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DYNAMICS OF A PLANT-HERBIVORE MODEL WITH A

CHEMICALLY-MEDIATED NUMERICAL RESPONSE

LIN WANG, JAMES WATMOUGH, AND FANG YU

Abstract. A system of two ordinary differential equations is proposed to model chemically-mediated

interactions between plants and herbivores by incorporating a toxin-modified numerical response.

This numerical response accounts for the reduction in the herbivore’s growth and reproduction due

to chemical defenses from plants. It is shown that the system exhibits very rich dynamics including

saddle-node bifurcations, Hopf bifurcations, homoclinic bifurcations and co-dimension 2 bifurcations.

Numerical simulations are presented to illustrate the occurrence of multitype bistability, limit cycles,

homoclinic orbits and heteroclinic orbits. We also discuss the ecological implications of the resulting

dynamics.

1. Introduction

Ecological systems are fascinating and complex. So are interactions between plants and herbivores.

On the one hand, herbivores feed on plants and on the other hand, it is frequently observed that plants

can produce chemicals which either are toxic to the herbivores or can inhibit the herbivores’ growth and

reproduction, preventing the plants from becoming extinct [6]. It has been shown in many works (see,

for example, [1, 2, 3, 4, 12, 14, 17]) that plant chemical defenses can have a great influence on interactions

of plants and herbivores. Hence it is important to take plant chemical defenses into consideration in

models of the dynamics of plant-herbivore interactions.

In general, plant chemical defense affects interactions between plants and herbivores from two aspects:

(i) directly reducing the amount of plant biomass consumed by herbivores and (ii) inhibiting herbivores’

growth and reproduction and increasing their mortality rate [11]. For example, related to the first

aspect, tomatoes release jasmonic acid to inhibit the tobacco hornworm’s digestion and stop them from

getting the needed nitrogen for their own growth [7]. As another example, related to the second aspect,

soybeans are resistant to attack by bruchid beetles [13]: bruchid beetle larvae are quickly killed by

chemicals released by soybeans shortly after the larvae burrow beneath the seed coat.

When it comes to mathematical modeling, on the first aspect, some recent work has proposed several

models with complex toxin-determined functional responses (see [5, 9, 10]). Rich dynamics such as

oscillations from limit cycles have been observed.

We show that plant chemical defense enriches the dynamics of plant-herbivore interaction via promot-

ing multiple types of saddle-node bifurcations, multiple types of bistability, and homoclinic bifurcations.

We first formulate the model and non-dimensionalize it in Section 2. We then show the model is well
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posed in Section 3. We carry out the detailed mathematical analysis including existence and stability of

equilibria in Section 4. Section 5 is devoted to numerically exploring various bifurcations and bistability.

A summary and discussion is given in the last section.

2. Model formulation

Let P (t) and H(t) denote the density of plant biomass and the density of herbivore biomass at time

t, respectively. Assume that the plant grows logistically when its consumer, the herbivore is absent.

Plant consumption by the herbivore is modelled by a Holling type II functional response f , which

takes the form f(x) = ex/(1 + hex), where e represents the rate herbivores encounter plants, and h

represents the herbivore’s handling time on its food. To account for the plant’s chemical defenses,

different from [5], we assume that a plant’s chemical defense does not directly change the herbivore’s

consumption behavior, but rather affects the herbivore’s growth and reproduction rates. More precisely,

we assume that herbivore growth and reproduction rates are functions of the total grazing pressure on

the plant, x = Hf(P ), and that the numerical response, denoted by g, has the specific functional form

g(x) = x/(1 + (x/a)2). Thus, the numerical response increases with total plant consumption, x, when

x is low, but decreases if the plant consumption is high. The positive constant a is the scale parameter

of the response and is the level of plant consumption for which the numerical response peaks.

Our model is then described by the following coupled differential equations

dP (t)

dt
= RP (t)

(
1− P (t)

K

)
−H(t)f(P (t)), (2.1a)

dH(t)

dt
= Bg(H(t)f(P (t))− dH(t). (2.1b)

Here R is the intrinsic growth rate and K is the carrying capacity of the plants. The constant B

represents the conversion efficiency of consumed plants into new herbivore biomass. The constant d is

the death rate for herbivore.

For convenience, we first non-dimensionalize the system by setting

x =
P

K
, y =

He

d
, t̂ = td

and dropping the hats to obtain

dx

dt
= rx(1− x)− xy

1 + bx
, (2.2a)

dy

dt
= −y +

m xy
1+bx

1 + µ( xy
1+bx )2

, (2.2b)

where r = R/d, b = Khe, m = KBe/d, µ = K2d2/a2.

