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EXAMINING HIV PROGRESSION MECHANISMS VIA MATHEMATICAL

APPROACHES

WENJING ZHANG, RAMNATH BHAGAVATH, NEAL MADRAS, AND JANE M. HEFFERNAN

Abstract. The progression of HIV infection to AIDS is unclear and under-examined. Many mech-

anisms have been proposed, including a decline in immune response, increase in replication rate,

involution of the thymus, syncytium inducing capacity, activation of the latently infected cell pool,

chronic activation of the immune system, and the ability of the virus to infect other immune cells.

The significance of each mechanism in combination has not been studied. We develop a simple HIV

viral dynamics model incorporating proposed mechanisms as parameters that are allowed to vary. In

the entire parameter space, we derive two formulae for the basic reproduction number (R0) by con-

sidering the infection starting with a single infected CD4 T cell and a single virion, respectively. We

then show that both formulae are equivalent. Analytically, we derive conditions for the occurrence

of backward and forward bifurcations. Numerically, we perform uncertainty and sensitivity analysis

to identify model parameters that significantly affect disease progression, which include the infection

rate, infected cell death and proliferation rates, and viral production and clearance rates. Focusing on

these identified significant parameters, a series of numerical bifurcation analyses demonstrate various

HIV/AIDS progression dynamics through one or two slowly changing parameters.

1. Introduction

HIV can infect all cells in the immune system and the central nervous system which have a CD4

receptor on the cell surface, including T helper cells, monocytes, macrophages, and dendritic cells.

However, the main target of the HIV virus is the CD4 T-helper lymphocyte, the main driver of the

immune response. A large reduction in the number of CD4 T-helper cells seriously weakens the immune

system, affecting the ability to fight opportunistic diseases. When the CD4 T-cell count reaches a

measurement below 200 cells per microlitre of blood, a patient is diagnosed with AIDS. Treatment with

antiviral therapy can delay the onset of AIDS, but this depends on drug adherence and the evolution

of drug resistance.

The progression of HIV to AIDS is marked by a decrease in the CD4 T-cell count, and an increase in

the viral load [74]. The mechanism by which HIV infection transforms into AIDS is unclear [15]. Several

factors such as a decline in immune response [23, 22], increase in replication rate [8, 41, 60], involution

of the thymus [75, 7], syncytium inducing capacity [23, 40], activation of the latently infected cell pool

[27, 20, 58, 14, 59, 10], chronic activation of the immune system [51, 38, 61, 35, 30], and the ability of the

virus to infect other immune system cells [50, 70, 67, 19] have been associated with HIV progression to

AIDS. However, it is not known which factors most drive disease progression. Mathematical modelling

is well suited to provide insight into this complex process [4, 47, 49].
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Mathematical modelling studies of HIV infection in-host are abundant in the literature. The vast

majority of these studies, however, focus on the acute and latent stages of infection. Mathematical

models of HIV progression to AIDS are presented by [73],[1], [24], [74], [17], and [34]. While these

models have been successful in presenting T-cell count and viral load curves which demonstrate HIV

progression to AIDS, these studies have fallen short of determining what characteristics of the underlying

biology most drive the decline in CD4 T-cell population and increase in viral load. This may be due to

the fact that many of these studies include models composed of a large number of equations, making

model analysis very challenging. The majority of these studies also include a large number of unknown

parameters, therefore identifying model parameters linked to specific biological processes which drive

HIV progression can be difficult.

A recent study [74], which focused on the effects of low level homeostatic proliferation and/or immune

activation on T-cell decline, concluded that a single mechanism cannot explain the slow decline in T-cell

population size. This motivates our current study.

We have developed a mathematical model of HIV infection in-host progression to AIDS consisting

of three ordinary differential equations. The model includes the effects of thymic involution, density

dependent proliferation of CD4 T-cell population, and a growth term in the productively infected cell

pool signifying the addition of infected cells from other infected cell pools including the latently infected

cell pool. The model is presented in Section 2. Most of the analytical results are presented in Section

3. The basic reproduction number R0 is derived using two different approaches which are shown to be

equivalent. Conditions for the occurrence of backward and forward bifurcations are derived. Sensitivity

analyses on the endemic equilibrium are presented in Section 4 to rank the influence of all model

parameters, and identify those that most drive HIV progression to AIDS. In Section 5 we further study

the identified parameters through numerical bifurcation analyses and simulations. Finally, we draw our

conclusions in Section 6.

2. Model

The model consists of three ordinary differential equations describing the uninfected and productively

infected target cell populations, and the infectious HIV viral load. The model represents a simple

extension from the basic model of virus dynamics by [49], including density dependent proliferation of

the T-cells, and time dependent production rates of the target cells. We let x, y, and v respectively

represent the number of uninfected T-cells, infected T-cells, and infectious virus particles at time t.

The model is as follows:

dx

dt
=

λ

v + ε
− dx − βxv + px

(
1 − x+ y

T

)
dy

dt
= βxv + ry

(
1 − x+ y

T

)
− ay

dv

dt
= kqy − uv − βxv .

(1)

All parameters are nonnegative. We assume that they are nonzero unless explicitly stated otherwise.

