e.,

Sc
∗,v∗ := sα

∗
, (3.16)

is obtained for the choice of the regularization parameter α∗, which throughout this work is selected

based on a standard discrepancy principle argument [35].

Figure 1 shows the reconstruction of the logistic cancer cell proliferation law for cancer model (2.1)

in the presence of the measurements given by (3.12) and (3.15) that are considered here both exact

and affected by a level of noise δ ∈ {1%, 3%}. For comparison, the first row of this figure shows the

true logistic proliferation law restricted at the maximal accessible region Ac where the reconstruction is
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a)

b)

Figure 1. Reconstruction of logistic proliferation within model (2.1) obtained using the parameters

given in Table 1: row a) the true logistic proliferation law restricted to Ac; row b) the reconstructed logistic

proliferation law on Ac in the presence of exact and noisy data. Row b) shows the reconstructions of logistic

cancer cell proliferation law obtained for: (left) exact data and α∗ = 10−10; (centre) 1% noisy data and

α∗ = 10−3; and (right) 3% noisy data and α∗ = 10−2. For all plots in this figure we have that: 1) the first

axis represents the the values for c ∈ [c̄min, c̄max]; 2) second axis represents the values for v ∈ [v̄min, v̄max];

and 3) the colour bars represent the magnitude of proliferation law or its reconstructions at each (c, v) ∈ Ac.

being attempted. The second row of the figure show from left to right the reconstruction of the logistic

proliferation law on Ac with no noise, 1%, and 3% of noise in the measured data, respectively.

Similarly, Figure 2 shows the reconstruction of Gompertz cancer cell proliferation law for cancer

model (2.1) in the presence of the measurements given by (3.12) and (3.15) that are considered here

both exact and affected by a level of noise δ ∈ {1%, 3%}. Again, the first row shows the true Gompertz

law restricted to Ac where the reconstruction is attempted. The second row of the figure show from

left to right the Gompertz proliferation reconstruction on Ac with no noise, 1%, and 3% of noise in the

measured data, respectively.

From Figure 1 and Figure 2 we observe that we obtain good proliferation laws reconstructions in both

cases (i.e., logistic and Gompertz, respectively) when the measurement data are not affected by noise.

However, as expected, as soon as the level of noise increases in the measurements, the reconstruction

gradually looses accuracy both in the case of logistic law (shown in Figure 1) and in the case of Gompertz

law (shown in Figure 2).

4. Extended Tumour Invasion Model with two Cancer Cells Subpopulations

We expand now our investigation to explore the reconstruction of the cancer cell proliferation laws

in the context of an extended tumour invasion model that assumes not just one but two cancer cels

subpopulations. Indeed, as the tumour evolve, cells from the initial primary tumour cell population

undergo genetic mutations and give rise to a second mutated cancer cell population [24, 54] that is

usually more aggressive [52], spreading faster and further in the human tissue than the first one. In this

context, the simultaneous identification of the unknown proliferation law for both primary and mutated

cancer cells subpopulations from measured data a later time during the tumour evolution remains of
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a)

b)

Figure 2. Reconstruction of Gompertz proliferation within model (2.1): row a) the true Gompertz

proliferation law restricted to Ac obtained using the parameters given in Table 1; row b) the reconstructed

Gompertz proliferation law on Ac in the presence of exact and noisy data. Row b) shows the reconstructions

of Gompertz cancer cell proliferation law obtained for: (left) exact data and α∗ = 10−8; (centre) 1% noisy

data and α∗ = 10−3; and (right) 3% noisy data and α∗ = 10−3.For all plots in this figure we have that:

1) the first axis represents the the values for c ∈ [c̄min, c̄max]; 2) second axis represents the values for

v ∈ [v̄min, v̄max]; and 3) the colour bars represent the magnitude of proliferation law or its reconstructions

at each (c, v) ∈ Ac.

critical interest for the applicability of these models in concrete medical situations, where the estimate

of the true extent of the tumour from available patient data is of paramount importance.

