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EFFECT OF FEAR ON A TWO PREDATOR-ONE PREY MODEL IN

DETERMINISTIC AND FLUCTUATING ENVIRONMENT

DEBASIS MUKHERJEE

Abstract. Recent ecological studies on predator-prey interactions has concentrated on determining

the impacts of antipredator behavior due to fear of predators. These studies are mainly confined into

one predator-one prey system. But in case of multiple predator attack on single prey species, fear

mechanism is still unknown. The combined impact of multiple predator often cannot be anticipated

from their independent effects. So coexistence of multiple predators and preys fitness becomes an

important issue from an ecological point of view. Based on the above observations, we proposed

and analyzed a model consisting of two competing predator sharing a common prey where preys

reproduction rate is affected due to fear generated by the predators. We first study the boundedness,

uniform persistence, stability and Hopf bifurcation of the deterministic model. Thereafter, we have

investigated the existence and uniqueness of the global positive solution, boundedness, asymptotic

stability of the stochastic model. Numerical examples are provided to support our obtained results.

1. Introduction

Predator-prey interactions have been studying over a long period of time through a different perspec-

tive. Mathematical models play a crucial role to explore the dynamics of such interactions. Recently,

the term ecology of fear creates a major interest to the researchers to include this fact in mathematical

model describing the predator-prey interactions. Pioneer work of Zanette et al. [36] inspired many sci-

entists to study the fear effect in predator-prey model [18, 19, 20, 21, 22, 27, 32, 33, 34, 35, 36]. Qi and

Meng [24] investigated the threshold behaviour of a stochastic predator-prey system with prey refuge,

fear effect and non-constant mortality rate. Sarkar and Khajanchi [26] studied the impact of fear on

the growth of prey in a predator-prey model without environmental noise. They discussed permanence,

Hopf bifurcation and stability of the coexistence equilibrium point. Xia and Yuan [34] analysed a sto-

chastic predator-prey model with prey refuge and fear effect. They obtained stationary distribution

and performed survival analysis of the model. Liu and Jiang [12] addressed the influence of fear factor

on the dynamics of stochastic predator-prey model. They derived sufficient criteria for the existence

and uniqueness of an ergodic stationary distribution of positive solution to the system. These studies

mainly demonstrated the two dimensional predator-prey models which cannot give real picture and lots

of complex behaviour can be observed in three or more interacting population system [17, 30]. Smith

[29] showed the existence of Hopf bifurcation in a two-predator-one prey competition model. Savitri et

al. [28] studied the dynamical behaviour of modified Leslie-Gower one prey-two predator with competi-

tion and found permanence, global stability and bifurcation. Farkas and Freedman [5] derived stability

condition in two-predator and one-prey system. More studies on two predators and one prey system

can be found in [1, 4, 10]. The above studies did not consider the fear effect for obtaining coexistence

results.
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In view of above, it is reasonable to develop a model that predicts how prey respond to multiple

predators when the fear factor comes into the scenario. By formulating deterministic models in ecology,

it is often difficult to anticipate the future behaviour of the system properly. As deterministic models

ignore the effect of random environmental fluctuation, the actual behaviour of a natural system cannot

be well understood, even small noise can suppresses explosions in population dynamics [15]. It is well

known that the natural growth of population is always affected by random perturbations and hence

this should be incorporated into deterministic model. In [11], the authors demonstrated the impacts of

white noises on the persistence and extinction of a one prey-two predator system and also obtained the

condition for the existence and uniqueness of an ergodic stationary distribution of the positive solutions.

The effect of the white noise on the prey-predator system are described in [9, 14, 23]. There are several

approaches to include random effects in the model, both from ecological and mathematical point of

view [8]. In this work, we follow the approach discussed in [2].

The main target of this paper is to investigate the impact of fear on prey population when two

predators are competing for the same prey species in the deterministic and stochastic environment.

The paper is structured as follows. In the next section, we propose our model. The biological validity

of the model is examined in Section 3. We demonstrate some dynamical properties of the model (2.2)

in Section 4. The mathematical model with environmental noise is presented and analysed in Section

5. Computer simulations are given in Section 6. A brief discussion concludes the paper in Section 7.

2. Deterministic model

In [36], the authors investigated the following dynamical behaviour of the following predator-prey

model employing the cost of fear into prey reproduction rate in the presence of predator.
dx

dt
=

rx

1 + ky
− αx− βx2 − pxy

1 +mx
,

dy

dt
= y

(
−d+

bpx

1 +mx

) (2.1)

where the variables x and y denote the densities of prey and predator population at time t respectively.