We now describe each equation in more detail:

Equation for x: CD4 T-cells are produced by the thymus. We assume that this is affected by two

mechanisms: natural production that can vary by the age of the individual, and thymic involution

[75, 7], which depends on the viral load. We assume that T-cell production will decrease as the viral

load increases [28, 42, 48, 52, 65] given a saturating constant ε (i.e., HIV induced involution of the

thymus will not occur immediately upon infection with the HIV virus [25]). We will examine the
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influence of the parameter λ. To maintain homeostasis in T-cell count in uninfected hosts, T-cells

must proliferate to account for the decreasing thymic production (homeostatic proliferation) [64]. This

is modeled by logistic growth. In the absence of population limitation, the average uninfected and

infected T-cell proliferation rates are p and r, respectively. In the presence of T-cells, the proliferation

rate reduces to zero as the total T-cell load (x + y) approaches the carrying capacity T . This density

dependent proliferation term implies that the increase of the infected cell population negatively affects

the healthy T-cell population. Similar to the basic model of virus dynamics [49], uninfected cells either

die (rate d) or become infected by HIV infection (βxv).

Equation for y: Productively infected CD4 T cells are produced by the infection of uninfected T cells

by virus (βxv). We also assume that these cells can proliferate [13], and that latently infected cells can

enter the productively infected cells pool. This is all captured by the term ry(1− (x+ y)/T ). Infected

cells die at a rate of a. Note that this model is similar to a model presented by [58], where the latently

infected cell pool was considered. In our study we consider changes in r, a, and β to reflect changes in

the infected cell population, immune system killing of infected cells (immune activation), and changes

in infection rate (which reflects the use of drug therapy), respectively.

Equation for v: Infectious virus particles are produced from productively infected CD4 T cells and

from other types of productively infected cells including monocytes, macrophages and dendritic cells

[69, 12]. The production of infectious free virus is represented as kq, where k is the number of infectious

virions produced by a productively infected CD4 T-cell, and q gives the ratio of the total infected cell

pool including CD4 T cells, monocytes, macrophages and dendritic cells to the productively infected

CD4 T-cell pool. Thus, when q = 1 only productively infected T-cells produce virus, but as q increases,

the production of the virus becomes more dependent on productively infected cells of other cell types

[39]. This allows us to account for a shift in infection to monocytes, dendritic cells and macrophages

when there is a limited pool of CD4 T cells to infect [26]. Note that we have elected not to explicitly

model these cell types so as to make the analysis of the model feasible. Infectious virus is lost due to the

infection of an uninfected cell (βxv), or is cleared by the immune system (uv). We note that the loss of

virus particles in the infection process is ignored in the vast majority of models of HIV infection in-host.

However, it has been found that this term can play a role in the infection dynamics [37, 32], T-cell count

and viral load [9, 29, 31]. Therefore, this term may be important in studying the progression to AIDS.

In our study we consider changes in k, q, u, and β to reflect changes in virus production (including drug

therapy), the ratio of productively infected T cells to other types of productively infected cells, virus

clearance (immune activation), and cell infection (drug therapy), respectively.

In summary, the progression of HIV to AIDS may involve a few or many model parameters. For

example, a decrease in the production of the CD4 T cells (λ), which represents an aging thymus, or

thymic involution, may contribute. Also, it is possible that a change in the death rate of infected cells

(a), in the clearance rate of the virus (u), in the production of the infected cells (r), or in the production

of infectious virus particles (k) may affect disease progression. A shift from the infection of CD4 T cells

to monocytes, macrophages and dendritic cells will also play a role (q). We therefore assume that all

model parameters may change slowly with progression of the infection. This assumption allows us to

study the key underlying mechanisms related to HIV progression to AIDS. That is, we assume that

all model parameters can vary with time, but that this change is gradual with respect to time. We

formulate a model of ordinary differential equations with parameter values varying in feasible ranges.

In this paper, we provide analytical and numerical analyses that aid in determining key parameters

related to this progression process.
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3. Analytical Results

3.1. Basic Properties of Solutions.

3.1.1. Well-posedness of the Solutions of Model (1). We first remark that Equation (1) is reasonable

in the sense that no population size can be negative, and no population grows unbounded. For this

well-posed problem, we first prove positivity and then further show boundedness of the solutions of

model (1). The result is written in Theorem 3.1.

Theorem 3.1. Assume that initial conditions for system (1) are non-negative. Then the solution of

system (1) exists and is nonnegative for all t ∈ [0,∞). Furthermore, the solution is unique and bounded.

Proof. We shall apply Theorem A.4 in [66]. For (x, y, v) ∈ R3
+, we obtain

dx

dt
(0, y, v) =

λ

v + ε
> 0,

dy

dt
(x, 0, v) = βxv ≥ 0, and

dv

dt
(x, y, 0) = kqy ≥ 0.

The nonnegativity of the solutions follows. Next, we prove that every nonnegative solution of model

(1) is attracted to the bounded set{
(x, y, v) ∈ R3

+ |x+ y < B + 1, v <
kq(B + 1)

u
+ 1

}
,

where

B =
1

d∗

(
(p+ r)T

4
+
λ

ε

)
and d∗ = min {d, a} .