In System (2.2), the key parameter µ can be interpreted as a measure of the effectiveness of the plant

at inhibiting the herbivore’s digestion and growth. When µ = 0, the model reduces to the Rosenzweig-

MacArthur model [15]. The Rosenzweig-MacArthur model has two boundary equilibria (0, 0) and (1, 0)

and a unique positive equilibrium

(u∗, v∗) =
(
(m− b)−1, rm

(
1− (m− b)−1

))
provided (1 + b) < m. The equilibrium (0, 0) is always unstable, the equilibrium (1, 0) is stable if

m < 1 + b and is unstable if m > 1 + b. The positive equilibrium can change from being stable to being

unstable via a Hopf bifurcation resulting in the appearance of a limit cycle.
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3. Well−posedness of the model

Proposition 3.1. Consider System (2.2) with (x(0), y(0)) ∈ R2
+. There exists a unique solution

(x(t), y(t)) such that (x(t), y(t)) ∈ R2
+ is bounded.

Proof. The existence and uniqueness of the solution to System (2.2) follows from standard results on

ordinary differential equations [18, Theorem 1.1.8]. Note that if x(0) = 0, then x(t) = 0 for all t > 0

and if y(0) = 0, then y(t) = 0 for all t > 0. For any given initial condition (x(0), y(0)) ∈ R2
+, we claim

that the unique solution (x(t), y(t)) of (2.2) remains non-negative for t > 0. Suppose this is not true,

then there must exist t1 > 0 such that x(t) ≥ 0, y(t) ≥ 0 for t ∈ [0, t1] and either x(t1) = 0 with

x′(t1) < 0 or y(t1) = 0 with y′(t1) < 0. This is impossible since dx
dt

∣∣
x=0

= dy
dt

∣∣∣
y=0

= 0. This proves that

the unique solution (x(t), y(t)) ∈ R2
+ for t > 0.

Next we show the unique solution is bounded. Consider the equation

X ′(t) = rX(t)(1−X(t)),

with X(0) = x(0). By a comparison theorem [8, Theorem 1.4.1], we obtain

x(t) ≤ X(t) =
1

1 + ( 1
x(0) − 1)e−rt

≤M1,

where M1 = max(x(0), 1). This shows that x(t) is bounded.

Note that x(t) and y(t) are nonnegative. We then have

mx(t)y(t)
1+bx(t)

1 + µ(x(t)y(t)
1+bx(t) )2

≤ m

2
√
µ

=: M2.

Thus

y(t)′ ≤ −y(t) +M2.

This implies that

y(t) ≤ max(y(0),M2).

Thus, y(t) is bounded. �

4. Stability and bifurcations

In this section, we study the dynamics of System (2.2) by considering the stability of the boundary

equilibria, E0 = (0, 0) and E1 = (1, 0) and the existence, stability and bifurcations of the positive

equilibria.

4.1. Stability of boundary equilibria. For the two boundary equilibria, we have the following result

on their stability.

Theorem 4.1. For System (2.2), the equilibrium E0 is a saddle point with a one dimensional stable

manifold and a one dimensional unstable manifold; The herbivore-free equilibrium E1 is locally asymp-

totically stable if

m < 1 + b (4.1)

and is a saddle point with a one dimensional stable manifold and a one dimensional unstable manifold

if

m > 1 + b. (4.2)
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Proof. The Jacobian matrix at E0 is given by

JE0
=

(
r 0

0 −1

)
,

which has two eigenvalues: λ1 = r > 0 and λ2 = −1 < 0. Hence, by [18, Theorem 1.1.3], E0 is a saddle

point with a one dimensional stable manifold and a one dimensional unstable manifold.

Next we consider the stability of E1. The Jacobian matrix at E1 is

JE1
=

(
−r −1

1+b

0 m
1+b − 1

)
,

which has two eigenvalues: λ1 = −r < 0 and λ2 = m/(1 + b)− 1. If m < 1 + b holds, then λ2 < 0 and

thus E1 is locally asymptotically stable, and if m > 1 + b holds, then λ2 > 0. Again, by [18, Theorem

1.1.3], the boundary equilibrium E1 is a saddle point with a one dimensional stable manifold and a one

dimensional unstable manifold. �

Remark 4.2. Using a comparison principle, we can indeed show that E1 is globally asymptotically stable

if m < 1 + b. The equilibrium E0 is unstable and its stable manifold consists of the positive y−axis

{(0, y) : y > 0}. This means that the plant and herbivore can avoid becoming extinct simultaneously

unless the initial plant population is zero. The herbivore population goes extinct if the plant is in short

supply assuming that the herbivore does not consume other resources.