All the parameters are positive. r is the birth rate, α is the natural death rate of prey, β denotes the

decay rate due to intra-species competition, p represents the per capita predator consumption rate, m is

the constant handling time for each prey captured, b is the conversion rate of preys biomass to predators

biomass. k is the level of fear and d is the mortality rate of predator. In above study of prey antipredator

strategies concern responses to single predator. But in real ecosystem, complex indirect interactions are

common and a pair of species interaction cannot describe the patterns observed [17]. In prey-predator

interactions, antipredator behavior strategy of prey can change the fitness and coexistence of predators

[16]. So we have incorporated another predator z in system (2.1) and then system (2.1) becomes

dx

dt
= x

(
r

1 + ky + lz
− α− βx− py

1 +mx
− qz

1 + nx

)
,

dy

dt
= y

(
−d+

bpx

1 +mx
− δy − ρz

)
,

dz

dt
= z

(
−h+

cqx

1 + nx
− σy − µz

)
.

(2.2)

Here k and l denote the level of fear due to the predator y and z respectively. ρ and σ are interspecific

competition coefficient between the two predator species. n is the constant handling time for each prey

captured. δ and µ are the intraspecies competition among the predator species. h represents the death
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rate of predator z. Specific example illustrates the above situation. The fresh water snail Physella

gyrina faces two types of predators that exhibits different behavioral responses. The snail take shelter

in a covered area when pumpkinseed sunfish comes in the water column. But another predator crayfish

waits under the rocks in search of food. Then snail escapes from this place and moved to the water

surface [31]. Furthermore, in grassland system, grasshopper Melanoplus femurrubrum are attacked

by the different types of spider namely Pisaurina mira, Rabidosa rabida and Phidippus rimator. The

grasshopper change their habitat from grasses to herbs in the presence of first two types of predators.

But it faces problems when third type of predator is present as it is available everywhere.

3. Positivity and boundedness of solutions

In this section, we first examine positivity and boundedness of solutions of system (2.2) which concern

the validity and well behaved nature of the model. We first check positivity.

Lemma 3.1. All solutions (x(t), y(t), z(t)) of system (2.2) with initial values (x0, y0, z0) ∈ R3
+ remains

positive for all t > 0.

Proof. The positivity of x(t), y(t), z(t) can be verified by the equations

x(t) = x0exp

(∫ t

0

[
r

1 + ky(s) + lz(s)
− α− βx(s)− py(s)

1 +mx(s)
− qz(s)

1 + nx(s)
]ds

)
,

y(t) = y0exp

(∫ t)

0

[−d+
bpx(s)

1 +mx(s)
− δy(s)− ρz(s)]ds

)
,

z(t) = z0exp

(∫ t

0

[−h+
cqx(s)

1 + nx(s)
− σy(s)− µz(s)]ds

)
with x0, y0, z0 > 0. As x(t) > 0 for all t > 0. The same argument is valid for component y(t) and z(t).

Hence the interior of R3
+, is an invariant set of system (2.2).

Lemma 3.2. All solutions of system (2.2) with (x0, y0, z0) ∈ R3
+ be bounded; moreover, they will be

attracted to the region

B =

{
(x, y, z) ∈ R3

+ : 0 ≤ x+
y

b
+
z

c
≤ (r + µ)2

4µβ

}
as t→∞, where µ = min{d, h}.

Proof. Let us consider the function

W (t) = x+
y

b
+
z

c
.

The time derivative along a solution of (2.2) is

dW (t)

dt
= x

(
r

1 + ky + lz
− α− βx

)
− y

b
(d+ δy + ρz)− z

c
(h+ µz + σy).
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Thus the the following inequality is satisfied.

dW

dt
+ µW ≤ x(r + µ− βx) +

y

b
(µ− d) +

z

c
(µ− h),

≤ −β

[(
x− r + µ

2β

)2

− (
r + µ

2β
)2

]
+
y

b
(µ− d) +

z

c
(µ− h),

≤ (r + µ)2

4β
+
y

b
(µ− d) +

z

c
(µ− h).

(3.1)

Note that µ = min{d, h} is no larger than d and h. Thus (3.1) can further lead to

dW

dt
+ µW ≤ (r + µ)2

4β
.

By using the comparision theorem [3], we get

0 ≤W (x(t), y(t), z(t)) ≤ (r + µ)2

4βµ
+W (x(0), y(0), z(0))/eµt.

Taking limit when t→∞, we have

0 < lim sup
t→∞

W (t) ≤ (r + µ)2

4βµ
.

Hence system (2.2) is bounded.