Then, we calculate the derivative of (x+ y) to obtain

d(x+ y)

dt
=

λ

v + ε
− dx+ px

(
1− x+ y

T

)
+ ry

(
1− x+ y

T

)
− ay

≤


−d∗(x+ y) +

(p+ r)T

4
+
λ

ε
, if x+ y < T

(
since (x+ y)

(
1− x+ y

T

)
≤ T

4

)
,

−d∗(x+ y) +
λ

ε
, if x+ y > T.

It follows that lim supt→+∞(x+ y) ≤ B. As to the virus population, we obtain that

dv

dt
= kqy − uv − βxv ≤ kqy − uv ≤ k q (B + 1)− u v,

from which it follows that lim supt→+∞ v(t) ≤ kq(B + 1)/u. The proof is finished. �

3.1.2. Steady States. To get the equilibrium solutions of model (1), we set the right sides of the three

equations equal to zero as follows:

f1 =
λ

v + ε
− dx − βxv + px

(
1 − x+ y

T

)
= 0,

f2 = βxv + ry

(
1 − x+ y

T

)
− ay = 0,

f3 = kqy − uv − βxv = 0.

(2)

Firstly, the third equation in Equation (2) gives

v =
kq

u+ βx
y. (3)

Substituting the preceding expression into the second equation of Equation (2) yields

y

[
βx

kq

u+ βx
+ r

(
1− x+ y

T

)
− a
]

= 0. (4)



EXAMINING HIV PROGRESSION MECHANISMS 313

The first factor from Equation (4) gives a disease-free equilibrium (DFE), E0 = (x0, 0, 0). Here, x0 is

the non-negative root of
p

T
x2 + (d− p)x − λ

ε
= 0 . (5)

Since all parameter values are taken positive, there is a unique positive root of Equation (5), namely

x0 =
p− d+

√
(p− d)2 + 4pλ/Tε

2p/T
. (6)

The second factor from Equation (4) being zero yields v as a function of x, that is

V (x) =

(
1 − a

r
− x

T
+

kqβx

r(u+ βx)

)
kqT

(u+ βx)
. (7)

Moreover, assuming that y > 0 and v > 0, we can rewrite the second equation of Equation (2) as

1 − x+ y

T
=

a

r
− βxv

ry
=

a

r
− βkqx

r(u+ βx)
.

Substituting the above expression into the first equation of Equation (2) shows that any infected equi-

librium (x, y, v) must satisfy λ = H(x), where we define

H(x) =

[
dx + βxV (x) +

px

r

(
βqkx

u+ βx
− a

)]
(V (x) + ε) . (8)

We conclude that the following assertions hold for any given positive parameter values.

(a) Every infected equilibrium is of the form

(x, y, v) =

(
x,

(
u+ βx

kq

)
V (x), V (x)

)
, (9)

and satisfies the equation λ = H(x).

(b) Conversely, if x > 0, V (x) > 0, and λ = H(x), then the point given by Equation (9) is an infected

equilibrium.

We remark that the generating rate of naive T cells from thymus λ is the critical measurement

monitoring the thymus involution during HIV infection. Moreover, the equation λ = H(x) must be

satisfied for any infected equilibrium. This relates a parameter that changes over age to parameters that

change in disease progression. Given this important relationship, we further analyze model dynamics

with respect to the change of λ through a sensitivity analysis.

3.2. The Basic Reproductive Ratio R0. The basic reproductive ratio R0 is defined to be the number

of infected cells (or virions) produced by a single infected cell (or virion) when the infection is introduced

into a totally susceptible population of target cells (i.e., the DFE E0 : (x0, 0, 0)). In the present case,

two different expressions for R0 can be derived, depending on whether infected cells or virions are

considered; however, the threshold condition “R0 > 1” for instability of the DFE is valid for both

expressions.

3.2.1. Deriving R0 from a Single Infected Cell Gives Ry0. First, we consider Ry0 , the number of “next

generation” infected cells produced by a single infected cell introduced at the DFE. There are two

ways that an infected cell can give rise to new infected cells: (i) by cellular proliferation, and (ii) by

producing infectious virions which then infect uninfected cells. For (i), a single infected cell proliferates

at rate r(1 − x0/T ); since the typical lifetime of an infected cell is 1/a, we see that a single infected

cell produces a total of r(1− x0/T )/a new infected cells by proliferation. For (ii), a single infected cell

produces a total of kq/a infectious virions during its lifetime, and each of these infectious virions has
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probability βx0/(u+ βx0) of infecting a healthy cell before the virion dies. Therefore, we obtain

Ry0 =
r

a

(
1− x0

T

)
+
kq

a

βx0

u+ βx0
. (10)

Ry0 > 1 is the threshold of the emergence of the infected equilibrium E1. Note that if r = 0, then Ry0
is similar to definitions of R0 found in previous studies which include the viral loss due to infection in

the virus equation in Equation (1) [33, 31, 32].