4.2. Existence of positive equilibria and saddle-node bifurcation. We are more concerned with

the coexistence of the plants and the herbivores, which, from mathematics point of view, refers to the

existence of positive equilibria for System (2.2).

To explore the existence as well as the stability of positive equilibria, we first establish the following

result on the existence of positive equilibria.

Lemma 4.3. System (2.2) admits positive equilibria if and only if m > 1 + b. More specifically, if

m ≤ 1 + b, then System (2.2) has no positive equilibria and if m > 1 + b, then System (2.2) has at least

one and at most three positive equilibria.

Proof. A positive equilibrium, (x∗, y∗), is a positive solution to the following system:

y = r(1− x)(1 + bx), (4.3a)

mx = (1 + bx) +
µ(xy)2

1 + bx
. (4.3b)

Substituting (4.3a) into (4.3b) yields

Q(x) = 0

with

Q(x) = bx5 + (1− 2b)x4 + (b− 2)x3 + x2 +
1

µr2
(b−m)x+

1

µr2
. (4.4)

If x∗ ∈ (0, 1) is a zero of Q(x), then System (2.2) has an positive equilibrium (x∗, y∗) with y∗ =

r(1− x∗)(1 + bx∗). It follows from (4.3b) that

mx = 1 + bx+
µ(xy)2

1 + bx
> 1 + bx > (1 + b)x.

This shows that m > 1 + b is a necessary condition for System (2.2) to have a positive equilibrium.

In fact, it is also a sufficient condition ensuring the existence of at least one positive equilibrium for
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Figure 1. Determination of positive equilibria of System (2.2). Each intersection

point of the graphs w = F1(x) and w = F2(x) gives a value of x∗ for the positive

equilibrium (x∗, y∗). Here the parameter values are: r = 3.5, b = 5.5, m = 39.25. For

the five graphs of w = F1(x), from the top to the bottom, the values of µ are taken as

µ = 4.445, 5.445, 10.445, 19.875, 24.875, respectively.

System (2.2). This follows from the fact that Q(0) = 1/µr2 > 0 and Q(1) = 1/(µr2)(b + 1 −m) < 0.

Moreover, since b > 0, there exists a sufficiently large M > 1 such that

Q(−M) < 0 and Q(M) > 0.

This implies that Q(x) always has one negative zero and one positive zero which is larger than 1. Note

that Q(x) can have at most 5 zeros, we can exclude a negative zero and a positive zero which is larger

than 1. This shows that Q(x) can have at least one and at most three zeros on the interval (0, 1). That

is, System (2.2) has at most three positive equilibria. �

Remark 4.4. The herbivore-free equilibrium E1 loses the stability at m = 1 + b and positive equilibria

appear when m > 1 + b. This implies that a transcritical bifurcation occurs at m = 1 + b.

Next, we analyze the existence of positive equilibria for System (2.2) graphically. From (4.3), we can

derive the following relation:

F1(x) :=
1

µr2

(
mx

1 + bx
− 1

)
= x2(1− x)2 =: F2(x). (4.5)

An intersection point of the two curves given by w = F1(x) and w = F2(x) for x ∈ (0, 1) determines a

positive zero of Q(x) in the interval (0, 1). As demonstrated in Figure 1 that Q(x) = 0 can have either

one, or two or three positive roots in (0, 1).

Figure 1 implies that System (2.2) may undergo saddle-node bifurcations. Since µ and m are the

parameters associated with herbivore’s growth, which may be influenced by plant’s chemical defenses,

we then focus on how µ and m affect the dynamics of System (2.2). Suppose all other parameter values

(r and b) are fixed, then we can determine a curve in the µ-m space such that saddle-node bifurcations

occur on this curve. We call this curve as a saddle-node bifurcation curve. As it is very difficult to

express the x value of the positive equilibrium in terms of the parameters µ and m, we parameterize µ

and m in terms of other parameters and x. On the bifurcation curve, we must have F1(x) = F2(x) and
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F ′1(x) = F ′2(x), i.e.,

chap
(m− b)x− 1

µr2(1 + bx)
= x2(1− x)2, (4.6a)

m

µr2(1 + bx)2
= 2x(1− x)(1− 2x). (4.6b)

This yields

µ = µs(x) :=
1

r2x2(1− x)g1(x)
, (4.7a)

m = ms(x) :=
2(1− 2x)(1 + bx)2

xg1(x)
(4.7b)

for x ∈ (0, x̄), where

g1(x) = −4bx2 + (2b− 3)x+ 1 (4.8)

and

x̄ =
2b− 3 +

√
4b2 + 4b+ 9

8b
∈
(

1

3
,

1

2

)
(4.9)

is the unique positive zero of g1(x).

