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CONTROLLING RABIES EPIDEMICS IN NEPAL WITH LIMITED RESOURCES:

OPTIMAL CONTROL THEORY APPROACH

BUDDHI PANTHA, HEM RAJ JOSHI, AND NAVEEN K. VAIDYA

Abstract. In many developing countries, including Nepal, rabies epidemics constitute a serious public

health concern, partly because of limited resources for proper implementation of control measures. In

this study, we develop an extended model by incorporating various controls into the transmission

dynamics model with both dog and jackal vectors. We apply the optimal control theory on the

developed model system to identify optimal control strategy for mitigating rabies burden in Nepal

with limited resources. Among the potential control strategies, human vaccination, dog vaccination,

dog culling, dog sterilization, and jackal vaccination, considered in this study, our results show that

a combination of dog vaccination and dog culling is the most effective strategy to control rabies in

Nepal. Our optimal control solutions provide strategies for optimal implementation of these controls

to suppress rabies prevalence in humans, dogs and jackals of Nepal using the minimum cost associated

with controls. We found that given limited resources, implementing controls in a time-dependent

manner with a higher level at the beginning of the outbreaks and reducing them during later part of

the epidemics can provide maximum benefits.

1. Introduction

Rabies, a viral zoonotic disease, remains an ongoing burden in many developing countries, including

Nepal. Because of extremely high fatality rate (almost 100%) in rabid humans or animals having symp-

toms such as violent movements, uncontrolled excitement, fear of water (hydrophobia), an inability to

move parts of the body, confusion, and loss of consciousness [2, 6, 27, 31], this disease poses extreme

threats of public health concerns. While multiple control strategies are available, including successful

vaccine, limited resources and lack of proper allocation of resources often make developing countries fail

to control rabies epidemics; it is also called a poor man’s disease because most of deaths (≥ 95%) occur

in Asian and African countries [33]. Therefore, well-designed planning is necessary before implementing

these control strategies to achieve optimal outcomes using limited resources. Mathematical modeling

can provide an important means for identifying ideal planning strategies.

Rabies virus is mainly transmitted through infected animal bites [8]. Among the potential animals,

dogs are primarily considered as vector for the transmission of rabies. There are many existing models

that describe transmission dynamics of the rabies with dogs as primary vectors [1, 2, 3, 7, 8, 9, 11, 12, 17,

18, 20, 22, 27, 30, 32]. However, in the context of some countries like Nepal, while dogs remain primary

vectors in urban epidemiological cycle [26], jackals as secondary vectors in sylvatic epidemiological cycle
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also play an important role in the persistent ongoing rabies epidemics [21]. Such persistent low level of

rabies infection in jackals were also found in Zimbabwe [24]. In a recent study, we developed a model

that couple both dog and jackal along with human population to describe transmission dynamics of

rabies in Nepal, and identified that consideration of both vectors is essential for successful mitigation

of rabies in Nepal [21]. In particular, our model predicted that even though intraspecies transmission is

prevented among each animal species (dogs and jackals), the rabies can still persist due to interspecies

transmission [21].

Nepal has pledged to end rabies by 2030, but dog-bite cases are rising and as many as 26,312 peo-

ple were administered with post-exposure anti-rabies vaccines at government health facilities in 2018

[14]. Despite continuous effort to control rabies, ongoing epidemic can partly be attributable to limited

resources for implementing proper control and existence of secondary vectors. It is thus important to

identify optimal strategy to implement control programs regarding underlying situation of two different

vectors and limited resources. For such purposes, optimal control theory has been proved to be use-

ful tool as in many previous epidemic controls, including rabies epidemics [5, 7, 13, 15, 16, 19, 20, 23, 25].

In this study, we introduce effects of various controls into the transmission dynamics model incor-

porating both dog and jackal populations [21]. In particular, we focus on human vaccination, dog

vaccination, dog culling, dog sterilization, and jackal vaccination through bait as well as combinations

of them. Using the developed dynamical system model, we further formulate an optimal control problem

to take resource limitation into account. Implementing optimal control theory and related numerical

method, we compute the optimal control strategy for successful control of rabies epidemic in Nepal.

2. Mathematical Model with Controls

Based on our previous model of rabies transmission dynamics in Nepal [21], we develop an extended

model by incorporating various control measures to describe the dynamics of rabies transmission in

multiple groups of species (jackals, dogs, and humans). Specifically, our model is a coupled system

of differential equations that describe the rate of change of subpopulations of jackals (J), dogs (D),

and humans (H) under various control programs implemented in the community. We use subscripts

J , D and H in the variables and parameters to represent them corresponding to jackals, dogs, and hu-

mans, respectively. The total population of each species is divided into four subpopulations: susceptible

(SJ , SD, SH), exposed (EJ , ED, EH), vaccinated (VJ , VD, VH), and infected (IJ , ID, IH).

The population in each group is recruited with rate Λ into susceptible class and die with natural

death rate µ. Susceptible population get infected and enter into exposed class with rate β. Also, the

exposed humans or animals transit into infected class with rate γ and the infected populations die due

to rabies with rate δ. As observed in the context of Nepal, note that humans are infected through dog-

bites only, while both dogs and jackals are infected through intra-species and inter-species transmissions.