4. Existence of equilibria and stability analysis

Evidently, system (2.2) has five non-negative equilibrium points. The population free equilibrium

point E0 = (0, 0, 0). The predator free equilibrium point E1 = ( r−αβ , 0, 0). Here E0 always exists and

E1 exists if r > α. The predator free equilibrium point E2 = (x̄, ȳ, 0). The equilibrium point E2 can be

found in xy- plane provided it satisfies the following equations

r

1 + ky
− α− βx− py

1 +mx
= 0, (4.1)

−d+
bpx

1 +mx
− δy = 0. (4.2)

From Eqn. (4.2), we find the value of y as

y =
1

δ

(
(bp− dm)x− d

1 +mx

)
. (4.3)

Now using the value of y in Eqn. (4.3), we get the following equation in x,

a0x
4 + a1x

3 + a2x
2 + a3x+ a4 = 0 (4.4)

where

a0 = m2δβ(δm− dmk + kbp),

a1 = δβm2(δ − kd) + δm(αm+ 2β)(δm− dmk + kbp)− rδ2m3,

a2 = δm(αm+ 2β)(δ − kd) + δ(2mα+ β)(δm− dmk + kbp)− 3rδ2m2

− p(dm− bp)(δm− kdm+ kbp),

a3 = (δ − kd){δ(2mα+ β) + p(bp− dm)}+ (δα− pd)(δm+ kbp− dmk)− 3rmδ2,

a4 = (δ − kd)(δα− pd)− rδ2.



FEAR EFFECT IN A PREDATOR-PREY MODEL IN DETERMINISTIC AND FLUCTUATING ENVIRONMENT 59

Now E2 is feasible if

bp > dm, x̄ >
d

bp− dm
and δ2α+ kpd2 < δ(rδ + pd+ kdα).

These conditions imply that Eqn. (4.4) has a positive root.

Similarly, we can show that E3 = (x̂, 0, ẑ) exists if

cq > hn, x̂ >
h

cq − hn
and µ2α+ lqh2 < µ(rµ+ qh+ lhα).

The local stability properties of the equilibrium points can be examined through the Jacobian matrix

around the each equilibrium point. Clearly, E0 is unstable if r > α. E1 is locally stable if

d >
bp(r − α)

β +m(r − α)
and h >

cq(r − α)

β + n(r − α)
.

E2 is locally stable if

βx̄+ δȳ >
px̄ȳm

(1 +mx̄)2
and h+ σȳ >

cqx̄

1 + nx̄
.

E3 is locally stable if

βx̂+ µẑ >
qx̂ẑn

(1 + nx̂)2
and d+ ρẑ >

bpx̂

1 +mx̂
.

It is very difficult to determine the coordinates of the coexistence equilibrium point. The existence of

the coexistence equilibrium point can be obtained by showing uniform persistence of the system which

in turn implies the existence [6, 7].

Persistence. If there exists a compact set E ⊂ B = {(x, y, z) : x > 0, y > 0, z > 0} where all solutions

of system (2.2) ultimately lie, the system is said to be persistent. The following theorem establishes

uniform persistence of system (2.2).

Theorem 4.1. Suppose E1, E2 and E3 exist. If there are no limit cycles in the x− y and x− z plane

respectively. If

d <
bp(r − α)

β +m(r − α)
, h <

cq(r − α)

β + n(r − α)
, h+ σȳ <

cqx̄

1 + nx̄
and d+ ρẑ <

bpx̂

1 +mx̂
,

then system (2.2) is uniformly persistent.

Proof. Proceeding along the lines in [19], we can prove the theorem and is omitted here. �

Remark 1. System (2.2) is uniformly persistent under the assumptions of the Theorem 4.1. Now we

conclude that there exist a time T such that x(t), y(t), z(t) > L, 0 < L < 1, for t > T.

Remark 2. If there are finite number of limit cycles , then persistence condition becomes∫ τ

0

(
−h+

cqφ̄(t)

1 + nφ̄(t)
− σψ̄(t)

)
dt > 0 and

∫ τ

0

(
−d+

bpφ̂(t)

1 +mφ̂(t)
− ρψ̂(t)

)
dt > 0

for each limit cycle (φ̄(t), ψ̄(t)) in the xy-plane and each limit cycle (φ̂(t), ψ̂(t)) in the xz-plane where

τ is the appropriate period.

The above theorem implies uniform persistence of system (2.2) under certain restrictions. Further,

it is shown that in [7], uniform persistence ensures the existence of a positive equilibrium point. Hence

E4 = (x∗, y∗, z∗) exists provided the conditions of Theorem 4.1 are fulfilled.
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To discuss the stability of E4, we find out the characteristic equation around E4 which is given by

λ3 + a1λ
2 + a2λ+ a3 = 0 (4.5)

where

a1 = δx∗ + µz∗ + x∗
(
β − py∗m

(1 +mx∗)2
− qz∗n

(1 + nx∗)2

)
,

a2 = (µδ − ρσ)y∗z∗ + x∗
(
β − py∗m

(1 +mx∗)2
− qz∗n

(1 + nx∗)2

)
(δy∗ + µz∗)

+
bpx∗y∗

(1 +mx∗)2

(
p

1 +mx∗
+

rk

(1 + ky∗ + lz∗)2

)
+

cqz∗x∗

(1 + nx∗)2

(
q

1 + nx∗
+

rl

(1 + ky∗ + lz∗)2

)
,

a3 = x∗y∗z∗
[
δµ

(
β − py∗m

(1 +mx∗)2
− qz∗n

(1 + nx∗)2

)
+

(
p

1 +mx∗
+

rk

(1 + ky∗ + lz∗)2

)(
µbp

(1 +mx∗)2
− ρcq

(1 + nx∗)2

)
+

(
q

1 + nx∗
+

rl

(1 + ky∗ + lz∗)2

)(
δcq

(1 + nx∗)2
− bpσ

(1 +mx∗)2

)]
.