The properties of the two functions ms(x) and µs(x) are given in the following lemma.

Lemma 4.5. For ms(x) and µs(x) defined in (4.7), we have

lim
x→0+

µs(x) = lim
x→x̄−

µs(x) =∞ and lim
x→0+

ms(x) = lim
x→x̄−

ms(x) =∞. (4.10)

Moreover, there exists a unique xc ∈ (0, x̄) such that µ′s(xc) = m′s(xc) = 0, µ′s(x) < 0, m′s(x) < 0 for

x ∈ (0, xc) and µ′s(x) > 0, m′s(x) > 0 for x ∈ (xc, x̄).

Proof. It is straightforward to obtain (4.10), which shows that there exist ε1 > 0 and ε2 > 0 such that

both µs(x) and ms(x) are decreasing for x ∈ (0, ε1) and increasing for x ∈ (ε2, x̄). A direct calculation

shows that sgn(µ′s(x)) = sgn(m′s(x)) = sgn(G(x)) for x ∈ (0, x̄), where G(x) is given by

G(x) := −10bx3 − (6− 12b)x2 + (6− 3b)x− 1. (4.11)

Therefore, G(x) < 0 for x ∈ (0, ε1) and G(x) > 0 for x ∈ (ε2, x̄). Note that limx→−∞G(x) > 0 and

G(1) = −b − 1 < 0. This implies that G(x) has one negative zero and two positive zeros located

in the intervals (0, x̄) and (x̄, 1), respectively. Hence, there exists a unique xc ∈ (0, x̄) such that

µ′s(xc) = m′s(xc) = G(xc) = 0 and µ′s(x) < 0, m′s(x) < 0 for x ∈ (0, xc) and µ′s(x) > 0, m′s(x) > 0 for

x ∈ (xc, x̄). �

The above lemma allows us to establish the following result.

Theorem 4.6. Consider System (2.2) with fixed r and b. If m < 1 + b, then there are no positive

equilibria, while if m > 1 + b, then there exists a saddle-node bifurcation curve and there exists a cusp

point at which a codimension-2 bifurcation occurs. Moreover, in the µ−m space, the locus, C, of saddle-

node bifurcations has two monotone branches, on which there are exactly two positive equilibria, between

which, there are exactly three positive equilibria, and there is a unique positive equilibrium otherwise.

Proof. By Lemma 4.3, we know that there are no positive equilibria if m < 1 + b and there is at least

one positive equilibrium if m > 1 + b. Consider the case with m > 1 + b, it follows from Lemma 4.5

that

C := {(µ,m) = (µs(x),ms(x)) : x ∈ (0, x̄)}. (4.12)
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Figure 2. Bifurcation curves of System (2.2) in the µ-m space. The red curves Cu
and Cl form the saddle-node bifurcation curve; The line given by m = 1 + b is the

transcritical bifurcation curve. Here parameter values used are r = 3.5 and b = 3.5.

defines a curve in the µ−m space. Define two branches Cu and Cl as

Cu = {(µ,m) = (µs(x),ms(x)) : x ∈ (xc, x̄)} (4.13)

and

Cl = {(µ,m) = (µs(x),ms(x)) : x ∈ (0, xc)}, (4.14)

then

C = Cu ∪ Cl ∪ {CP}
with

CP = (µc,mc) = (µs(xc),ms(xc)), (4.15)

where xc is given in Lemma 4.5. Lemma 4.5 indicates that the two branches are monotone in the sense

that µs(x) and ms(x) are monotone in x for (µ,m) on Cu and Cl,respectively. If (µ,m) ∈ C, then

the graphs of F1(x) and F2(x) intersect tangentially at some point, say (x∗, F1(x∗)), which determines

an additional positive equilibrium (x∗, y∗) for System (2.2). That is, there are exactly two positive

equilibria if (µ,m) is located on C. If (µ,m) is located between Cu and Cl (see Region III in Figure 2),

then the curve given by w = F1(x) (locally) lies below the above mentioned point (x∗, F1(x∗)) and

hence there are two intersection points for the graphs of F1(x) and F2(x) resulting in two additional

positive equilibria of System (2.2). That is, there are exactly three positive equilibria when (µ,m) is

in Region III. If (µ,m) is located on the other side of the curve C, then the curve given by w = F1(x)