There are various potential prevention and control strategies that can be applied to break the Jackal-

dog-human transmission sequence for rabies. In this study, we consider the five most frequently used

strategies: human vaccination (post-exposure), dog vaccination (both pre and post-exposure), dog

culling, dog sterilization, and jackal vaccination through bait. We use u1 to denote the rate at which

the exposed humans get the rabies vaccine. The vaccination program for the rabies in dogs includes both

pre- and post-exposure vaccination. As per guidelines in [4], if vaccinated dogs are exposed, revaccina-

tion should be administered immediately. Therefore, we apply the dog vaccination to both susceptible
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and exposed dogs at the same rate of u2, and we assume that the immunity is not lost for the period

of dynamics considered in the study. The third rabies control strategy is dog culling, which we denote

using the rate u3 implemented to cull dogs from all classes, regardless of their infection status. The bait

vaccination for jackals is applied using foods containing the rabies vaccine that is spread in different

locations so that the jackals consume the foods, reducing the rabies contraction [6, 28]. We denote the

rate of jackal vaccination for both susceptible and exposed jackals by u4. The dog sterilization strategy

is used to control reproductive rate of dogs, eventually reducing the recruitment rate. We denote the

net effectiveness of dog sterilization by u5 so that the dog recruitment rate changes to (1− u5)ΛD.

As described above, the transmission dynamics of rabies under these five control strategies can be

represented using the following system of differential equations.

S′J = ΛJ − βJJSJIJ − βDJSJID − (µJ + u4)SJ

E′J = βJJSJIJ + βDJSJID − (γJ + µJ + u4)EJ

V ′J = u4(SJ + EJ)− µJVJ
I ′J = γJEJ − (µJ + δJ)IJ

S′D = (1− u5)ΛD − βJDSDIJ − βDDSDID − (µD + u2 + u3)SD

E′D = βJDSDIJ + βDDSDID − (γD + µD + u2 + u3)ED

V ′D = u2(ED + SD)− (µD + u3)VD (2.1)

I ′D = γDED − (µD + δD + u3)ID

S′H = ΛH − βDHIDSH − µHSH
E′H = βDHIDSH − (u1 + µH + γH)EH

V ′H = u1EH − µHVH
I ′H = γHEH − (µH + δH)IH

The model parameters related to the context of Nepal [21] are given in Table 1.

3. Impact of Controls on Rabies Epidemics in Nepal

To identify the most impactful controls, we first evaluate the effects on constant level of control on

preventing rabies epidemic and/or reducing rabies prevalence. In our previous study [21], we analyzed

the impact of implementing the single control at a time, and found that the use of only one control

is not able to mitigate the disease unless the level of control is significantly high. For example, rabies

prevalence in dog and jackal can be reduced to low level only if the annual culling for the dog is

more than 40% effective for 10 years or the effectiveness of dog vaccination is more than 60%. The

requirement of unusually high level of control for a longer period of time implies that the multiple

control strategies need to be applied simultaneously for the successful control of rabies. On the other

hand, it is unlikely for developing countries like Nepal to implement many control programs at the same

time due to resource limitation. Therefore, we mainly focus on combinations of two control programs.

Here, we consider combinations of two different controls and evaluate which control combinations are

more effective in reducing the basic reproduction number, R0, as well as reducing the rabies prevalence

among dog and jackal populations. The most effective combination of two control measures are then

considered to identify the optimal planning for implementing them in resource limited setting.
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Table 1. The model variables and parameters.

Model Variables and Initial Values

Variable Description Initial values

SJ Susceptible Jackals 73125
EJ Exposed Jackals 368
VJ Vaccinated Jackals 0
IJ Infected Jackals 73
SD Susceptible Dogs 15.898× 105

ED Exposed Dogs 104

VD Vaccinated Dogs 4× 105

ID Infected Dogs 200
SH Susceptible 25.265× 106

EH Exposed 15534
IH Infected 1000
VH Vaccinated 14000

Model Parameters

Params. Description Value

µJ Jackal mortality rate 0.125
µD Dog mortality rate 0.2
µH Human mortality rate 0.0142
ΛJ Jackal recruitment rate µJ ×NJ(0)
ΛD Dog recruitment rate µD ×ND(0)
ΛH Human recruitment rate µH ×NH(0)
δJ Jackal rabies related mortality rate 36.5
δD Dog rabies related mortality rate 36.5
δH Human rabies related mortality rate 36.5
γJ Jackal rate of moving from exposed to infected 6.64
γD Dog rate of moving from exposed to infected 2
γH Human rate of moving from exposed to infected 2
βJJ Transmission rate from Jackal to Jackal 3.79× 10−5

βDJ Transmission rate from Dog to Jackal 1.90× 10−5

βJD Transmission rate from Jackal to Dog 1.52× 10−5

βDD Transmission rate from Dog to Dog 2.74× 10−5

βDH Transmission rate from Dog to Human 1.71× 10−6

uD Dog vaccination rate(susceptible and exposed) 0.03
uH Human vaccination rate (PEP) 2.05

3.1. Impact on the basic reproduction number. The basic reproduction number,R0, known as the

expected number of secondary cases produced by a single (typical) infection in an entirely susceptible

population [10], can be used to determine whether the outbreak occurs (R0 > 1) or infection dies

out (R0 < 1) [10]. Applying the next generation matrix method [10] to our model, we consider the

subsystem containing all of the equations except the equations for SH , SD and SJ . This subsystem is

then linearized about the disease free equilibrium (DFE), given by(
ΛJ

µJ + u4
, 0,

u4ΛJ
µJ(µJ + u2)

, 0,
(1− u5)ΛD

(µD + u2 + u3)
, 0,

u2(1− u5)ΛD
(µD + u3)(µD + u2 + u3)

, 0,
ΛH
µH

, 0, 0, 0

)
.