4.1. Two Cancer Cells Subpopulations Tumour Invasion Model. Denoting the density of the

primary cancer cel subpopulation by c1(x, t) and the density of mutated cancer cells subpopulation by

c2(x, t), these are mixed with a density of ECM (that continues to be denoted by v(x, t)) and together

exercise a coupled spatio-temporal dynamics (on the tissue region Ω, over the time interval [0, T ]) that

is similar in nature to the one discussed in the case of a single cancer cel population captured by

forward model (2.1). Indeed, while per unit time mutations occur between primary tumour cells and

the mutated cancer cells, both subpopulations exercise a random movement and haptotactic directed

motility on ECM gradients in the presence of a proliferation laws that here are considered unknown for

each of the two subpopulations. On the other hand, both cancer cells degrade the ECM and contribute

to its remodelling. Therefore, the tumour invasion coupled dynamics can be formalised mathematically
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in this case as

∂c1
∂t

= D1∆c1 − η1∇ · (c1∇v) + f1 (c1, c2, v)︸ ︷︷ ︸
unknown proliferation

− Q (v, t) c1︸ ︷︷ ︸
mutation: c1 → c2

, (4.1a)

∂c2
∂t

= D2∆c2 − η2∇ · (c2∇v) + f2 (c1, c2, v)︸ ︷︷ ︸
unknown proliferation

+ Q (v, t) c1, (4.1b)

∂v

∂t
= −ρ(c1 + c2)v + µv (Kcap (c, v)− v − c1 − c2) , (4.1c)

where Dp represents the diffusion coefficient while ηi is the haptotactic rate for population cp, p = 1, 2.

Further, as before, ρ > 0 is the ECM degradation rate, and µv ≥ 0 is the ECM remodelling rate. Finally,

as the mutation rate from cancer cells subpopulation c1 into subpopulation c2, Q (v, t), is dependent

on both time and the ECM density levels [33], we adopt for this the modelling proposed [3, 15], and so

mathematically we formalise this as

Q (v, t) = δmH (t− t1,2) ·H (v (x, t)− vmin) , ∀(x, t) ∈ Ω× [0, tf ],

where H(·) denotes the usual Heaviside step function, δm > 0 is the rate at which cellular mutations

occur after a certain time t1,2 > 0 and in the presence of a minimal level of ECM vmin > 0.

Finally, the coupled dynamics (4.1a) - (4.1c) takes place in the presence of initial conditions

c1(x, 0) := c0(x), c2(x, 0) := 0, and v(x, 0) := v0(x), (4.2)

where c0(·) and v0(·) represent initial densities of primary cells subpopulation c1 and ECM, respectively.

Again, assuming as in the previous model that there is no cellular exchange or ECM flux across the

tissue region boundaries, the coupled dynamics (4.1a) - (4.1c) is considered here in the presence of zero

Neumann boundary conditions, namely:

∂c1
∂n

∣∣∣∣
∂Ω

= 0,
∂c2
∂n

∣∣∣∣
∂Ω

= 0 and
∂v

∂n

∣∣∣∣
∂Ω

= 0. (4.3)

4.2. Simultaneous Reconstruction of the Two Cancer Cells Proliferation Laws in Model

(4.1). Building on the approach described in Section 3, we proceed now to address the simultaneous

reconstruction of the unknown cancer cells proliferation laws f1(c1, c2, v) and f2(c1, c2, v) for primary

and mutated cancer cell subpopulations from measured data

c∗1(·) : Ω→ R for the cancer subpopulation c1, (4.4a)

c∗2(·) : Ω→ R for the cancer subpopulation c2, (4.4b)

v∗(·) : Ω→ R for the ECM density. (4.4c)

Furthermore, as we consider here both the case of exact and noisy data, we assume that the measured

data (4.4) are of the same type as the ones considered in Section 3, and specifically these are given here

as

c̃∗p(x) = c̃∗p,exact(x) + δγcp(x), , p = 1, 2, (4.5a)

ṽ∗(x) = ṽ∗exact(x) + δγv(x), (4.5b)

where, ∀ x ∈ Ω, we have that c̃∗p,exact(x), p = 1, 2, and ṽ∗exact(x) are assumed to be exact data that may

not be accessible in accurate form, and rather they would be affected by a level of noise δ ≥ 0. Further,



182 MAHER ALWUTHAYNANI AND DUMITRU TRUCU

γcp(x), p = 1, 2, and γv(x) are signal-independent noise which again are generated from a Gaussian

normal distribution with mean zero and standard deviations

σcp :=
1

λ (Ω)

∫
Ω

c̃∗p,exact(x) dx, p = 1, 2, (4.6)

and σv (given in (3.13b)), respectively.