From Routh Hurwitz criterion, we can say that E4 = (x∗, y∗, z∗) is locally asymptotically stable if the

following conditions are satisfied.

a1 > 0, a2 > 0 and a1a2 > a3. (4.6)

Now we present global stability analysis of the coexistence equilibrium point.

Theorem 4.2. Suppose all the conditions of Theorem 4.1 be satisfied. Further suppose that

4δ

(
β − mpy∗

1 +mx∗
− nqz∗

1 + nx∗

)
(1 +mx∗) >

br2k2

(1 + ky∗ + lz∗)2

and detD > 0 where D is defined in the proof. Then E4 is globally asymptotically stable.

Proof. Consider the following positive definite function

V (x, y, z) = x− x∗ − x∗ln x

x∗
+

1 +mx∗

b

(
(y − y∗ − y∗ln y

y∗

)
+

1 + nx∗

c

(
z − z∗ − z∗ln z

z∗

)
.

The time derivative of V along the solution of (2.2) is

dV

dt
= (x− x∗)

(
r

1 + ky + lz
− α− βx− py

1 +mx
− qz

1 + nx

)
+

(1 +mx∗)(y − y∗)
b

(
−d+

bpx

1 +mx
− δy − ρz

)
+

(1 + nx∗)(z − z∗)
c

(
−h+

cqx

1 + nx
− µz − σy

)
.
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After some algebraic calculations we have

dV

dt
= (x− x∗)

[
r{k(y∗ − y) + l(z∗ − z)}

(1 + ky∗ + lz∗)(1 + ky + lz)
− β(x− x∗) +

mpy∗(x− x∗)
(1 +mx)(1 +mx∗)

]
− δ(1 +mx∗)(y − y∗)2

b
−
(

(1 +mx∗)ρ

b
+

(1 + nx∗)σ)

c

)
(y − y∗)(z − z∗)

− µ(1 + nx∗)(z − z∗)2

c
+

nqz∗(x− x∗)2

(1 + nx∗)(1 + nx)

≤
(
β − mpy∗

1 +mx∗
− nqz∗

1 + nx∗

)
(x− x∗)2 +

rk|x− x∗||y − y∗|
1 + ky∗ + lz∗

+
rl|x− x∗||z − z∗|

1 + ky∗ + lz∗
− δ(1 +mx∗)(y − y∗)2

b

+

(
(1 +mx∗)ρ

b
+

(1 + nx∗)σ)

c

)
|y − y∗||z − z∗| − µ(1 + nx∗)(z − z∗)2

c

= −XTDX

where XT = (|x− x∗|, |y − y∗|, |z − z∗|) and the entries of matrix D = [dij ]3×3 are given by

d11 = β − mpy∗

1 +mx∗
− nqz∗

1 + nx∗
,

d22 =
δ(1 +mx∗)

b
,

d33 =
µ(1 + nx∗)

c
,

d12 = d21 = − rk

2(1 + ky∗ + lz∗)
,

d13 = d31 = − rl

2(1 + ky∗ + lz∗)
,

d23 = d32 = −1

2

(
ρ(1 +mx∗)

b
+
σ(1 + nx∗)

c

)
.

Hence D is positive definite if

4δ

(
β − mpy∗

1 +mx∗
− nqz∗

1 + nx∗

)
(1 +mx∗) >

br2k2

(1 + ky∗ + lz∗)2
and detD > 0,

leading to dV
dt < 0. This completes the proof. �.

Bifurcation study. Next, we present a bifurcation result. For convenience of presentation, we define

f(k) = a1(k)a2(k)− a3(k).

Theorem 4.3. If there exist k = k∗ such that (i) ai(k
∗) > 0, i = 1, 2, 3; (ii) f(k∗) = 0; (iii) f ′(k∗) > 0,

then the positive equilibrium point E4 is unstable when k < k∗ but is stable when k > k∗ and a Hopf

bifurcation of periodic solutions emerges at k = k∗.

Proof. Using the method in [25], we observe that f(k) is monotonic increasing in the neighborhood

of k = k∗. As ai(k) > 0, i = 1, 2, 3, f(k) < 0 when k < k∗ then E4 becomes unstable. Again,f(k) > 0

when k > k∗ then E4 becomes stable. Applying a result in [13], we can establish Hopf bifurcation.