From the resulting equations, we obtain a matrix F containing infection terms and a matrix V containing

transfer terms, as follows.

F =

 F11 F12 0

F21 F22 0

0 F32 0

 , and V =

 V11 0 0

0 V22 0

0 0 V33

 ,
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where

F11 =

 0 0 βJJΛJ

µJ+u4

0 0 0

0 0 0

 , F12 =

 0 0 βDJΛJ

µJ+u4

0 0 0

0 0 0

 , F21 =

 0 0 (1−u5)βJDΛD

(µD+u2+u3)

0 0 0

0 0 0

 ,

F22 =

 0 0 (1−u5)βDDΛD

(µD+u2+u3)

0 0 0

0 0 0

 , F32 =

 0 0 βDHΛH

µH

0 0 0

0 0 0

 ,

V11 =

 γJ + µJ + u4 0 0

−u4 µJ 0

−γJ 0 µJ + δJ

 , V22 =

 γD + µD + u2 + u3 0 0

−u2 µD + u3 0

−γD 0 µD + δD + u3

 ,
and

V33 =

 u1 + µH + γH 0 0

−u1 µH 0

−γH 0 µH + δH

 .
This implies

FV−1 =

 F11V−1
11 F12V−1

22 0

F21V−1
11 F22V−1

22 0

0 F32V−1
22 0

 .
The basic reproduction number is then given by the spectral radius of the matrix FV−1. Therefore,

R0 = ρ(FV−1) =
1

2

(
RJ0 +RD0 +

√
(RJ0 −RD0 )2 + 4CE

)
,

where

RJ0 =
βJJγJΛJ

(µJ + u4)(δJ + µJ)(γJ + µJ + u4)
,

RD0 =
(1− u5)βDDγDΛD

(δD + µD + u3)(µD + u2 + u3)(γD + µD + u2 + u3)
,

C =
βDJγDΛJ

(µJ + u4)(δD + µD + u3)(γD + µD + u2 + u3)
, and (3.1)

E =
(1− u5)βJDγJΛD

(δJ + µJ)(γJ + µJ + u4)(µD + u2 + u3)
.

We now use the formula for R0 derived above and parameters given in Table 1 to compute the

value of basic reproduction number for various control strategies with two controls taken at a time

(Figure 1). Note that the human vaccination at its base level is always included in all strategies as it

cannot be avoided in practice. We also identified the control levels for which R0 is less than 1, leading

to eradication of rabies in Nepal. While each combination strategy has certain levels that can bring

R0 below 1, the level required is quite high for some strategies compared to others. As presented in

Figure 1 we observe that jackal vaccination is one of the least effective strategies on lowering the basic

reproduction number; the increase in the coverage of jackal bait vaccination has negligible impact on the

basic reproduction number (Figure 1a, 1c, 1e). Similarly, the dog sterilization does not show significant

effectiveness either to reduce R0 (Figure 1a, 1b). The dog culling and dog vaccination on the other

hand are highly impactful on bringing the value of R0 below 1 (Figure 1d). In particular, a combined
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Figure 1. Heatmap of R0 for various combination of pair of controls. The dotted curve
represents R0 = 1.

strategy, including the dog vaccination and dog culling control measures, is the best approach to reduce

R0, thereby preventing or eradicating the rabies in Nepal (Figure 1d).

3.2. Impact on long-term rabies prevalence. In this section, we present the effects of combined

strategies with two control measures at a time on the long term prevalence of rabies among dogs and

jackals. The parameter values and the initial values are used as given in Table 1. The Runge-Kutta

method of fourth order is applied for the model simulations. Since there is no transmission of rabies

from humans to animals, the human vaccination does not have any effect on the rabies prevalence in

dog and jackal populations. Therefore, we keep the human vaccination at a constant level estimated

using the data from Nepal [21] and focus on other four control measures. In the following simulations

(Figure 2-7), we compute the prevalence of rabies in dog and jackal populations with the application

of combined strategies for the period of 10 years. In our simulations, rate of each control strategy is

estimated from the target percentage of the population that are to be covered by that strategy. For

example, with the vaccination rate of u2, the target dog population, XD, can be approximated using

the solution of dXD

dt = −u2XD, i.e, XD(t) = XD(0)e−u2t. Then for a program that aims to vaccinate

η2% of the dog population in a period of t years, the vaccination rate u2 needs to be in such a way that

XD(t) = (1 − η2/100)XD(0) = XD(0)e−u2t, which gives u2 = − ln(1−η2/100)
t . Similarly, the dog culling

rate can be written as u3 = − ln(1−η3/100)
t , where η3 is the % coverage for dog culling in a period of t

years.