Using the setup already developed in Section 3, the unknown proliferation laws for both primary

and mutated cancer cells subpopulations are expressed here again in terms of two unknown functions

S
c∗1 ,c

∗
2 ,v
∗

p : [0,Kc] × [0,Kc] → [0,∞) that correspond to each of the two tumour cell subpopulations

cp, p = 1, 2. This pair of functions (S
c∗1 ,c

∗
2 ,v
∗

1 , S
c∗1 ,c

∗
2 ,v
∗

2 ) are going to be identified within the finite-

dimensional space of functions S×S (with S being the space defined in (3.2)) such that the measurements

specified in (4.5a)-(4.5b) are matched by the solution at the final time tf that is obtained for the two

population cancer invasion model (4.1) for the resulting cell proliferation laws

f
c∗1 ,c

∗
2 ,v
∗

p (c1,i,j(t), c2,i,j(t), v,i,j(t)) := Fi,j(c̃(t), ẽp(t), S
c∗1 ,c

∗
2 ,v
∗

p ) corresponding to cp, p = 1, 2. (4.7)

Here, F is the trial proliferation operator defined in (3.3) while ẽp(t) represent the tissue environments

for each of the two cancer cells subpopulations cp, p = 1, 2, and are given by ẽ1(t) := c̃2(t) + ṽ(t) and

ẽ2(t) := c̃1(t) + ṽ(t).

Further, we note that, for any s := (s1, s2) ∈ S × S, an Euler time marching operator similar to K̃s

given in (3.7) can therefore be defined also in this case as˜̃
Ks : RN×N × RN×N × RN×N → RN×N × RN×N × RN×N

given by

˜̃
Ks

c̃s,n1

c̃s,n2

ṽs,n

 :=

c̃s,n1

c̃s,n2

ṽs,n

+ ∆t

H1(c̃s,n1 , ṽs,n, s1)−F(c̃s,n1 , ṽs,n, s1) + F(c̃s,n1 , ẽs,n1 , s1)−Q(ṽs,n, tn)

H1(c̃s,n2 , ṽs,n, s2)−F(c̃s,n2 , ṽs,n, s2) + F(c̃s,n2 , ẽs,n2 , s2) +Q(ṽs,n, tn)

H2(c̃s,n1 + c̃s,n2 , ṽs,n)

 ,
(4.8)

where c̃s,np := c̃sp(tn), and ẽs,np := ẽsp(tn), p = 1, 2. Moreover, in the right hand side, the operators H1

and H2 are the ones defined in (3.5)-(3.6), with

H1(c̃s,np , ẽs,np , sp) := H1(c̃sp(tn), ẽsp(tn), sp), p = 1, 2,

and

H2(c̃s,n1 + c̃s,n2 , ṽs,n) := H2(c̃s1(tn) + c̃s2(tn), ṽs(tn)).

Finally, F is the trial proliferation operator given in (3.3), and

Q(ṽs,n, tn) := {Q(vs((xi, yj), tn), tn)}i,j=1...N

is the mutation term evaluated at the spatio-temporal grid nodes.

Finally, the family of operators { ˜̃Ks}s∈S×S enables us to obtain a similar “forward operator” to the

one given in (3.8), which in this case is of the form

K : S × S → RN×N × RN×N × RN×N

given by

K(s) :=
˜̃
Ks ◦

˜̃
Ks ◦ · · · · · · ◦

˜̃
Ks︸ ︷︷ ︸

L−1 times

c̃00
ṽ0

 , ∀ s := (s1, s2) ∈ S × S. (4.9)
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Thus, similar to Section 3.2, also in this case we obtain that the forward operator K is given as a finite

composition of affine functions of the form

S × S 3 (s1, s2) =: s 7−→ ˜̃
Ks ∈ `2(`2(E × E × E); `2(E × E × E)) (4.10)

with `2(`2(E×E×E); `2(E×E×E)) being the usual finite-dimensional Bochner space of square integrable

vector-value functions defined on `2(E × E × E) and taking values in the same space. From this, we

obtain again that the mappings given in (4.10) are both continuous and compact, from where we obtain

that K is also closed sequentially bounded, and so the inverse problems hypotheses assumed in [17] are

again satisfied. This ensures the convergence of the nonlinear Tikhonov regularization strategy defined

by the functionals {Jα1,α2
}α1,α2>0, where for α1 > 0 and α2 > 0, Jα1,α2

: S × S → R is defined by

Jα1,α2
(s) :=

∥∥∥∥∥K(s)−

c̃∗1c̃∗2
ṽ∗

∥∥∥∥∥
2

2

+ α1‖s1‖22 + α2‖s2‖22, ∀s := (s1, s2) ∈ S × S. (4.11)