3.2.2. Deriving R0 from a Virion Gives Rv0. Next we consider Rv0 , the number of “next generation”

infectious virions produced by a single infectious virion introduced at the DFE. This is more subtle,

because we need to count possibilities, such as, a virion (called v1, say) infecting a cell (called c1), which

proliferates to create a new infected cell (c2), which in turn proliferates to create a new cell (c3), and this

cell c3 produces a new virion v2. Although the line from v1 to v2 involves several generations of infected

cells, it does not involve any other virions; in that sense, we consider virion v2 to be part of the “next

generation” of virions produced by virion v1. Following this understanding, we define the quantity Ny

to be the total number of infected cells descended from a single infected cell by proliferation only (i.e.

over all generations but excluding any new infections by virions), including the initial infected cell. If

r = 0, then Ny = 1. If r > 0, then Ny satisfies the equation

Ny = 1 +
r
(
1− x0

T

)
a

Ny (11)

because 1 represents the initial cell and r(1−x0/T )/a represents the number of first-generation offspring

of a single infected cell during its lifetime (as argued for Ry0 above), and each of those first-generation

offspring produces a total progeny of Ny over all generations by proliferation alone.

Since the number of infected cells is negligible in this scenario, we only include the uninfected cells

x0 in the density dependence term r(1− x0/T )/a.

Observe that if a ≤ r
(
1− x0

T

)
, then the only nonnegative solution of Equation (11) is Ny = +∞.

This makes sense because the inequality a < r
(
1− x0

T

)
tells us that when y is small, the death rate of

an infected cell is less than its proliferation rate, and so the number of infected cells increases. Thus,

the population of infected cells will never die out, even if the immune system is 100% effective at

immediately killing all free virions; hence Ny is infinite. In contrast, if a > r
(
1− x0

T

)
, then we can

solve Equation (11) to obtain the finite value

Ny =
a

a− r
(
1− x0

T

) . (12)

Finally, we have

Rv0 =
βx0

u+ βx0

kq

a
Ny =

βx0

u+ βx0

kq

a− r
(
1− x0

T

) , (13)

where we should interpret the final expression to be +∞ if it is negative or undefined. Equation (13)

arises because each infectious virion has probability βx0/(u+βx0) of infecting a new cell, which in turn

would produce a total of Ny infected cells by proliferation alone, and each of these infected cells would

produce kq/a infectious virions. Note again that, if r = 0 at the beginning of infection, Equation (13)

is similar to definitions of R0 found in previous studies which include the viral loss due to infection in

the virus equation in Equation (1) by [33, 31, 32].

Simple algebraic manipulations show that Rv0 < 1 if and only if Ry0 < 1. Given the relationship of

parameters a and r discussed above, we mark these parameters for further investigation later in this

study.
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3.3. Linear Analysis for DFE (E0). Regarding model (1), the Jacobian matrix associated with its

linearized system evaluated at E0 = (x0, 0, 0) takes the form

J0 =

(p− d)− 2 pT x0 − p
T x0 (−β x0 − λ

ε2 )

0 (r − a)− r
T x0 β x0

0 k q −β x0 − u

 . (14)

Its corresponding characteristic polynomial takes the form as

P (L) = det [LI3×3 − J0] = (L+ a00)
(
L2 + a01L+ a02

)
where

a00 = d− p+
2px0

T
,

a01 = a− r + u+ x0

( r
T

+ β
)
,

a02 =
βrx2

0

T
+
[ru
T

+ (a− r − kq)β
]
x0 + (a− r)u .

(15)

The positive values of all parameters and x0 (that is x0 > T (p−d)/(2p)) yield a00 = d−p+2px̄0/T > 0

and a01 > 0 if a > r(1− x0

T ) assuming that a non-existent infected cell population is possible. The first

factor of Equation (15) gives a negative real root (or eigenvalue). Roots derived from the second factor

of Equation (15) take the form of L1, 2 = 1
2

(
−a01 ±

√
a2

01 − 4a02

)
. The local stability of E0 is then

determined by the sign of the real parts of L1 and L2.

Lemma 3.2. If a01 ≤ 0, then a02 < 0. Equivalently, if a02 ≥ 0, then a01 > 0.

Proof. We rewrite a02 in (15) as

a02 = (r x0/T + a− r)(β x0 + u)− βkqx0 (16)

= [a01 − (βx0 + u)] (βx0 + u)− βkqx0 ,

from which the lemma is immediate. �

Lemma 3.3. The three roots of the characteristic polynomial P (L) = 0 are as follows:

(i) If a02 > 0: three negative real roots, or one negative real root and a pair of complex conjugate roots

with negative real parts;

(ii) If a02 = 0: two negative real roots and one zero root;

(iii) If a02 < 0: one positive and two negative real roots.

In particular, no root can be purely imaginary.

Proof. Since the characteristic equation P (L) = 0 has one negative root and the other parameters

satisfy Lemma 3.2, the proof is obvious. �

Theorem 3.4. The DFE E0 = (x0, 0, 0) is a stable node if a02 > 0, a saddle with 1-dimensional

unstable manifold and 2-dimensional stable manifold if a02 < 0, and undergoes a static bifurcation with

1-dimensional center manifold and 2-dimensional stable manifold if a02 = 0. Hopf bifurcation does not

occur on E0.

Proof. Since a00 is positive for all positive parameter values and x0 yields a negative eigenvalue, the

necessary condition of the occurrence of the Hopf bifurcation is a01 = 0 and a02 > 0. This cannot

happen by Lemma 3.3. The other results are derived immediately from Lemma 3.2. �

On the other hand, the well-posed property of the solutions of model (1) guarantee that the solutions

stay positive with positive initial conditions. Since the DFE E0 is located on the x-axis, it cannot be

enclosed by any periodic solution.
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Theorem 3.5. Ry0 = 1, Rv0 = 1, R0 = 1, and a02 = 0 are equivalent thresholds to determine the

stability of the DFE.