First, we consider combined strategy with dog vaccination and dog culling control measures and com-

pute the prevalence of rabies in dog and jackal populations. As expected, our model prediction shows

that applying one control strategy at a lower level requires another control strategy at higher level to

achieve sufficient decrease in the long-term prevalence of rabies among dogs and jackals. For example,

annual dog vaccination coverage at a level of 5% for a period of 10 years requires more than 5% of
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Figure 2. The rabies prevalence in (a) dog, and (b) jackal populations under various levels
of annual coverage of dog vaccination and dog culling.

annual dog culling for that period to lower the rabies prevalence among dogs below 0.006%, and similar

dog vaccination and culling coverage is needed to achieve the same low level of rabies prevalence in jackal.

Next, we consider dog vaccination and jackal bait vaccination together to compute the prevalence of

rabies in dog and jackal populations. As shown in Figure 3, we observe that Jackal vaccination does not

Figure 3. The rabies prevalence in (a) dog and (b) jackal populations under various level
of annual coverage by dog vaccination and jackal vaccination.

have significant impact in lowering the rabies prevalence in the dog population, i.e., the rabies preva-

lence among dogs remains almost the same for any level of coverage by jackal vaccination. However,

the rabies prevalence among jackals, is impacted by this combination of dog vaccination and jackal

vaccination. For example, a combined program with 5% coverage of each of dog vaccination and jackal

bait vaccination results in the rabies prevalence in jackal of about 0.033% while an increase in the jackal

vaccination to 15% keeping the same 5% dog vaccination coverage decreases the rabies prevalence in

jackal to 0.018%.

The third strategy we consider is the combination of the dog vaccination and the dog sterilization.

Note that sterilization does not control the rabies incidence directly, it rather controls the disease in a
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Figure 4. The rabies prevalence among (a) dog and (b) jackal populations under various
level of annual coverage by dog vaccination and dog sterilization.

long run by decreasing the reproduction of the dog and eventually reducing the susceptible populations

of dog. Therefore, for fare comparison as in our previous work [21], we measure the sterilization strength

in a 5 year time frame as opposed to other strategies which are measured in 1 year time frame. In this

strategy, with dog sterilization strength of 15% coverage over 5 years, at least 10% of annual coverage of

dog vaccination is required for 10 years to keep the prevalence in dog population below 0.003% (Figure

4), while at least 11% dog vaccination coverage is required for 10 years to keep the rabies prevalence in

jackal population below 0.003%. We observe that dog sterilization does not have significant impact in

lowering the rabies prevalence in dog and jackal populations.

The fourth strategy is the combination of the dog sterilization and the jackal vaccination. This strat-

Figure 5. The rabies prevalence among (a) dog and (b) jackal populations under various
level of annual coverage by jackal vaccination and dog sterilization.

egy does not have significant impact on the rabies prevalence in dog population (Figure 5). However,

it has considerable impact on the rabies prevalence in jackal population. For instance, dog sterilization

level of 10% and jackal vaccination coverage of 15% for 10 years can bring the rabies prevalence below

0.050% in jackal population. For a higher dog sterilization coverage (for example, 17% for 10 years),

the same level of rabies prevalence can be achieved with lower jackal vaccination level of 4%.
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The fifth strategy considered in this study is the combination of dog sterilization and culling. In this

Figure 6. The rabies prevalence among (a) dog and (b) jackal populations under various
level of annual coverage by jackal vaccination and dog culling.

combination of strategies, the dog culling has significant impact in reducing rabies prevalence in both

dog and jackal populations (Figure 6a), but the dog sterilization has only a little impact in reducing

the rabies prevalence in both populations (Figure 6b). For example, at 5% of dog culling for 10 years,

a change of the level of dog sterilization from 5 to 15% causes the rabies prevalence in dog population

to change from 0.0351% to 0.0122%. In this change, the prevalence in jackal populations also changes

from 0.0289% to 0.0095%.

The last strategy considered in this study is the combination of the jackal vaccination and the dog

culling. As in the previous combination of strategies, dog culling has significant impact on reducing

Figure 7. The rabies prevalence among (a) dog and (b) jackal populations under various
level of annual coverage by jackal vaccination and dog culling.

rabies prevalence in both populations but the jackal vaccination plays a noticeable role in reducing

rabies prevalence in jackal population only. For example, at 5% of dog culling for 10 years, the rabies

prevalence in jackal population changes from 0.45% to 0.011% on changing the level of jackal vaccina-

tion from 0 to 25%, but the prevalence in dog populations does not change significantly (0.055% for 0%
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coverage and 0.047% for 25% coverage of jackal vaccination).

For comparison purpose, we consider the rabies prevalence among dogs and jackal populations under

each combined strategy with 10% coverage level of each of two strategies included in the combination.

For this level of (10%, 10%) coverage, our results show that the rabies prevalence for dog population

remains 0.0001%, 0.0040%, 0.0036%, 0.1362%, 0.0023% and 0.0056% for combined strategies with dog

vaccination and dog culling, jackal vaccination and dog vaccination, dog vaccination and dog steriliza-

tion, dog sterilization and jackal vaccination, dog culling and dog sterilization, and jackal vaccination

and dog culling, respectively. In the jackal population the corresponding prevalence is 0.0001%, 0.0026%,

0.0041%, 0.0652%, 0.0027% and 0.0025%, respectively. Therefore, dog vaccination and dog culling are

the most effective measures to prevent and control rabies epidemics in Nepal. In the following section,

we focus on the optimal strategy to implement the combination of dog vaccination and dog sterilization

under resource limited settings.