This enables us to identify the pair of function (S
c∗1 ,c

∗
2 ,v
∗

1 , S
c∗1 ,c

∗
2 ,v
∗

2 ) as the limit as (α1, α2) → (0, 0) of

the points of minimum sα1,α2 of Jα1,α2
. Here, c̃∗1, c̃∗2, and ṽ∗ represent the discretized measurements of

the densities of cancer cells and ECM given in equations (3.1a)-(3.1b), i.e., c̃∗1 := {c∗1(xi, yj)}i,j=1,...,N ,

c̃∗2 := {c∗2(xI , yj)}i,j=1,...,N and ṽ∗ := {v∗(xi, yj)}i,j=1,...,N , respectively.

4.3. Reconstruction of the Logistic And Gompertz Laws in the Two Subpopulations Cancer

Invasion Model (4.1). We explore now computationally the inversion approach that we formulated

so far in the context of forward model for tumour invasion with two cancer cells subpopulations (4.1).

To that end, we proceed with the simultaneous reconstruction of the proliferation laws for both cancer

cell subpopulations in model (4.1) in two cases, namely: (1) logistic proliferation; and (2) Gompertz

proliferation. Alongside the Neumann zero boundary conditions, model (4.1) assumes here the initial

conditions (4.2), whose specific forms for the primary cell population and the ECM, namely c0 and v0,

being the ones given in (3.14a)-(3.14b)

To identify the cancer cells proliferation laws simultaneously for both cancer cell subpopulation, we

consider both exact and noisy measurement data (3.1), for which, as in Section 3.2 the exact data

(namely c̃∗1,exact(x), c̃∗2,exact(x) and ṽ∗exact(x)) that appear in (4.5) are given by the solution at the final

time tf := T for the forward model (4.1), i.e.,

c̃∗1,exact(x) := c̄1(x, tf ), c̃∗2,exact(x) := c̄2(x, tf ), and ṽ∗exact(x) := v̄(x, tf ), ∀x ∈ Ω, (4.12)

which is obtained when (4.1) uses known proliferation laws for primary and mutated cancer cell sub-

populations. Specifically, these two known proliferation laws used in model (4.1) are of the form

f1(c1, c2, v) := f̄(c1, c2 + v) and f2(c1, c2, v) := f̄(c2, c1 + v), (4.13)

being induced by a known law f̄(c, e) that is specified as appropriate in each of the following two cases,

namely:

Case 1: for the reconstruction of the logistic cancer cell proliferation law, f̄(c, e) is the logistic law given

in (2.2);

Case 2: for the reconstruction of the Gompertz cancer cell proliferation law, f̄(c, e) is the Gompertz law

given in (2.3).

For each regularization parameter α > 0 considered here, the minimisation process for Jα1,α2 is

initiated with s0 := (s1,0, s2,0), with s1,0 = s2,0 = I × 10−3, (where I represents the M ×M matrix

of ones). We explored the minimisation of Jα1,α2
numerically for a range of regularization parameters
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α1, α2 ∈ {10−i | i = 1, . . . 12}. Again, for the implementation of the minimisation of Jα1,α2
we employed

here the nonlinear minimisation MATLAB function lsqnonlin. Finally, since for each of the two cancer

a.1)

a.2)

b.1)

b.2)