Similarly, one can show bifurcation taking l as a bifurcation parameter. �
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5. Stochastic model

In our system (2.2), we consider the random effects to address some biological issues in future. This

leads to a stochastic generalization of our system. The random perturbations are dependent on the

white noises, which are directly proportional to the distances of x(t), y(t), z(t) from the equilibrium

values of x∗, y∗, z∗ respectively. So our system (2.2) becomes



dx = x

(
r

1 + ky + lz
− α− βx− py

1 +mx
− qz

1 + nx

)
dt+ σ1(x− x∗)dB1(t),

dy = y

(
−d+

bpx

1 +mx
− δy − ρz

)
dt+ σ2(y − y∗)dB2(t),

dz = z

(
−h+

cqx

1 + nx
− σy − µz

)
dt+ σ3(z − z∗)dB3(t)

(5.1)

where σi > 0, i = 1, 2, 3 and represent the intensity of environmental fluctuations and Bi(t), i = 1, 2, 3

are independent Brownian motions.

Throughout this analysis, we take (Ω, F, P ) as a complete probability space with a filtration {Ft}t∈R+

satisfying the conventional condition, namely right continuity and increasing, whereas F0 consists of all

P -void sets.

Define U(t) = (x(t), y(t), z(t)) and |U(t)| = (x2(t) + y2(t) + z2(t))1/2.

Theorem 5.1. Given any initial value (x(0), y(0), z(0)) ∈ R3
+, there exists a unique solution (x(t), y(t), z(t))

of system (5.1) on t ≥ 0 and will lie in R3
+ with probability one.

Proof. Using local Lipschitz property, one can show existence of unique solution on [0, τe] where τe
represents the explosion time. We now prove that this solution is global i.e.,τe =∞ almost surely.

Let a0 > 0 be large enough for x(0), y(0) and z(0) lying within the interval [ 1
a0
, a0]. Given any integer

a ≥ a0, define the stopping time by

τa = inf

(
t ∈ [0, τe] : x(t) /∈ (

1

a
, a) or y(t) /∈ (

1

a
, a) or z(t) /∈ (

1

a
, a)

)

where we take inf Ø = ∞ where Ø denotes the empty set. Since τa is nondecreasing as a → ∞, then

we have τ∞ = lima→∞ τa. Then τ∞ ≤ τe a.s. We have to establish that τ∞ =∞ a.s. If this is not true,

∃T > 0 and ε ∈ (0, 1) such that P{τa ≤ T} > ε. Consequently, there is an integer a1 ≥ a0 such that

P{τa ≤ T} > ε, ∀a ≥ a1. (5.2)

Consider a function V : R3
+ → R+ defined by

V (x, y, z) = x− 1− lnx+ y − 1− lny + z − 1− lnz.
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Clearly, the above function is non-negative. If U(t) ∈ R3
+, by applying Itô formula, we obtain

dV (x, y, z) =

[
x

(
1− 1

x

)(
r

1 + ky + lz
− α− βx− py

1 +mx
− qz

1 + nx

)
+ y

(
1− 1

y

)(
−d+

bpx

1 +mx
− δy − ρz

)
+ z

(
(1− 1

z

)(
−h+

cqx

1 + nx
− µz − σy

)
+
σ2

1

2

(
1− x∗

x

)2

+
σ2

2

2

(
1− y∗

y

)2

+
σ2

3

2

(
1− z∗

z

)2
]
dt

+ σ1

(
1− 1

x

)
(x− x∗)dB1(t) + σ2

(
1− 1

y

)
(y − y∗)dB2(t) + σ3

(
1− 1

z

)
(z − z∗)dB3(t)

≤
[
(r − α+ β)x− βx2 +

(
p− d+ δ + σ +

bp

m

)
y − σy2 +

(
ρ− h+ µ+

cq

n
+ q
)
z − µz2

+d+ h+ α+
σ2

1

2

(
1− x∗

x

)2

+
σ2

2

2

(
1− y∗

y

)2

+
σ2

3

2

(
1− z∗

z

)2
]
dt

+ σ1

(
1− 1

x

)
(x− x∗)dB1(t) + σ2

(
1− 1

y

)
(y − y∗)dB2(t) + σ3

(
1− 1

z

)
(z − z∗)dB3(t)

≤M dt+ σ1

(
1− 1

x

)
(x− x∗) dB1(t) + σ2

(
1− 1

y

)
(y − y∗) dB2(t)

+ σ3

(
1− 1

z

)
(z − z∗) dB3(t),

where M is a positive constant. Let τa ∧ T = min{τa, T}. Then∫ τa∧T

0

dV (x(s), y(s), z(s)) ≤
∫ τa∧T

0

Mds+

∫ τa∧T

0

σ1

(
1− 1

x

)
(x− x∗)dB1(s)

+

∫ τa∧T

0

σ2

(
1− 1

y

)
(y − y∗)dB2(s)

+

∫ τa∧T

0

σ3

(
1− 1

z

)
(z − z∗)dB3(s).