4. Optimal Control of Rabies in Nepal

In this section, we use our model to formulate optimal control problem, which allows us to identify

optimal time-dependent strategies under limited resources to achieve maximum benefit from the control

strategy implementation. While we formulate general optimal control problem including all possible

control strategies, we particularly emphasize on two most effective strategies, namely the dog vaccination

and the dog culling, identified in Section 3.

4.1. Formulation of optimal control problem. We consider controls as time-dependent functions,

i.e, ui = ui(t) for i = 1, 2, ..., 5. To incorporate resource limitation while controlling the rabies burden,

we set a goal of minimizing the number of exposed and infected humans and animals as well as min-

imizing the anticipated cost for control implementation for a fixed period of time, say tf . To achieve

this goal, we formulate an objective functional as follows.

J(u1, u2, u3, u4, u5) = min
(u1,u2,u3,u4,u5)∈U

∫ tf

0

[A1(EH + IH) +A2(ED + ID) +A3(EJ + IJ)

+B1u1EH +B2u2(SD + ED) +B3u3ND +B4u4NJ +B5u5(ND − ID)

+C1u
2
1 + C2u

2
2 + C3u

2
3 + C4u

2
4 + C5u

2
5

]
dt,

(4.1)

where Ai’s, Bi’s, and Ci’s are the positive constants, associated with weights corresponding to disease

outcome and costs. Here, we assume that the admissible control set U is given by

U ={(u1, u2, u3, u4, u5) ∈ R5 : 0 ≤ ui(t) ≤ bi for i = 1 . . . 5

andui are Lebesgue measurable},

where bi’s are positive constants related to the availability of resources. We consider the formulated

optimal control under dynamical system given by Eqs. (2.1).

For the control problem formulated above, we can apply a result from Lukes [29] to prove the

existence and uniqueness of solutions for the state system (2.1) with the given controls. The existence

and uniqueness results for our optimal control problem can be summarized as in Theorem 4.1.

Theorem 4.1. Given controls u = (u1, u2, u3, u4, u5) ∈ U , there exist non-negative bounded solutions

(SJ , EJ , VJ , IJ , SD, ED, VD, ID, SH , EH , VH , IH) to the state system (2.1) in the finite interval [0, T ]

with given initial conditions.
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The structure of system (2.1) gives the non-negativity and uniform boundedness of the state solutions.

As stated in Theorem 4.2, we can also assert the existence of the optimal controls based on the results

from [16].

Theorem 4.2. There exists an optimal control tuple u∗ = (u∗1, u
∗
2, u
∗
3, u
∗
4, u
∗
5) ∈ U with corresponding

states (S∗J , E
∗
J , V

∗
J , I

∗
J , S

∗
D, E

∗
D, V

∗
D, I

∗
D, S

∗
H , E

∗
H , V

∗
H , I

∗
H) that minimizes the objective functional

J(u1, u2, u3, u4, u5).

By using Pontryagin’s Maximum Principle as stated in [16, 23], we are able to derive necessary

conditions for our optimal control and corresponding states. The Hamiltonian of the system is:

H = A1(EH + IH) +A2(ED + ID) +A3(EJ + IJ)

+B1u1EH +B2u2(SD + ED) +B3u3ND +B4u4NJ +B5u5(SD + ED + VD)

+ C1u
2
1 + C2u

2
2 + C3u

2
3 + C4u

2
4 + C5u

2
5

+ λ1(ΛJ − βJJSJIJ − βDJSJID − (µJ + u4)SJ)

+ λ2(βJJSJIJ + βDJSJID − (γJ + µJ + u4)EJ) + λ3(u4(SJ + EJ)− µJVJ)

+ λ4(γJEJ − (µJ + δJ)IJ)

+ λ5((1− u5)ΛD − βJDSDIJ − βDDSDID − (µD + u2 + u3)SD)

+ λ6(βJDSDIJ + βDDSDID − (γD + µD + u2 + u3)ED) + λ7(u2(ED + SD)− (µD + u3)VD)

+ λ8(γDED − (µD + δD + u3)ID) + λ9(ΛH − βDHIDSH − µHSH)

+ λ10(βDHIDSH − (u1 + µH + γH)EH) + λ11(u1EH − µHVH) + λ12(γHEH − (µH + δH)IH).

For given optimal controls u1, ..., u5, there exist λi, i = 1, . . . , 12, with derivative λ′i(t) given by

λ′i(t) = − ∂H

∂ (ith state variable)
.