Figure 3. Reconstruction of logistic proliferation within model (4.1) obtained using the parameters given

in Table 1. In rows a.1) and a.2) we have both p-color and graph plots of the true logistic proliferation laws

for c1 restricted to Ac1
and c2 restricted to Ac2

, respectively. Row b.1) shows the reconstructions of logistic

proliferation law obtained for c1 on Ac1
for: (left) exact data and α∗ = 10−11; (centre) 1% noisy data

and α∗ = 10−3; and (right) 3% noisy data and α∗ = 10−3. Row b.2) shows the reconstructions of logistic

proliferation law obtained for c2 on Ac2
for: (left) exact data and α∗ = 10−9; (centre) 1% noisy data

and α∗ = 10−3; and (right) 3% noisy data and α∗ = 10−3.For all plots in this figure, for i ∈ {1, 2} and

j ∈ {1, 2} \ {i}, we have that: 1) the first axis represents the the values for ci ∈ [c̄min
i , c̄max

i ]; 2) second

axis represents the values for cj + v ∈ [ēmin
i , ēmax

i ]; and 3) the colour bars represent the magnitude of

proliferation laws or their reconstructions at each (ci, cj + v) ∈ Aci
.

cell subpopulations ci, i = 1, 2, there are no data to test the trial proliferating operators beyond the
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maximal accessible regions Aci defined by the minimum and maximum values of the solution, i.e.,

Aci := [c̄mini , c̄maxi ]× [ēmini , ēmaxi ], with:

c̄mini := min
(x,t)∈Ω×[0,T ]

ci(x, t), c̄maxi := max
(x,t)∈Ω×[0,T ]

ci(x, t),

ēmini := min
(x,t)∈Ω×[0,T ]

j∈{1,2}\{i}

cj(x, t) + v(x, t), ēmaxi := max
(x,t)∈Ω×[0,T ]

j∈{1,2}\{i}

cj(x, t) + v(x, t),

the reconstructions in this section will be attempted only for the restriction of the sought proliferation

laws to Aci .

Figure 3 shows the reconstruction of the logistic cancer cell proliferation laws for primary and mutated

cancer cells subpopulations in model (4.1) in the presence of the measurements given by (4.5) and (4.12)

that are considered here both exact and affected by a level of noise δ ∈ {1%, 3%}. For comparison, in

the upper half of this figure, rows a.1) and a.2) show the true logistic proliferation law restricted at the

corresponding maximal accessible region Ac1 and Ac2 , respectively. In the bottom half of the figure,

rows b.1) and b.2) shows reconstruction of the logistic proliferation laws for primary and mutated cancer

cell subpopulations on Ac1 and Ac2 , respectively. From left to right in rows b.1) and b.2) we have the

reconstruction of the logistic proliferation laws corresponding to each of the two cancer subpopulations

from measurement data with no noise, 1%, and 3%, respectively.

Similarly, Figure 4 shows the reconstruction of the Gompertz cancer cell proliferation laws for primary

and mutated cancer cells subpopulations in model (4.1) in the presence of the measurements given by

(4.5) and (4.12). These measurements are considered here both as exact data and as data affected by

a level of noise δ ∈ {1%, 3%}. The figure respects the same structure as Figure 3, and so again, for

comparison, in the upper half of this figure, rows a.1) and a.2) show the true Gompertz proliferation law

restricted at the corresponding maximal accessible region Ac1 and Ac2 , respectively. In the bottom half

of the figure, rows b.1) and b.2) shows reconstruction of the Gompertz proliferation laws for primary

and mutated cancer cell subpopulations on Ac1 and Ac2 , respectively. From left to right in rows b.1)

and b.2) we have the reconstruction of the two Gompertz proliferation laws corresponding to the two

cancer subpopulations from measurement data with no noise, 1%, and 3%, respectively.

Figures 3 and 4 show that when the measurement data are not affected by noise we again obtain good

reconstructions of the proliferation laws for both the primary and mutated cancer cells subpopulation

in both in logistic and Gompertz case. However, as expected, as soon as the level of noise increases in

the measurements, the reconstruction gradually looses accuracy both in the case of logistic law (shown

in Figure 1) and in the case of Gompertz law (shown in Figure 2). Furthermore, we observe that, as

the level of noise increases, the reconstruction of the mutated cancer cell population shown on rows b.2)

of Figures 3 and 4 deteriorates faster than the reconstruction of the primary tumour cell population

explored in the correspondingly noisy cases for both logistic and Gompertz laws and are shown in rows

b.1) of Figures 3 and 4.