Thus it follows that

EV (x(τa ∧ T ), y(τa ∧ T ), z(τa ∧ T )) ≤ V (x(0), y(0), z(0)) +MT.

Take Ωa = {τa ≤ T} for a ≥ a1 and from (5.2), we get P (Ωa) ≥ ε. Observe that for each ξ ∈ Ωa, there

is x(τa, ξ), y(τa, ξ), z(τa, ξ) equals either a or 1
a , hence V (x(τa, ξ), y(τa, ξ), z(τa, ξ)) is no less than

min

{
a− 1− lna,

1

a
− 1− ln

1

a

}
.

So we get

V (x(0), y(0), z(0)) +MT ≥ E[IΩa(ξ)V (x(τa), y(τa), z(τa))] ≥ εmin

{
a− 1− lna,

1

a
− 1− ln

1

a

}
where IΩa(ξ) is the indicator function of Ωa. Taking a→∞, so ∞ = V (x(0), y(0), z(0)) +MT <∞, a

contradiction. Hence we have, τe =∞ almost surely. �

Now we show stochastic ultimate boundedness.

Theorem 5.2. . Given any initial value (x(0), y(0), z(0)) ∈ R3
+, system (5.1) is stochastically ultimately

bounded.
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Proof. Consider a function

V (x, y, z) = et(xθ + yθ + zθ), (x, y, z) ∈ R3
+,

with θ > 1. Using Itô formula, one has

dV (x, y, z) = et
[
xθ + yθ + zθ + θxθ−1

(
rx

1 + ky + lz
− αx− βx2 − pxy

1 +mx
− qxz

1 + nx

)
+ θyθ−1

(
−dy +

bpxy

1 +mx
− δy2 − ρyz

)
+ θzθ−1

(
−hz +

cqxz

1 + nx
− µz2 − σyz

)
+
θ(θ − 1)

2

(
σ2

1x
θ

(
1− x∗

x

)2

+ σ2
2y
θ

(
1− y∗

y

)2

+ σ2
3z
θ

(
1− z∗

z

)2
)]

dt

+ etθσ1x
θ

(
1− x∗

x

)
dB1(t) + etθσ2y

θ

(
1− y∗

x

)
dB2(t) + etθσ3z

θ

(
1− z∗

z

)
dB3(t)

≤ Ketdt+ etθ

(
σ1x

θ

(
1− x∗

x

)
dB1(t) + σ2y

θ

(
1− y∗

y

)
dB2(t)

+σ3z
θ

(
1− z∗

z

)
dB3(t)

)
where K > 0 is a constant. Using previous theorem, we obtain

E(et∧τa(xθ(t ∧ τa) + yθ(t ∧ τa) + zθ(t ∧ τa)) ≤ xθ(0) + yθ(0) + zθ(0) +KE

∫ t∧τa

0

esds.

Passing to the limit, as t→∞, we obtain

etE(xθ(t) + yθ(t) + zθ(t)) ≤ V (x(0), y(0), z(0)) +K(et − 1).

This shows that

E(xθ(t) + yθ(t) + zθ(t)) ≤ e−t
[
xθ(0) + yθ(0) + zθ(0)

]
+K.

Again,

|U(t)|θ = (x2(t) + y2(t) + z2(t))θ/2 ≤ 3θ/2max{xθ(t), yθ(t), zθ(t)}

≤ 3θ/2(xθ + yθ + zθ).

Thus we obtain

E|U(t)|θ ≤ 3θ/2(e−t((xθ(0) + yθ(0) + zθ(0)) +K).

This implies that

lim
t→∞

supE|U(t)|θ ≤ 3θ/2K <∞.

So we can find a positive constant π1 such that

lim
t→∞

supE|
√
U(t)| < π1.

For any ε > 0, take γ = π2
1/ε

2. Using Chebyshev’s inequality, we get

P{|U(t)| > γ|} ≤
E|
√
U(t)|
√
γ

.

Hence we get

lim
t→∞

supP{|U(t)| > γ|} ≤ π1√
γ

= ε

which proves our contention. �
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We now establish global stability of the positive steady state E4 in stochastic environment. Lyapunov

functional will be constructed to prove global stability. In the remark after Theorem 4.1, we note that

x(t), y(t), z(t) > L.

Theorem 5.3. . Assume that
β >

mpy∗

1 +mx∗
+

nqz∗

1 + nx∗
+
σ2

1x
∗

2L2
, δ >

σ2
2y
∗

2L2
, µ >

σ2
3z
∗

2L2
,

4(1 +mx∗)

b

(
β − mpy∗

1 +mx∗
− nqz∗

1 + nx∗
− σ2

1x
∗

2L2

)(
δ − σ2

2y
∗

2L2

)
>

r2k2

(1 + ky∗ + lz∗)2
and detH > 0,

where the matrix H is given in the proof. Then E4 is globally asymptotically stable with probability one.