(locally) lies above the point (x∗, F1(x∗)) and hence there is no intersection point for the graphs of F1(x)

and F2(x). Consequently, System (2.2) does not admit any positive equilibria near (x∗, y∗) and there

is exactly one positive equilibrium. This shows that there exists a saddle-node bifurcation curve which

consists of Cu and Cl. Note that the two monotone branches Cu and Cl meet tangentially at CP with

µ′s(xc) = m′s(xc) = 0. This indicates that CP is a cusp point, at which a codimension-2 bifurcation

occurs [16]. �

4.3. Stability of positive equilibria. Using (4.3), we can express the entries of the Jacobian matrix

J at a positive equilibrium (x, y) in terms of x as

J =

[
a11 a12

a21 a22

]
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with

a11 = r − 2rx− r(1− x)

1 + bx
, a12 = − x

1 + bx
,

a21 =
r(1− x)(2 + (2b−m)x)

mx2
, and a22 = −2

(
1− 1 + bx

mx

)
.

The corresponding characteristic equation is then given by

λ2 − T (x)λ+D(x) = 0, (4.16)

with

T (x) = a11 + a22 = −2 + r − 2rx+
2(1 + bx)

mx
− r(1− x)

1 + bx
(4.17)

and

D(x) = a11a22 − a12a21 =
r(2(1− 2x)(1 + bx)2 −mxg1(x))

mx(1 + bx)
, (4.18)

where g1(x) is defined in (4.8).

Lemma 4.7. Let (x, y) be a positive equilibrium of System (2.2). If b ≤ 1 or b > 1 and m ≤
b(b+ 1)/(b− 1), then T (x) < 0; If b > 1 and m > b(b+ 1)/(b− 1), then there exists an xH ∈
((m− b)−1, (b− 1)/(2b)) such that T (xH) = 0, and T (x) < 0 for x ∈ (xH , 1).

Proof. Since (x, y) is a positive equilibrium of System (2.2), then m > 1 + b and x ∈ ((m − b)−1, 1).

Note that T (x) can be rearranged as

T (x) = r
x(b− 1− 2bx)

1 + bx
− 2

(m− b)x− 1

mx
.

Note that ((m− b)x− 1)/(mx) > 0. Thus, if b ≤ 1 or b > 1 and m ≤ b(b+ 1)/(b− 1), then b−1−2bx <

0 and hence T (x) < 0. Assume b > 1 and m > b(b+ 1)/(b− 1). Note that T ((m − b)−1) > 0 and

T (x) < 0 for x ≥ (b − 1)/(2b). Then there must exit an xH ∈ ((m− b)−1, (b− 1)/(2b)) such that

T (xH) = 0, and T (x) < 0 for x ∈ (xH , 1). �

Lemma 4.8. For fixed r and b, at any positive equilibrium (x, y), we have the following conclusions.

(i) if 1 + b < m < mc, then D(x) > 0 for any µ ≥ 0;

(ii) if m ≥ mc, then for each m, as µ changes, there are two saddle-node bifurcation values x∗2,m < x∗1,m
with D(x∗i,m) = 0 (i = 1, 2), D(x) < 0 for x ∈ (x∗2,m, x

∗
1,m) and D(x) > 0 otherwise.

Proof. If x ∈ (0, x̄), then g1(x) > 0 and we can rewrite D(x) as

D(x) =
rg1(x)(ms(x)−m)

m(1 + bx)
, (4.19)

where ms(x) is defined in (4.7b). If 1 + b < m < mc, then ms(x) > m for x ∈ (0, x̄). Thus D(x) > 0

for x ∈ (0, x̄). Using (4.3), we can also write D(x) as

D(x) =
r

mx
D1(x),

where

D1(x) = 1− x− µr2x2(1− x)2g1(x). (4.20)

Note that g1(x) ≤ 0 for x ∈ (x̄, 1), we see that D1(x) > 0 for x ∈ [x̄, 1). This proves case (i).