Finally, we also remark here that the primary tumour cells proliferations reconstructions for the two

population model (4.1) in the noisy cases, shown in rows b.1) of Figures 3 and 4, deteriorates slightly

faster (as the level of noise increases) than the cancer cells proliferation law reconstruction explored in

the correspondingly noisy cases in the context of the one-population model (2.1) shown in rows b) of

Figures 1 and 2.
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a.1)

a.2)

b.1)

b.2)

Figure 4. Reconstruction of Gompertz proliferation within model (4.1) obtained using the parameters

given in Table 1. In rows a.1) and a.2) we have both p-color and graph plots of the true Gompertz proliferation

laws for c1 restricted to Ac1 and c2 restricted to Ac2 , respectively. Row b.1) shows the reconstructions of

Gompertz proliferation law obtained for c1 on Ac1
for: (left) exact data and α∗ = 10−12; (centre) 1% noisy

data and α∗ = 10−3; and (right) 3% noisy data and α∗ = 10−3. Row b.2) shows the reconstructions of

Gompertz proliferation law obtained for c2 on Ac2 for: (left) exact data and α∗ = 10−12; (centre) 1% noisy

data and α∗ = 10−4; and (right) 3% noisy data and α∗ = 10−3. For all plots in this figure, for i ∈ {1, 2}
and j ∈ {1, 2} \ {i}, we have that: 1) the first axis represents the the values for ci ∈ [c̄min

i , c̄max
i ]; 2) second

axis represents the values for cj + v ∈ [ēmin
i , ēmax

i ]; and 3) the colour bars represent the magnitude of

proliferation laws or their reconstructions at each (ci, cj + v) ∈ Aci
.



CELL PROLIFERATION LAW IN CANCER INVASION MODELLING 187

5. Further Remarks on a Special Case: the Reconstruction the Bertalanffy Law for

the two Cancer Invasion Models (2.1) and (4.1)

Alongside logistic an Gompertz laws, another notable modelling approach for proliferation that was

proposed in the cancer modelling literature is the von Bertalanffy law [14, 31, 56], which is of the form

f̄ (c, e) := µc

(
(Kc − e)1/3

c2/3 − c
)
. (5.1)

where, as in the case of (2.2)-(2.2), c stands for a generic cancer cell population density, and e represents

the tissue environment density. However, the reconstruction of Bertalanffy proliferation law for cancer

cells proliferation both for the case of one population model (2.1) and for the case of two population

model (4.1) proves to be more challenging and requires further refinement of the approaches developed

in Sections 3 and 4. Specifically, for a reasonable reconstruction of the Bertalanffy proliferation law

requires the involvement of a mollified version of the trial proliferation operator F given in (3.3) in each

of the two modelling scenarios considered in this work, namely:

Case 1: cell proliferation reconstruction for the one cancer cell population tumour invasion model (2.1)

with the measurement (3.12a)-(3.12b), where c̃∗exact(x) and ṽ∗exact(x) are given by the solution

at the final time of this model with zero-flux boundary conditions and initial conditions (3.14a)-

(3.14b),i.e.,

c̃∗exact(x) := c̄(x, tf ) and ṽ∗exact(x) := v̄(x, tf ), ∀x ∈ Ω, (5.2)

which is obtained when the cell proliferation law is taken of the form f (c, v) := f̄(c, v), where

f̄(·, ·) is the law given in (5.1);

Case 2: cell proliferation reconstruction for the two cancer cells subpopulations tumour invasion model

(4.1) with the measurements (4.5a)-(4.5b), where c̃∗1,exact(x), c̃∗2,exact(x), and ṽ∗exact(x) are given

by the solution at the final time of this with model zero-flux boundary conditions and the initial

conditions for the primary subpopulation and ECM given in (3.14a)-(3.14b), i.e.,

c̃∗1,exact(x) := c̄1(x, tf ), c̃∗2,exact(x) := c̄2(x, tf ), and ṽ∗exact(x) := v̄(x, tf ), ∀x ∈ Ω, (5.3)

which is obtained when the cell proliferation laws for each of the two cancer cell subpopulations

are taken the form f1(c1, c2, v) := f̄(c1, c2 + v) and f2(c1, c2, v) := f̄(c2, c1 + v), where f̄(·, ·) is

again given the law in (5.1).