Proof. Consider the same Lyapunov function used in Theorem 4.2.

V (x, y, z) = x− x∗ − x∗ln x

x∗
+

1 +mx∗

b

(
y − y∗ − y∗ln y

y∗

)
+

1 + nx∗

c

(
z − z∗ − z∗ln z

z∗

)
.

Using Itô formula, we have

dV (x, y, z) = (x− x∗)
[

r (k(y∗ − y) + l(z∗ − z))
(1 + ky∗ + lz∗)(1 + ky + lz)

− β(x− x∗) +
mpy∗(x− x∗)

(1 +mx∗)(1 +mx)

]
− δ(1 +mx∗)(y − y∗)2

b
−
(

(1 +mx∗)ρ

b
+

(1 + nx∗)σ

c

)
(y − y∗)(z − z∗)

− µ(1 + nx∗)(z − z∗)2

c
+

nqz∗(x− x∗)2

(1 + nx∗)(1 + nx)
+
σ2

1x
∗

2x2
(x− x∗)2

+
σ2

2y
∗(1 +mx∗)

2by2
(y − y∗)2 +

σ2
3z
∗(1 + nx∗)

2cz2
(z − z∗)2

≤ −
(
β − mpy∗

1 +mx∗
− nqz∗

1 + nx∗
− σ2

1x
∗

2L2

)
(x− x∗)2 +

rk|x− x∗||y − y∗|
1 + ky∗ + lz∗

+
rl|x− x∗||z − z∗|

1 + ky∗ + lz∗
− 1 +mx∗

b

(
δ − σ2

2y
∗

2L2

)
(y − y∗)2

+

(
(1 +mx∗)ρ

b
+

(1 + nx∗)σ

c

)
|y − y∗||z − z∗| − 1 + nx∗

c

(
µ− σ2

3z
∗

2L2

)
(z − z∗)2

= −XTHX,

where XT = {|x− x∗|, |y − y∗|, |z − z∗|} and the entries of the matrix H = [hij ]3×3 are given by:

h11 = β − mpy∗

1 +mx∗
− nqz∗

1 + nx∗
− σ2

1x
∗

2L2
, h12 = h21 = − rk

2(1 + ky∗ + lz∗)
,

h13 = h31 = − rl

2(1 + ky∗ + lz∗)
, h22 =

1 +mx∗

b

(
δ − σ2

2y
∗

2L2

)
,

h33 =
1 + nx∗

c

(
µ− σ2

3z
∗

2L2

)
, h23 = h32 = −1

2

(
ρ(1 +mx∗)

b
+
σ(1 + nx∗)

c

)
.

Hence, one can verify that under the conditions of the theorem, H is positive definite, leading to

dV (x, y, z) < 0. This conclude globally asymptotical stability of E4, completing the proof. �

6. Verification of analytical results

In this section, we present some numerical computations to justify our analytical results. We mainly

focus here to show the effect of fear and intraspecific competition rate among the prey species on the



66 D. MUKHERJEE

0

1

2

3

0

1

2

3
0

0.5

1

1.5

2

2.5

 Prey xPredator y

P
re

d
a

to
r 

z

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

Time t

P
o

p
u

la
tio

n

 

 

x(t)

y(t)

z(t)

Figure 1. Phase portrait along with time series plots of system (2.2) with parameter

values r = 12, k = 0.5, l = 0.5, α = 1, β = 1, p = 4, q = 4,m = 1, n = 1, b = 1, c = 1, d =

0.25, δ = 0.75, h = 0.5, µ = 0.5, ρ = 0.1, σ = 0.1 and initial points (2, 1, 2) and (1, 2,

1).

population dynamics. For this purpose, we select the parameters as{
r = 12, k = 0.5, l = 0.5, α = 1, β = 1, p = 4, q = 4,m = 1, n = 1, b = 1, c = 1, d = 0.25,

δ = 0.75, h = 0.5, µ = 0.5, ρ = 0.1, σ = 0.1.
(6.1)

We observe a stable limit cycle enclosing the coexistence equilibrium point E4(1.7572, 0.7094, 0.6081)

when the level of fear near the value 0.5 (see Fig. 1). Fig. 2 depicts the solutions of system (5.1)

when σ1 = 1, σ2 = 2, σ3 = 3 and the other parameters are same as (6.1). Now we increase the

value of k from 0 to 2.5 and the other parameters remain same in (6.1), stable behavior is observed

and the solutions converge to the coexistence equilibrium point E4(0.2450, 0.6141, 0.3695) (see Fig.