Proof. The condition for a stable equilibrium E0 is

a02 > 0 ⇔ a− r
(

1− x0

T

)
>

βx0

u+ βx0
kq ⇔ Rv0 < 1 ⇔ Ry0 < 1.

Similar argument proves that the condition for an unstable equilibrium E0 is a02 < 0 ⇔ Rv0 > 1 ⇔
Ry0 > 1 and the static bifurcation condition is equivalent to the two thresholds, that is a02 = 0 ⇔
Rv0 = 1 ⇔ Ry0 = 1 ⇔ R0 = 1. �

3.4. Nonlinear Analysis for DFE (E0). Theorem 3.4 shows that the DFE has a zero eigenvalue

when a02 = 0 (or R0 = 1), which is equivalent to

β = − ((a− r)T + rx0)u

x0((a− r − kq)T + rx0)
, βT . (17)

The other two eigenvalues, −a00 and −a01 shown in Equation (15), are both negative. We choose right

and left nullvectors corresponding to the zero eigenvalues as

v =

(
−x1(TβT kq + βT px0 + pu)ε2 − Tkqλ

((d− p)T + 2px0)kqε2
,
βTx0 + u

kq
, 1

)tr
and w = (0, w2, w3) ,

wherew2 = (1 +
u

βTx0
)w3 and w3 =

βT kqx0

β2
Tx

2
0 + 2βT (u+ kq/2)x0 + u2

.

(18)

We obtain < w, v >= 1. That is the inner product (< ·, · >) of the column and row vectors (v and u)

is one. Then we have

B := w


∂2f1
∂x∂β

∂2f1
∂y∂β

∂2f1
∂v∂β

∂2f2
∂x∂β

∂2f2
∂y∂β

∂2f2
∂v∂β

∂2f3
∂x∂β

∂2f3
∂y∂β

∂2f3
∂v∂β


E0

v = w

0 0 −x0

0 0 x0

0 0 −x0

 v
= (1− (a− r)T + rx0

Tkq
)w2x0 =

x0kqu

β2
Tx

2
0 + 2(u+ kq/2)βTx0 + u2

> 0.

(19)

B > 0 is satisfied for all positive parameter and x0 values. Moreover, we denote

A :=
w

2
(DxxJ0)v2 =

1

2
< w, (DxxJ0)v2 >=

1

2
< w,

< v,Dxx1v >

< v,Dxx2 v >

< v,Dxx3 v >

 >,
=

1

2

(
(1 +

u

βTx0
) < v,Dxx2v > + < v,Dxx3v >

)
w3, where,

< v,Dxx2 v > =
1

((d− p)T + 2px0)Tε2kq2
[−2βT kq

2(βT ε
2x0 + λ)T 2

+2(βTx0 + u)(−((d− p− kq)r + pkq)βT ε
2x0 − ru(d− p)ε2 + rλkq)T

−2prx0ε
2(βTx0 + u)2)],

< v,Dxx3 v > = 2βT
(TβT kq + βT px0 + pu)ε2x0 + Tkqλ

((d− p)T + 2px0)ε2kq
.

(20)
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Here,

Dxx1 =

−2 pT − p
T −βT

− p
T 0 0

−βT 0 2 λ
ε3

 , Dxx2 =

 0 − r
T βT

− r
T −2 rT 0

βT 0 0

 , Dxx3 =

 0 0 −βT
0 0 0

−βT 0 0

 .
A and B in Equation (19) and Equation (20) are coefficients of the center manifold of model (1) at the

DFE E0 when R0 = 1. The center manifold up to third order is written as

u̇ = Au2 + B uµ + O(3).

Applying the results from [68] and [11], we have the following result.

Theorem 3.6. When R0 = 1 or β = βT , model (1) at the DFE E0 exhibits a backward (forward)

bifurcation if A > 0 (A < 0).

4. Uncertainty and Sensitivity Analysis

In the previous analysis we identified three parameters that were critical to determining the existence

of the infected equilibrium and the stability of the disease-free equilibrium, namely, λ, r, and a. In the

following we determine how changes in these parameters affect the infected equilibrium.

4.1. Analytical Sensitivity Analysis. Suppose that we want to say how a stable infected equilibrium

changes as one parameter varies, with all other parameters being held constant. For example, Theorem

4.1(i) below says that the x-coordinate of the fixed point is an increasing function of λ. Before we state

the results formally, we shall show that the Implicit Function Theorem guarantees that slightly varying

a single parameter leads to a differentiable curve of stable fixed points passing through a given stable

infected equilibrium.