The mollified trial proliferation operator used here (instead of F) is denoted by Fε, and is defined here

as

Fε(·, ·, ·) : F(·, ·, ·) : RN×N × RN×N × S → RN×N

given by

Fε(·, ·, ·) := {Fi,j(·, ·, ·) ∗ ψε}i,j=1...N

where, ∀ i, j = 1 . . . N , we have that Fi,j(·, ·, ·) is the function defined in (3.3). Furthermore, the involved

kernel ψε is given by the standard mollifier of radius ε > 0, namely

ψε (x) :=
1

ε2
ψ
(x
ε

)
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(a)

(b)

Figure 5. Reconstruction of von Bertalanffy proliferation within model (2.1) obtained using the pa-

rameters given in Table 1: row a) the true von Bertalanffy proliferation law restricted to Ac; row b) the

reconstructed von Bertalanffy proliferation law on Ac in the presence of exact and noisy data. Row b)

shows the reconstructions of von Bertalanffy cancer cell proliferation law obtained for: (left) exact data and

α∗ = 10−3; (centre) 1% noisy data and α∗ = 10−3; and (right) 3% noisy data and α∗ = 10−3. For all plots

in this figure we have that: 1) the first axis represents the the values for c ∈ [c̄min, c̄max]; 2) second axis

represents the values for v ∈ [v̄min, v̄max]; and 3) the colour bars represent the magnitude of proliferation

law or its reconstructions at each (c, v) ∈ Ac.

where ψ is the compact support function ψ : R2 → R given by

ψ (x) :=


exp

(
−1

1−‖x‖22

)
∫

B(0,1)

exp

(
1

1−‖z‖22

)
dz

if x ∈ B (0, 1) ,

0 if x /∈ B (0, 1) ,

with B (0, 1) representing the open unit ball in R2.

Figure 5 shows the reconstruction of the Bertalanffy cancer cell proliferation law for cancer model

(2.1) in the presence of the measurements given by (3.12) and (5.2) that are considered here both exact

and affected by a level of noise δ ∈ {1%, 3%}. For comparison, again, row a) of this figure shows the true

Bertalanffy proliferation law restricted at the maximal accessible region Ac where he reconstruction is

being attempted. Row b) of the figure show from left to right the reconstruction of the Bertalanffy

proliferation law on Ac with no noise, 1%, and 3% of noise in the measured data, respectively.

Figure 6 shows the reconstruction of the Bertalanffy cancer cell proliferation laws for primary and

mutated cancer cells subpopulations in model (4.1) in the presence of the measurements given by

(4.5) and (5.2) that are considered here both as exact data and as data affected by a level of noise

δ ∈ {1%, 3%}. The figure respects the same structure as Figure 3 and 4, and so again, for comparison,

in the upper half of this figure, rows a.1) and a.2) show the true Bertalanffy proliferation law restricted

at the corresponding maximal accessible region Ac1 and Ac2 , respectively. In the bottom half of the

figure, rows b.1) and b.2) shows reconstruction of the Bertalanffy proliferation laws for primary and

mutated cancer cell subpopulations on Ac1 and Ac2 , respectively. From left to right in rows b.1) and



CELL PROLIFERATION LAW IN CANCER INVASION MODELLING 189

a.1)

a.2)

b.1)

b.2)

Figure 6. Reconstruction of Bertalanffy proliferation within model (4.1) obtained using the parameters

given in Table 1. In rows a.1) and a.2) we have both p-color and graph plots of the true Bertalanffy

proliferation laws for c1 restricted to Ac1 and c2 restricted to Ac2 , respectively. Row b.1) shows the

reconstructions of Bertalanffy proliferation law obtained for c1 on Ac1
for: (left) exact data and α∗ = 10−4;

(centre) 1% noisy data and α∗ = 10−3; and (right) 3% noisy data and α∗ = 10−2. Row b.2) shows the

reconstructions of Bertalanffy proliferation law obtained for c2 on Ac2 for: (left) exact data and α∗ = 10−3;

(centre) 1% noisy data and α∗ = 10−3; and (right) 3% noisy data and α∗ = 10−3. For all plots in this

figure, for i ∈ {1, 2} and j ∈ {1, 2} \ {i}, we have that: 1) the first axis represents the the values for

ci ∈ [c̄min
i , c̄max

i ]; 2) second axis represents the values for cj + v ∈ [ēmin
i , ēmax

i ]; and 3) the colour bars

represent the magnitude of proliferation laws or their reconstructions at each (ci, cj + v) ∈ Aci
.