Therefore, we obtain

λ′1(t) = − (B4u4 − λ1(βJJIJ + βDJID + (µJ + u4)) + λ2(βJJIJ + βDJID) + λ3u4) ,

λ′2(t) = − (A3 +B4u4 − λ2(γJ + µJ + u4) + λ3u4 + λ4γJ) ,

λ′3(t) = − (B4u4 − λ3µJ) ,

λ′4(t) = − (A3 +B4u4 − λ1βJJSJ + λ2βJJSJ − λ4(µJ + δJ)− λ5βJDSD + λ6βJDSD) ,

λ′5(t) = − (B2u2 +B3u3 +B5u5 − λ5(βJDIJ + βDDID + µD + u2 + u3) ,

+λ6(βJDIJ + βDDID) + λ7u2) ,

λ′6(t) = − (A2 +B3u3 +B5u5 − λ6(γD + µD + u2 + u3) + λ7u2 + λ8γD) ,

λ′7(t) = − (B3u3 +B5u5 − λ7(µD + u3), )

λ′8(t) = − (A2 +B3u3 − λ1βDJSJ + λ2βDJSJ − λ5βDDSD , (4.2)

+λ6βDDSD − λ8(µD + δD + u3)− λ9βDHSH + λ10βDHSH) ,

λ′9(t) = − (−λ9(βDHID + µH) + λ10βDHID) ,

λ′10(t) = − (A1 +B1u1 − λ10(u1 + µH + γH) + λ11u1 + λ12γH) ,

λ′11(t) = − (−λ11µH) ,

λ′12(t) = − (A1 − λ12(µH + δH)) ,

and the transversality conditions are λi(tf ) = 0, i = 1, . . . 12.
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The optimal control solutions u∗i , i = 1, 2, ..., 5, can then be obtained by setting the derivative of

Hamiltonian system with respect to each control to zero, i.e., ∂H/∂ui = 0, i = 1, 2, ..., 5, where

∂H

∂u1
= B1EH + 2C1u1 − λ10EH + λ11EH ,

∂H

∂u2
= B2(SD + ED) + 2C2u2 − λ5SD − λ6ED + λ7(ED + SD),

∂H

∂u3
= B3(SD + ED + VD + ID) + 2C3u3 − λ5SD − λ6ED − λ7VD − λ8ID,

∂H

∂u4
= B4(SJ + EJ + VJ + IJ) + 2C4u4 − λ1SJ − λ2EJ + λ3(SJ + EJ),

∂H

∂u5
= B5(SD + ED + VD) + 2C5u5 − λ5ΛD,

We obtain the optimal control solution as follows.

u∗1 = min

[
b1,max

[
a1,−

1

2C1
(B1 − λ10 + λ11)EH

]]
,

u∗2 = min

[
b2,max

[
a2,−

1

2C2
(B2(SD + ED)− λ5SD − λ6ED + λ7(ED + SD))

]]
,

u∗3 = min

[
b3,max

[
a3,−

1

2C3
(B3(SD + ED + VD + ID)− λ5SD − λ6ED − λ7VD − λ8ID)

]]
,

u∗4 = min

[
b4,max

[
a4,−

1

2C4
(B4(SJ + EJ + VJ + IJ)− λ1SJ − λ2EJ + λ3(SJ + EJ))

]]
,

u∗5 = min

[
b5,max

[
a5,−

1

2C5
(B5(SD + ED + VD)− λ5ΛD)

]]
.

4.2. Estimation of weight parameters and bounds for controls. It is important to determine

the reasonable weight parameters Ai, Bi, Ci introduced into the objective functional, since the outcome

of the minimization procedure may highly be impacted by the choice of these weights. Here, we follow a

similar technique used in Mallela et al. [19] to make proper choice of these weight constants. To estimate

the reasonable proportion of weights, we take A1 = 1, and compute other weight constants in such a

way that the term corresponding to each weight is approximately the same as the term corresponding

to A1. For example, we estimate A2 using∫ tf

0

A1(EH + IH)dt =

∫ tf

0

A2(ED + ID)dt,

and obtain A2 = 1.0702. The similar technique allows us to obtain A3 = 95.8453, B1 = 0.5144,

B2 = 0.0614, and B3 = 0.1259.

To estimate Ci’s we use the average value, uavi , of minimum and maximum values of controls. The

minimum value for both dog vaccination and culling rates are assumed to be zero for no vaccination and

culling. For the upper bound, we assume that the available resource for dog vaccination corresponds

to the maximum capacity of covering 40% of dogs in Nepal in a year. Using dXD

dt = −u2XD, where

XD is dog population remained to be vaccinated, we can compute that the maximum resource (i.e.,

40% coverage) is equivalent to the dog vaccination rate of u2 = 0.5. Thus, we take the bounds for

dog vaccination rate as 0 ≤ u2 ≤ 0.5. Next, as capturing the dogs, culling them and disposing them

need more resources, culling process needs more manpower than vaccination process, and thus lower

coverage for culling can be achieved with limited resources. Let us assume that the maximum available
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resources for dog culling can cover 20% of dogs per year. With this assumption, the bounds for the dog

culling rate is 0 ≤ u3 ≤ 0.22. Then we use

A1

∫ tf

0

(EH + IH)dt = Ci

∫ tf

0

(uavi )2dt, i = 1, 2, 3.

to estimate C ′is. The computation from our model solution provides C1 = 4.7562× 104, C2 = 1.5991×
106, C3 = 8.2596 × 105. Since we intend to obtain optimal time-varying strategy with combined two

most effective controls, u2(t) and u3(t), with underlying constant human post-infection vaccination

(u1), the remaining two controls u4 and u5 are taken to be 0. As a result, the corresponding weight

parameters vanish, i.e., B4 = B5 = C4 = C5 = 0.