Suppose (x0, y0, v0) is a stable infected equilibrium corresponding to a particular choice of strictly

positive parameter values (λ0, ε0, d0, β0, . . .). (Observe that x0, y0, and v0 are necessarily strictly pos-

itive.) We shall focus on λ for concreteness, but the same argument works for any parameter. Define

the function G : (0,∞)4 → R3 by

G(x, y, v, λ) =


λ

v+ε0
− d0x − β0xv + p0x

(
1 − x+y

T0

)
β0xv + r0y

(
1 − x+y

T0

)
− a0y

k0q0y − u0v − β0xv

 . (21)

Then the fixed point equations used to determine the solutions to Equation (2) are equivalent to writing

G = 0. Write the 3× 4 derivative matrix DG in the block form

DG(x, y, v, λ) = (J |w)

where J is the 3 × 3 Jacobian matrix (14) (except that now we treat λ as a variable) and w is the

column vector

w =

 ∂G1

∂λ
∂G2

∂λ
∂G3

∂λ

 =

 1
v+ε0

0

0

 . (22)

By our definition of stability, det(J) < 0 at this equilibrium. Thus the Implicit Function Theorem

guarantees the existence of a δ > 0 and a continuously differentiable function Φ : (λ0 − δ, λ0 + δ) →
(0,∞)3 such that Φ(λ0) = (x0, y0, v0) and the equation G(Φ(λ), λ) = 0 holds for every λ ∈ (λ0−δ, λ0+

δ), where we write Φ(λ) = (x(λ), y(λ), v(λ)); that is, Φ(λ) is a curve of fixed points parametrized by

λ. Since the eigenvalues are continuous functions of the coefficients of the characteristic polynomial
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Figure 1. Partial Rank Correlation Coefficients are shown for different model out-
comes at the infected equilibrium including x, y, v, x + y, (x + y)/v, and v/y. Bar
magnitude > 0.5 signifies a significant relationship.

(e.g. see Theorem 1.4 of [43]), we can choose δ small enough so that the fixed point Φ(λ) is stable for

every λ in (λ0 − δ, λ0 + δ). In particular, the derivatives in the following theorem all exist, and we can
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safely interpret dx
dλ (λ0), for example, to be the rate of change of x with respect to λ at the fixed point

(x0, y0, v0).

Theorem 4.1. At every stable infected equilibrium (x, y, v) with strictly positive parameter values, we

have

(i): dx/dλ > 0,

(ii): d(x+ y)/dλ > 0,

(iii): dx/da > 0,

(iv): dv/da < 0,

(v): d(v/y)/da < 0,

(vi): sgn(dx/dr) = sgn(x+ y − T ),

(vii): sgn(dv/dr) = −sgn(x+ y − T ), and

(viii): sgn(d(v/y)/dr) = −sgn(x+ y − T ).

Proof. We first consider varying λ. Differentiating the equation G(Φ(λ), λ) = 0 with respect to λ gives

J(dΦ/dλ) + w = 0 (where we write dΦ/dλ as a 3× 1 column matrix), or equivalently

dΦ

dλ
= − J−1w . (23)

Let Kij be the ij entry of J−1. Then Equations (22–23) show that (omitting the 0 subscripts on the

parameters)
dx

dλ
= − K11

v + ε
,

dy

dλ
= − K21

v + ε
,

dv

dλ
= − K31

v + ε
. (24)

Writing Jij as the ij entry of J , matrix algebra says that

K11 =
J22J33 − J23J32

det(J)
, K21 =

J23J31 − J21J33

det(J)
, K31 =

J21J32 − J31J22

det(J)
. (25)

At an equilibrium point, the diagonal elements of J given in Equation (14) can be rewritten as

follows. Using the first equation of Equation (2), we obtain

J11 =
1

x

(
−dx− βxv + px

(
1− x+ y

T

))
− px

T

= − λ

x(v + ε)
− px

T
if x > 0. (26)

From the second equation of Equation (2), we obtain

J22 =
1

y

(
ry

(
1− x+ y

T

)
− ay

)
− ry

T

= − βxv

y
− ry

T
if y > 0. (27)

And using the last equation of Equation (2), we obtain

J33 = −βx− u = − kqy

v
if v > 0. (28)

Then the first equation in Equation (24) yields

dx

dλ
= −

(
−βxvy −

ry
T

)(
− kqy

v

)
− βxkq

(v + ε) det(J)
= − ry2kq

Tv(v + ε) det(J)
. (29)
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We assume that (x, y, v) is a positive stable equilibrium, then obtain det(J) < 0 and dx/dλ > 0. This

proves (i). The second equation in Equations (24) yields,

dy

dλ
= −

(
βx(−βv) −

(
βv − ry

T

)
(−u− βx)

)
(v + ε) det(J)

=
β2xv − βvu − β2xv + ry

T (u+ βx)

(v + ε) det(J)

=
−βvu + ry2kq

Tv

(v + ε) det(J)
(by (28)). (30)

It follows that
d(x+ y)

dλ
=

−βvu
(v + ε) det(J)

which is positive whenever (x, y, v) is a stable infected equilibrium. This proves (ii).

The proofs for varying a and r are very similar to the arguments for λ, with the following differences.

The vector w is now ∂G1

∂a
∂G2

∂a
∂G3

∂a

 =

 0

−y
0

 or

 ∂G1

∂r
∂G2

∂r
∂G3

∂r

 =

 0

y
(
1− x+y

T

)
0

 .

The resulting analogues of Equation (24) are

dx

da
= K12 y,

dv

da
= K32 y,

dx

dr
= −K12 y

(
1− x+ y

T

)
,
dv

dr
= −K32 y

(
1− x+ y

T

)
.