b.2) we have the reconstruction of the two Bertalanffy proliferation laws corresponding to the two cancer

subpopulations from measurement data with no noise, 1%, and 3%, respectively.
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6. Conclusion

In this work we explored a new inverse problem that addresses the reconstruction of the cancer

cells proliferation law in cancer invasion modelling from available additional measurements taken in

form of a spatial tumour snapshot data (which in practice can be provided through a medical imaging

scan) that is acquired at a later stage in the tumour evolution. The investigation considers the cancer

cells proliferation law reconstruction in the context of two tumour invasion models, namely: (1) for

the case of single cancer cell population model (2.1); and (2) for the case of a model with two cancer

cells subpopulations (4.1) where an initial primary tumour cells population mutates over time into a

secondary tumour cells population whose proliferation law is also unknown and needs to be determined.

For both modelling cases, we developed an inverse problem Tikhonov regularization-based approach,

where the reconstruction of the proliferation law for the single cancer cell population in the case of

model (2.1) as well as simultaneous reconstruction of the proliferation laws each of the two cancer cells

subpopulations in model (4.1) is identified from additional information provided in the form of both

exact and noisy measurements tumour.

This inverse problem approach is implemented computationally via a mixed finite differences - finite

element numerical scheme. Specifically, on one hand, we use a Crank-Nicholson type finite difference

scheme for the discretization of the involved forward model that arises in each of the two tumour

invasion dynamics that we considered here (i.e., corresponding to an invading tumour with: (1) a single

cancer cells population, and (2) two cancer cells subpopulations). On the other hand, we develop a

finite element approach involving a bilinear shape functions on a square mesh for the discretization of

proliferation laws candidates recruited from a proposed space of functions S as well as their evaluation

on a maximal accessible regions where the proliferation law reconstruction is performed. Finally, these

two parts are appropriately assembled in an optimisation solver that seeks to reconstruct the cancer cel

proliferation law by minimising the emerging Tikhonov functionals that are formulated in each of the

two cases considered.

Finally, this inversion approach was explored and tested on the reconstruction cancer cell proliferation

laws that are used in cancer modelling, namely: (i) logistic, (ii) Gompertz, and (iii) von Bertalanffy.

While for exact measurement we obtain a good reconstruction both logistic and Gompertz laws, for

increasingly noisy measurements the reconstruction gradually deteriorates. This degradation of the

reconstruction in increasing noise regime is expected, this being more pronounced in for the identification

of the mutated cell proliferation law within the cancer cells subpopulations (4.1), where the deterioration

of the reconstruction is faster than that addressing the proliferation law for the primary tumour cel

population. Finally, as the reconstruction of the von Bertalanffy law proved to be more challenging

numerically both in the case of exact and measure data, for an acceptable reconstruction we amended

our approach with a mollification approach for the trial proliferation operator that is involved in the

formulation of the associated forward operator.

Future work will attempt the reconstruction of the proliferation laws when a more complex cell

directed movement is considered, which besides haptotactic cell motility will include also the presence

of chemotaxis (trigerred for instance by an incoming field of nutrients). Furthermore, this future

investigation will also include an analytically and computational assessment of the influence the choice

of the considered final-time measurements have over the reconstruction of the proliferation law.
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Appendix A. Parameters used in computations

For all the cancer cells proliferation laws reconstructions considered in this work, we use the parameter

set specified in Table 1.

Parameter Value Description Reference

D1 0.00675 diffusion of primary tumour [15]

D2 0.00675 diffusion of secondary tumour [15]

η1 2.85× 10−2 haptotaxis to ECM from c1 [38]

η2 2.85× 10−2 haptotaxis to ECM from c2 [38]

µc 0.25 proliferation of tumour cells c [50]

Kc 1 tissue carrying capacity [55]

ρ 2 ECM degradation coefficient [51]

µv 0.40 ECM remodelling coefficient [55]

t1,2 10 time initiation for mutations [50, 3]

δm 0.3 mutation from primary tumour [50, 3]

∆x 0.03125 discretization step size for GΩ [55]

∆t 10−3 time step size [55]

∆η 0.0625 mesh size used for G
M

Estimated

ε 0.06967 mollification radius Estimated

Table 1. Summary of parameter values that have used for one population and two

sub-population of cancer cells.
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