3). Comparing Figs. 1 and 3, we observe that the value of x∗, y∗, z∗ of E4 decreases as long as the

level of fear increases. The corresponding stochastic solutions with σ1 = 12, σ2 = 9, σ3 = 10 are

shown in Fig. 4. Now we change the parameter β in (6.1) and assuming the value as 5, we note

that the coexistence equilibrium point E4(0.2939, 0.7908, 0.6600) is globally stable (see Fig. 5). The

stochastic solutions with σ1 = 12, σ = 9, σ3 = 10 are shown in Fig. 6. In this case, the conditions

of Theorem 6 are not satisfied, noises make the solutions fluctuating in random manner. In Fig. 7,

we choose σ1 = 0.1, σ2 = 0.2, σ3 = 0.3, the other parameters are same as in Fig. 6, the conditions

of Theorem 6 are satisfied and hence the coexistence equilibrium point E4(0.2939, 0.7908, 0.6600) is

globally asymptotically stable with probability one.

7. Discussion

The impact of fear in predator-prey model demands a lot of attention. In case multiple predators

attacking a single prey species, antipredator strategy is still unknown. With this fact in mind, we have

proposed a one prey-two predator species incorporating fear factor in the preys reproduction rate. Here

the two predators are competing for the same resource. For the biological validity of the model, we have

examined positivity and boundedness of the system. The model analysis shows that the level of fear

has a major influences on the dynamical behavior of the system. It is observed that increase amount

of fear can stabilize the system. The local stability, persistence, bifurcation and global stability are

investigated in deterministic system.
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Figure 2. Phase portrait along with time series plots of system (5.1) with parameter

values r = 12, k = 0.5, l = 0.5, α = 1, β = 1, p = 4, q = 4,m = 1, n = 1, b = 1, c = 1, d =

0.25, δ = 0.75, h = 0.5, µ = 0.5, ρ = 0.1, σ = 0.1, σ1 = 1, σ2 = 2, σ3 = 3 and the initial

point (1.1, 1.3, 1.2).
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Figure 3. Phase portrait along with time series plots of system (2.2) with parameter

values r = 12, k = 2.5, l = 0.5, α = 1, β = 1, p = 4, q = 4,m = 1, n = 1, b = 1, c = 1, d =

0.25, δ = 0.75, h = 0.5, µ = 0.5, ρ = 0.1, σ = 0.1 and initial points are (2, 1, 2) and (1,

2, 1).

We also explore the impact of environmental noises on the system. By applying Itô formula, we are

able to determine the existence of a unique global solution for any positive initial point. Boundedness

is demonstrated. Global stability condition is derived by constructing a Lyapunov function. It is noted

that when intensities are small, the system remains stable. These results are biologically important as

it concerns the coexistence of all the species.

But the major difference between our work and the other recent works is the inclusion of one more

prey in predator-prey system. In this case, predator may also modify prey population dynamics by

changing the preys interactions with the other species. Thus the impacts on species coexistence depend

not only by the predation but also by the interspecific competition between the predator species.
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Figure 4. Phase portrait along with time series plots of system (5.1) with parameter

values r = 12, k = 2.5, l = 0.5, α = 1, β = 1, p = 4, q = 4,m = 1, n = 1, b = 1, c =

1, d = 0.25, δ = 0.75, h = 0.5, µ = 0.5, ρ = 0.1, σ = 0.1, σ1 = 12, σ2 = 9, σ3 = 10 and

the initial point (1.1, 1.3, 1.2).
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Figure 5. Phase portrait along with time series plots of system (2.2) with parameter

values r = 12, k = 0.5, l = 0.5, α = 1, β = 5, p = 4, q = 4,m = 1, n = 1, b = 1, c = 1, d =

0.25, δ = 0.75, h = 0.5, µ = 0.5, ρ = 0.1, σ = 0.1 and initial points are (2, 1,2) and (1,

2, 1).

To our understanding, the dynamical study of deterministic and stochastic version of two predator

competing for a single resource with fear has not done yet. Permanence study remains for future work.
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Figure 6. Phase portrait along with time series plots of system (5.1) with parameter

values r = 12, k = 0.5, l = 0.5, α = 1, β = 5, p = 4, q = 4,m = 1, n = 1, b = 1, c =

1, d = 0.25, δ = 0.75, h = 0.5, µ = 0.5, ρ = 0.1, σ = 0.1, σ1 = 12, σ2 = 9, σ3 = 10 and

the initial point (1.1, 1.3, 1.2).
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Figure 7. Phase portrait along with time series plots of system (5.1) with parameter

values r = 12, k = 0.5, l = 0.5, α = 1, β = 5, p = 4, q = 4,m = 1, n = 1, b = 1, c = 1, d =

0.25, δ = 0.75, h = 0.5, µ = 0.5, ρ = 0.1, σ = 0.1, σ1 = 0.1, σ2 = 0.2, σ3 = 0.3 and the

initial point (1.1, 1.3, 1.2).
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