We then have from Equation (14) that

K12 =
J13J32 − J12J33

det(J)
=
−(βx+ λ/(v + ε)2)kq − px

T (u+ βx)

det(J)
,

which has negative numerator and denominator, and, with the help of Equation (26),

K32 =
J12J31 − J11J32

det(J)
=

px
T βxv +

(
λ

(v+ε)x + px
T

)
kq

det(J)
,

which has positive numerator and negative denominator. These suffice to explain parts (iii), (iv), (vi),

and (vii).

Finally, parts (v), and (viii) follow from the relation v/y = kq/(u + βx) (from the fixed point

equations of (2)) and parts (i), (iii), and (vi). �

The correlation between the infected T-cell proliferation rate r and the uninfected T-cell count (x),

infectious free virus (v), and ratio of infectious free virus to infected cell count (v/y) are all determined

by the sign of the difference between the total number of uninfected and infected T-cells (x+y) and the

carrying capacity (T ). The magnitude of the correlation, which is difficult to ascertain in the analysis,

will be demonstrated by the numerical sensitivity analysis results which are presented in Figure 1 in

Section 4.2. Moreover, Figure 1 also confirms results (i)-(v) in Theorem 4.1.

The progression of HIV to AIDS is marked by a decrease in the CD4 T-cell count and an increase in

the viral load. The results of Theorem 4.1 show that decreases in CD4 T-cell count are feasible when λ

is reduced, a is increased, and r is increased (but only if sgn(x+ y − T ) < 0). These results also show

that the viral load increases when a is decreased and r is increased (but only if sgn(x+ y − T ) < 0).

4.2. Numerical Sensitivity Analysis. We now further explore changes in the infected equilibrium

with respect to all parameter values through uncertainty and sensitivity analysis using Latin Hypercube
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Sampling (LHS) and Partial Rank Correlation Coefficients (PRCC) [46, 5]. LHS gives adequate quality

assurance on model predictions and PRCC determines the main parameters driving infection.

The LHS is performed using the numerical algorithm described in [44]. We adopt uniform distri-

butions for model parameters with parameter value ranges from the modeling and clinical literature

(see Table 2). Parameter values are chosen randomly without replacement. We only record parame-

ter sets satisfying four filter conditions to ensure that equilibrium solutions lie within realistic ranges

for HIV/AIDS (see Table 1). Following this procedure, a PRCC value is calculated for each model

parameter. PRCC values range between -1 and 1 with the sign determining whether a model param-

eter is negatively (-) or positively (+) correlated with the specified model output. A PRCC value

|PRCC| > 0.5 was considered statistically significant based on empirical knowledge. We chose 100, 000

parameter sets and 910 of these satisfied the filter criteria (Table 1). Finally, within the 910 parameter

sets, 6 parameter sets produced oscillating solutions for Equation (1). A further study of those oscil-

lating behaviors is carried out in the next section. The occurrence of periodic solutions agree with the

result from [78] suggesting that backward bifurcation implies rich dynamical behaviors.

The PRCC values relating the model parameters to the infected equilibrium are shown in Figure 1.

It suggests that parameters r, a, u, β, and k q significantly affect population sizes of the uninfected and

infected T-cells, and the viral load. Alternatively, parameters d, p, ε, and λ do not significantly affect

the infected equilibrium.

In terms of the CD4 T-cell count, sensitivity analysis results suggest that an increase in the uninfected

CD4 T-cell count (x) and a reduction in the infected and total CD4 T-cell count (y and x + y) can

occur as the infected cell death rate (a) increases and proliferation and/or addition to the infected cell

pool (r) decreases. Moreover, Equations (12) and (13) confirm this PRCC result, that is the relation

between a and r is important to determine the total CD4 T-cell count (x + y) and in turn determine

the fate of the disease.

The parameter influence ranking on the infectious viral load (v) is shown in Figure 1 (left column,

middle row). It shows that the most influential factors are the viral clearance rate (u) and the viral

production rate (kq), followed by the rates of infected cell death (a) and proliferation and/or addition

to the infected cell pool (r). Here, increases in kq and r, and decreases in u and a increase the viral

load.

The ratios of the infectious free virus to the infected cell count (v/y) and the total CD4 T-cell count

to the infectious free virus ((x+y)/v) are shown in the bottom row of Figure 1. Here we see that u and

kq are the only parameters that significantly affect v/y and (x + y)/v. In fact, we see that a decrease

in u and an increase in kq both increase the viral load, and decrease the T-cell count, and therefore

significantly affect HIV progression to AIDS.

The influence of the infection rate (β) has direct implications on HIV drug therapy, where the goal

is to decrease viral load and increase the CD4 T-cell count. Here, we see that a reduction in β can

increase both x and y and decrease v (although this is not in the significant range of the sensitivity

analysis for y and v).