In case (ii), if m > mc, then for each m, according to Theorem 4.6, there exist two saddle-node

bifurcation values x∗2,m < x∗1,m such that (µ1,m,m) ∈ Cu and (µ2,m,m) ∈ Cl, where µ1,m = µs(x
∗
1,m),
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µ2,m = µs(x
∗
2,m) and m = ms(xi,m)∗ for i = 1, 2. Thus D(x∗1,m) = D(x∗2,m) = 0. On the other hand,

we can express D(x) as

D(x) =
rg2(x)

mx(1 + bx)
,

where g2(x) = (4bm− 2b2)x3 + (2b2− 4b− (2b− 3)m)x2 + (4b− 2−m)x+ 2. Note that 4bm− 2b2 > 0,

g2(0) = 2 > 0, then the cubic function g2(x) must have a negative zero and two positive zeros x∗1,m and

x∗2,m. By the property of cubic functions, we know that D(x) < 0 for x ∈ (x∗2,m, x
∗
1,m) and D(x) > 0

for x ∈ (0, x∗2,m) ∪ (x∗1,m, 1). �

Similarly, we can prove the following lemma.

Lemma 4.9. For fixed r and b, at any positive equilibrium (x, y), we have

(iii) if µ ≤ µc and m > 1 + b, then D(x) > 0;

(iv) if µ > µc and m > 1 + b, then for each µ, as m changes, there are two saddle-node bifurcation

values x∗i,µ, i = 1, 2 at which D(x) = 0, D(x) < 0 when x is between these two values, and

D(x) > 0 otherwise.

Our main result on stability of positive equilibria is presented below.

Theorem 4.10. Consider System (2.2). If System (2.2) has a unique positive equilibrium (x∗, y∗), then

it is stable provided T (x∗) < 0; If System (2.2) has three positive equilibria (x∗i , y
∗
i ) with x∗1 < x∗2 < x∗3,

then the middle equilibrium (x∗2, y
∗
2) is a saddle point, the other two equilibria can be stable or unstable

nodes. In both cases, if at a positive equilibrium (xH , yH) such that T (xH) = 0 and D(xH) > 0, then a

Hopf bifurcation occurs at this positive equilibrium.

Proof. The proof follows directly from Lemmas 4.7-4.9. �

5. Rich dynamics: numerical exploration

For each positive equilibrium (x∗, y∗), since we cannot explicitly express x∗ in terms of system

parameters, we are not able to determine the sign of T (x∗). In this section, we present some numerical

simulations to explore possible dynamics that may emerge in System (2.2).

We take µ as the bifurcation parameter. According to Theorem 4.6, for each m > mc, there are

two saddle-node bifurcation values, µ1,m < µ2,m, which give two saddle-node bifurcation points SN1 =

(x∗1,m, y
∗
1,m) and SN2 = (x∗2,m, y

∗
2,m) satisfying x∗1,m > x∗2,m (See Theorem 4.6 (ii)). These two saddle-

node bifurcation points divide the set of equilibria into three subsets: EU = {(x∗, y∗) : x∗ > x∗1,m},
EM = {(x∗, y∗) : x∗ ∈ (x∗2,m, x

∗
1,m)}, and EL = {(x∗, y∗) : x∗ < x∗2,m}. Moreover, by Theorem 4.10,

every positive equilibrium (x∗, y∗) ∈ EM is a saddle point. Since System (2.2) admits three positive

equilibria when µ ∈ (µ1,m, µ2,m), we see that a pair of saddle-node bifurcations occurs at SN1 and SN2.

Depending on the stability of the positive equilibria, we may have the following possible scenarios.

Scenario I. This corresponds to the case where (x∗, y∗) is locally asymptotically stable for (x∗, y∗) ∈
EU ∪ EL. That is, a stable node and a saddle point bifurcate from both saddle-node points SN1 and

SN2. Such a bifurcation diagram is shown in Figure 3, with a corresponding phase portrait given in

Figure 4. In this case, System (2.2) exhibits Type-I bistability: a stable positive equilibrium coexists

with another stable positive equilibrium (see Figure 4).

Scenario II. In this case, there exists a Hopf bifurcation point HP = (xH , yH) ∈ EL and (x∗, y∗) is

locally asymptotically stable for (x∗, y∗) ∈ EU ∪ ELS and (x∗, y∗) is unstable for (x∗, y∗) ∈ ELU . Here
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Figure 3. Bifurcation diagram associated with Scenario I. Here parameter values

used are r = 3.5, b = 0.5 and m = 15.
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Figure 4. A phase portrait of System (2.2) illustrating a Type-I bistability (Two

stable nodes coexist). Here parameter values used are r = 3.5, b = 1.5, m = 20 and

µ = 5.5. The two stable equilibria are separated by stable manifolds of the saddle point

(dashed curves).

ELS := {(x∗, y∗) : x∗ ∈ (xH , x
∗
2,m)} and ELU := {(x∗, y∗) : x∗ < xH}. Note that a stable node and a

saddle point bifurcate from both the saddle-node points SN1 and SN2, but as µ decreases, the positive

equilibrium on the node branch of SN2 becomes unstable due to the occurrence of Hopf bifurcation. See

Figure 5 for a typical bifurcation diagram. Consequently, besides Type-I bistability, Type-II bistability

emerges: a stable positive equilibrium coexists with a stable limit cycle (See Figure 6).