4.3. Method for numerical computation. In this section, we briefly summarize the computational

method used to obtain the optimal control solutions. Our technique is similar to the iterative algorithm

introduced by Lenhart and Workman [16]. In particular, we use a backward-forward sweep iterative

method with a fourth order Runge-Kutta scheme. Starting with initial guesses for the controls, the

state equations (2.1) are solved forward in time. Then, the resulting state values are used to solve

the adjoint equations (4.2) backward in time. The controls are then updated. This iteration process

is repeated until the convergence is achieved. The convergence of iteration is defined as a condition,

at which the value of variables in two successive iterations are negligibly close (i.e., their difference is

smaller than a desired small number). The algorithm implemented in our study can be summarized as

follows:

Step 1: Input initial guess for controls over the interval [0, tf ].

Step 2: Using the initial values of state variables and the values of the controls, solve the system (2.1)

forward in time, i.e., from t = 0 to t = tf .

Step 3: Using the transversality conditions λi(tf ) = 0, i = 1, 2, ..., 12 as well as the values of the state

variables from step 2 and the values of controls, solve the adjoint system (4.2) backward in

time, i.e., from t = tf to t = 0.

Step 4: Update the controls with the characterization u∗i , i = 1, 2, ...5 using the values of state and

adjoint variables.

Step 5: If the convergence is achieved, output the current values of solution, otherwise return to Step

2.

4.4. Solutions for the optimal control of rabies in Nepal. As discussed in Section (3), as well as

in our previous work [21], the dog vaccination and the dog culling are two most effective intervention

strategies to control the rabies epidemics in Nepal. Here, we present the numerical solutions of how

these strategies can be implemented optimally given limited resources in the context of Nepal. First,

we consider programs with only one of these two strategies and then consider a program with these two

strategies combined. As mentioned earlier, note that there is always underlying post-infection human

vaccination as this can not be avoided in practice.

4.4.1. Control program with dog vaccination only. We used the bounds for the vaccination rate 0 ≤
u2 ≤ 0.5 and the weight parameters from Section 4.2. All other model parameters are taken from Table

1.

Our model simulations at the boundary levels of the dog vaccination control (Figure 8) show that

without dog vaccination (u2 = 0) the prevalence of rabies in dog population increases continuously

and reaches at a high level of 0.2543% as early as the ninth year, and in jackal population, the rabies

prevalence increases and reaches 0.2162% in the eighth year. In human population, the rabies case

increases continuously and reaches about 169,000 as soon as eighth year. On the other hand, with the
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Figure 8. The rabies prevalence among (a) dog population, (b) jackal population, (c) num-
ber of human rabies cases and (d) optimal dog vaccination profile, u2, in the control program
with dog vaccination only.

highest level of dog vaccination (u2 = 0.5), i.e., use of maximum resources, the prevalence of rabies in

both dog and jackal populations reach approximately zero as early as fourth year and the number of

rabies in humans is about one. Our optimal control solution indicates that the optimal strategy should

be with the dog vaccination control profile u2(t) starting at rate 0.18 and tapering down to zero as

shown in Figure 8d. With this profile, the value of objective functional can be brought to 36% less

than without control and 64% less than with highest control (i.e., the value of J is 1.5310×106 without

control, 6.2895 × 106 with highest control, and 2.2690 × 106 with optimal control), thereby utilizing

the resources optimally. With this optimal vaccination strategy, the rabies prevalence in dog and jackal

populations decreases slowly and maintains at about 0.0026%, as opposed to 0.2458% and 0.2027%,

respectively, without vaccination. In this case, there are only about 2,510 human rabies infections at

the end of tenth year.

4.4.2. Control program with dog culling only. The bounds for the dog culling rate, 0 ≤ u3 ≤ 0.22 and

the weight parameters are taken from Section 4.2. All other model parameters are taken from Table 1.

From the model simulations (Figure 9), we observe that without the dog culling program (u3 = 0), the

Figure 9. The rabies prevalence among (a) dog population, (b) jackal population (c) number
of human rabies cases and (d) optimal dog culling profile u3 in the control program with dog
culling only.

prevalence of rabies in dog population increases immediately after the outbreak begins. The prevalence

then reaches as high as 0.2543% in the ninth year. Similarly, the rabies prevalence in jackal population

peaks reaching to 0.2162% in eighth year and the number of human rabies reaches about 169,000. If

the highest level of resource for culling is implemented (u3 = 0.22), the rabies prevalence in dog and

jackal populations reaches negligible level (close to zero) at about 6 years. Also, the number of human

rabies cases decreases rapidly and reaches about 6 at the end of tenth year.
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In both cases, without dog culling (u3 = 0) and program with highest level of culling (u3 = 0.5), the

objective functional remains higher at J = 3.5310 × 106 and J = 2.8437 × 106, respectively, asserting

that neither of them is an optimal strategy. Our optimal control solution implies that with the dog

culling strategy, u3(t), starting at the rate 0.184 and tapering down to zero, as shown in Figure 9d, can

bring down the values of objective functional to 2.3017 × 106, which is 35% lower than without dog

culling and 20% lower than the value in the highest culling rate. Under this optimal culling strategy,

the peak rabies prevalence in dog and jackal populations are significantly lower than no culling strategy,

while utilizing minimum resources. With this strategy, at the end of the study period of the tenth year,

the rabies prevalence among dog and jackal populations remain 0.004% and 0.003%, respectively and

the number of human rabies infections are about 2,608.