Scenario III. In this case, the positive equilibrium (x∗, y∗) is locally asymptotically stable for

(x∗, y∗) ∈ EU and (x∗, y∗) is unstable for (x∗, y∗) ∈ EL. A stable node and a saddle-point bifurcate

from the saddle-node bifurcation point SN1, while an unstable node and a saddle-point bifurcate from

the saddle-node bifurcation point SN2. A bifurcation diagram is presented in Figure 7. In the case that

the system admits three positive equilibria, E1 ∈ EL, E2 ∈ EM and E3 ∈ EU , multiple heteroclinic

orbits exist: one from (1, 0) to E3, one from E1 to E3 and two from E2 to E3. A phase portrait is

shown in Figure 8.
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Figure 5. Bifurcation diagram associated with Scenario II. Here parameter values

used are r = 3.5, b = 3.5 and m = 20.
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Figure 6. A phase portrait of System (2.2) exhibiting a Type-II bistability (A stable

node and a stable limit cycle coexist). Here parameter values used are r = 3.5, b = 3.5,

m = 20 and µ = 3.5.

Scenario IV. In this case there exists a Hopf bifurcation point (xH , yH) ∈ EU and (x∗, y∗) is

locally asymptotically stable for (x∗, y∗) ∈ EUS and (x∗, y∗) is unstable for (x∗, y∗) ∈ EL ∪EUU , where

EUS := {(x∗, y∗) : x∗ > xH} and EUU := {(x∗, y∗) : x∗ ∈ (x∗1,m, xH)}. As shown in Figure 9, locally,

an unstable node and a saddle-point bifurcate from both saddle-node points SN1 and SN2.

Homoclinic bifurcation and type-III bistability. In Scenario II, there exists a Hopf bifurcation

point HP on EL corresponding a critical value µH ∈ (µ1,m, µ2,m). This results in a stable limit

cycle when µ is smaller than but nearby µH . Depending on the values of the system parameters,

the continuation of the limit cycle induced from Hopf bifurcation will be terminated via a homoclinic

bifurcation, where the limit cycle branch touches a saddle point on EM . On the other hand, when

µ < µ1,m, System (2.2) has only one unstable positive equilibrium (x∗, y∗) ∈ ELU and both boundary

equilibria are unstable. Since it is a two dimensional system, and the solutions are nonnegative and

bounded, there must exist at least one limit cycle around the positive equilibrium (x∗, y∗). As µ

increases, it is possible for the limit cycle branch to touch the saddle point resulting in a homoclinic
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Figure 7. Bifurcation diagram associated with Scenario III. Here parameter values

used are r = 3.5, b = 5.5 and m = 20.
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Figure 8. A phase portrait of System (2.2) exhibiting the existence of multiple hete-

roclinic orbits. Here parameter values used are r = 3.5, b = 5.5, m = 20 and µ = 2.5.

bifurcation. This type of dynamics induces the type-III bistability: a stable positive equilibrium coexists

with a half-stable homoclinic orbit.

We take the parameter values as r = 3.5, b = 5.5 and m = 39.25. As shown in Figure 10, there

exists a critical value µH ≈ 16.52 at which a Hopf bifurcation occurs resulting a stable limit cycle.

The continuation of the stable limit cycle terminates as µ is decreased to µhom2 ≈ 11.07 at which

a homoclinic bifurcation occurs resulting a homoclinic orbit. Moreover, there exists another critical

value µhom1 ≈ 7.02 at which a homoclinic bifurcation occurs resulting another homoclinic orbit. A

representative phase portrait is depicted in Figure 11.

Codimension-2 bifurcations Regarding both µ and m as bifurcation parameters, codimension−2

bifurcations including Bogdanov-Takens bifurcation and cusp point are also possible in our model. To

verify this, we use the Matcont package to plot the bifurcation curves in the µ−m plane to get Figure 12.



PLANT-HERBIVORE MODEL WITH CHEMICALLY-MEDIATED NUMERICAL RESPONSE 99

µ

x
∗

SN2

HP

SN1

EUS

EUU

EL

EM

Figure 9. Bifurcation diagram associated with Scenario IV. A subcritical Hopf bi-

furcation occurs at HP . Here parameter values used are: r = 20, b = 5.8 and m = 13.5.

0

1

µ

x
∗

 

 

µhom
1

µhom
2

µH

EU

EM

ELU

HP
ELS

SN2

SN1

Limit cycle branch

Hopf branch

Figure 10. Bifurcation diagram of System (2.2) with a Hopf bifurcation and two

homoclinic bifurcations.

As shown in Figure 12, between the two saddle-node bifurcation curves, there is a Hopf bifurcation

curve. In addition, there are a cusp point (0.90, 13.11) and two Bogdanov-Takens points (1.05, 13.80)

and (7.09, 26.29) on both the Hopf bifurcation curve and the saddle-node bifurcation curves.

6. Summary and discussion

In this paper we have proposed a new plant-herbivore model that includes a toxin-determined nu-

merical response to account for the effect of plant’s chemical defenses. We have shown that the toxin-

determined numerical response can induce very rich dynamics including saddle-node bifurcations, Hopf

bifurcation, homoclinic and Bogdanov-Takens bifurcation. This results in three types of bistability:

Type-I bistability (one stable equilibrium coexists with another stable equilibrium); Type-II bistabil-

ity (one stable equilibrium coexists with one stable limit cycle) and Type-III bistability (one stable

equilibrium coexists with one half stable homoclinic orbit).
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Figure 11. Phase portrait of System (2.2) exhibiting a Type-III bistability. Here

parameter values used are r = 3.5, b = 5.5, m = 39.25 and µ = 7.02.
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Figure 12. Saddle-node bifurcation curve and Hopf bifurcation curve in System (2.2):

CP-cusp point; BT-Bogdanov-Takens point. Here parameter values used are: r = 3.5,

b = 5.5.

The model’s key parameter µ measures the effectiveness of the plant’s inhibiting effect on the her-

bivore’s growth and reproduction. In principle, µ increases the plant’s ability to maintain a relatively

high population density preventing it from extinction. Depending on other model parameters, various

dynamic behaviours are possible. For instance, Figure 10 represents a bifurcation diagram for certain

combination of parameters. When there is no chemical defense, that is, µ = 0, the system has a unique

stable limit cycle induced by the Holling type II functional response. Both the plant population and the

herbivore population oscillate about the unique positive equilibrium. If µ > 0, then there are 6 intervals

in which dynamics are different: Case (i), µ ∈ (0, µ1,m). There is a unique positive equilibrium, which

is unstable. The solutions tend to a stable limit cycle. As µ increases, the amplitude of the limit cycle

decays. Case (ii), µ ∈ (µ1,m, µ
hom
1 ). There are three positive equilibria. Among them, one is a stable

node, one is a saddle point, and the other is an unstable node. The solutions with initial conditions

different from these equilibria approach either the stable node on EU or a stable limit cycle enclosing

the unstable node on ELU . Case (iii), µ ∈ (µhom1 , µhom2 ). There are three positive equilibria and the

solutions approach the stable node on EU . In addition, there are two heteroclinic orbits from the saddle
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point to the stable node and one heteroclinic orbit from the unstable node to the stable node. Case (iv),

µ ∈ (µhom2 , µH). As in case (ii), the solutions approach either the stable node on EU or a stable limit

cycle enclosing the unstable node on ELU . Case (v), µ ∈ (µH , µ2,m). The solutions approach either

the stable node on EU or the stable node on ELS . Case (vi), µ > µ2,m. There is a unique positive

equilibrium to which the solutions approach. Biologically, in case (i), the plant population undergoes

periodic fluctuations with decaying amplitudes. In cases (ii) and (iv), the outcome is initial condition

dependent: depending on the initial population, the plant population either maintains at a constant

level or fluctuates about a lower level. In cases (iii) and (vi), the plant population stabilizes at a con-

stant level, which is higher than the case with µ = 0. But case (iii) has a threshold (the stable manifold

of the saddle point) for perturbations from equilibrium which lead to catastrophic plant-populations

declines. In case (v), depending on the initial population, the plant population maintains at either a

high level (corresponding to the equilibrium on the upper branch) or a low level (corresponding to the

equilibrium on the lower branch).

Bistability exhibited in our model can be used to design suitable control strategies for resource

management purpose. For instance, in the case of Type-II bistability, a stable positive equilibrium

on the upper equilibrium branch coexists with a stable limit cycle that oscillates about an unstable

equilibrium located on the lower equilibrium branch. If the plant population is in the basin of attraction

of the limit cycle, and it is required to increase the plant population and avoid sustained oscillations,

then a strategy that can shift the solution to the basin of the attraction of the stable equilibrium should

be sufficient.
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