4.4.3. Control program with dog vaccination and dog culling combined. We now consider a combination

of dog vaccination and dog culling strategies, and identify the optimal way of implementing them un-

der resource limitation. As above, we take the range of u2 and u3 as 0 ≤ u2 ≤ 0.5, 0 ≤ u3 ≤ 0.22,

respectively. As presented in Figure 10, under the combined program with the highest level of both

Figure 10. The rabies prevalence among (a) dog population, (b) jackal population, (c)
number of human rabies cases (d) optimal dog vaccination profile, u2, and (e) optimal dog
culling profile, u3, in the control program with dog vaccination and dog culling combined.

dog vaccination and dog culling (u2 = 0.5, u3 = 0.22), the prevalence of rabies in both dog and jackal

populations as well as the number of human rabies cases approach to zero as early as in 3 years, while

the long term prevalence remains 0.2543% and 0.2162%, respectively, in the absence of the program

(u2 = 0, u3 = 0). In this combined approach, the optimal benefit can be achieved by implementing

the dog vaccination and dog culling at the level of 0.11 and 0.09, respectively, at the beginning of

the outbreak, and tapering down both to zero as shown in Figures 10(d,e). In this combined optimal

strategy, the value of objective functional is J = 2.2532× 106, which is about 37% lower than without

control program (J = 3.5310×106) and about 67% lower than the highest level of both dog vaccination
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and dog culling (J = 6.9613 × 106). With this strategy, the rabies prevalence stays approximately at

the level of 0.00001% in both dog and jackal populations with only about 94 human rabies cases at the

end of tenth year.

As the more resources become available, we can utilize the weight constants of our optimal control

model to represent the high resource scenario by assigning lower weight constants corresponding to the

cost for controls (i.e., smaller Bi’s and Ci’s). For example, for 10-fold and 1000-fold higher resource

availability, we take 10-fold and 1000-fold lower values of B2, C2, B3, and C3 than in the base case. For a

higher resource availability (or lower B2, C2, B3, C3), the optimal control solution results in the optimal

dog vaccination and dog culling strategies with a level higher than a case of limited resource (allowing

the use of more resources) and tapering down (Figure 11). In this case, the value of the objective

functional also comes out to be smaller (J = 2.2532×106 for the base case, J = 2.1062×106 for 10-fold

higher resource, and J = 2.0724× 106 for 1000-fold higher resource). For a higher resource availability,

the number of human rabies cases as well as the prevalence of rabies in dog and jackal populations

can be maintained at extremely low level with faster pace, particularly in the case of 1000-fold higher

resource, compared to the case when resources are more limited (Figure 11).

Figure 11. The rabies prevalence among (a) dog population, (b) jackal population, (c)
number of human rabies cases (d) optimal dog vaccination profile, u2, and (e) optimal dog
culling profile, u3, for 10-fold higher (red dashed curve) and 1000-fold higher(black dotted
curve) resource availability (i.e., 10 times and 1000 times smaller values of B2, C2, B3, C3 than
in the base case).

5. Conclusion

Since the rabies is mostly problematic in developing counties of Asia and Africa, the control of rabies

epidemics poses challenges due to limited resources available in these countries. The proper evalua-

tion of control strategies and identifying optimal way of implementing such strategies are critical for
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reducing rabies burden. In this study, we extended our basic rabies transmission dynamics model by

adding the effects of commonly practiced control strategies, such as human post exposure vaccination,

dog vaccination, dog culling, dog sterilization, and jackal bait vaccination. Furthermore, we formulated

the optimal control model, which was then used to obtain the optimal time-varying strategy of imple-

menting controls to mitigate rabies in Nepal under limited resources.

Our model predicts that the dog vaccination and the dog culling are the most effective two control

strategies to bring the basic reproduction number to low value, and also to reduce the human rabies cases

and prevalence of rabies among dogs and jackals in Nepal. The optimal control formulation allowed us

to identify time-dependent implementation of these two control strategies to achieve maximum benefit

under limited resources. In general, applying higher level of controls at the beginning of outbreak and

reducing during later part of the epidemic provide a maximum benefit, in both programs with single

control strategy and two strategies combined. As revealed in our optimal control results, availability of

more resources allows us to apply higher level of controls for longer period, resulting in lower level of

rabies prevalence.

We acknowledge that parameters used in our model are estimated from the literature or from the

limited data set. Therefore, there may be some discrepancy between the model predictions and the

actual prevalence of rabies in Nepal; more data sets from Nepal may help achieve better predictions

of the model. The resource related parameters are particularly difficult to estimate, implying some

uncertainty in quantitative optimal control results. However, the qualitative conclusion of results remain

the same for a wider range of parameters, and therefore can be useful for implementing control strategies

optimally. In summary, our model and optimal control theory provide framework to evaluate and

implement control strategies under resource limited setting for mitigation of rabies epidemic burden in

Nepal.
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