In summary, the LHS-PRCC results suggest that an increase in CD4 T-cell count and a decrease

in HIV viral load are significantly influenced by the death rate of the infected cells killed by immune

response (a) and the proliferation rate and addition of infected macrophages, monocytes and dendritic

cells and activation of latently infected cells (r), but that HIV progression to AIDS is mostly determined

by viral clearance rate (u) and the viral production rate (kq). The production rate of uninfected CD4

T-cell (λ) is not a significant factor to model dynamics. Note that the above conclusions are drawn

from numerical sensitivity analysis results, which are valid in the chosen parameter regions infromed

by literature review (see Table 2).
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5. Bifurcation Analysis and Numerical Simulations

Based on the identified significant parameters from the sensitivity analysis results, we now focus our

attention on a, r, kq, u and β.

5.1. Bifurcation Analysis on Infected Equilibrium E1. In this section, we will further investigate

how parameters r, kq, u, β and a affect disease progression through a bifurcation analysis of model

(1). Saddle-node, transcritical and Hopf bifurcations are computed through symbolic computation. We

first evaluate the Jacobian matrix of model (1) at E1, which yields the corresponding characteristic

polynomial:

P (L ; x, y, v) = det(LI − J |E1
) = L3 + a1L

2 + a2L+ a3, where,

a1 = d+ a+ u− (p+ r)(1− x+ y

T
) +

1

T
(px+ ry) + β(v + x),

a2 = −(βx+ u)(C11 + C22)− C11C22 − βv
[
βx+

λ

(v + ε)2

]
+ p

x

T
(βv − ry

T
),

a3 =
[
C11C22 + (βv − ry

T
)p
x

T

]
(βx+ u) + (kqC11 − βvp

x

T
)βx,

+
[
(βv − ry

T
)kq + βvC22

] [ λ

(v + ε)2
+ βx

]
,

C11 = −d− βv + p(1− x+ y

T
)− p x

T
,

C22 = r(1− x+ y

T
)− r y

T
− a,

(31)

where y and v take the form of (3) and (7) as

y =
(−βrx2 − (T (a− r − kq)β + ru)x− Tu(a− r)

r(βx+ u)
, and v =

kqy

βx+ u
. (32)

Moreover, x satisfies

F (x) = c10x
5 + c11x

4 + c12x
3 + c13x

2 + c14x+ c15 = 0, where,

c10 = β3r(kq − βε) [kq(r − p) + ap− dr] ,

c11 = β2(Tβq3(p− 2r)k3 +
(
2(Taβ + ru)q2(r − p) + Tβq2r[(d+ p) + βε]− 2Tβq2r2

)
k2

+ [Tβ
(
βεr(r − a) + pa2 + r[rd− a(d+ p)]

)
+ 3ru(βε(p− r) + ap− dr)]qk,

+ 4βεru(dr − ap)− β2λr2),

c12 = β(T 2β2q4k4 + (2Tβ(r − a) + u(p− 2r))Tβq3k3,

+ (T 2β2q2(r2 + a2) + 2Tβq2(r[β(εu− Ta) + u(d+ p)] + 2u[a(r − p)− r2]) + q2ru2(r − p))k2,

+ 3[Tβu(r − a)(βεr + dr − ap) + βεru2(p− r) + ru2(ap− dr)]qk,

+ 6βεru2(rd− ap)− 4β2λr2u),

c13 = u(2T 2β2q3(r − a)k3 + (2Tβ(r − a)2 + ru(βε+ d+ p) + 2u[a(r − p)− r2])q2βTk2,

+ (3Tβqu[a2p+ dr2 + βεr(r − a)− ar(d+ p)] + qru2[ap− dr + βε(p− r)])k,

+ 4βεru2(dr − ap)− 6β2λr2u),

c14 = u2(T 2βk2q2(r − a)2 + Ta2kpqu+ Tkqru[βε(r − a) + dr − a(d+ p)],

+ εru2(dr − ap)− 4βλr2u),

c15 = −λr2u4.

(33)
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In the next subsection, we will numerically explore the possible bifurcations at the endemic equilib-

rium E1 in terms of the above formulas and the following theorem from [76].

Theorem 5.1. [76] The endemic equilibrium E1 undergoes

(1) a static bifurcation, if a3|E1
= 0, and ∆1,2|E1

> 0;

(2) a Bogdanov-Takens bifurcation, if a3|E1 = a2|E1 = 0 and ∆1|E1 > 0;

(3) a Hopf bifurcation, if ∆2 = 0, d∆2

d(Bif.) 6= 0 ∆1|E1
> 0 and a3|E1

> 0;

where ai, i = 1, 2, 3 is coefficient of the characteristic polynomial (31), and ∆1 = a1 and ∆2 = a1a2−a3

is the first and second Hurwitz arguments.

5.2. Numerical Results. We carry out numerical bifurcation analysis based on Theorem 5.1. The

results in Figures 2, 3, and 5 are verified by MatCont [21]. We first choose a and r as bifurcation

parameters. Other parameter values are taken from Table 2. First, we set a as the control parameter and

r as the bifurcation parameter. Model (1) shows a forward bifurcation when a = 2.9333 and backward

bifurcations when a = 2.9438, a = 3.11, a = 3.5, and a = 3.8. The corresponding 1- and 2-dimensional

bifurcation diagrams are shown in Figure 2(a) and (b). We obtain a limit point curve (plotted in

green) consisting of Limit Point (LP) bifurcation points and a Hopf curve (H) connecting both the

neutral saddle (in magenta) and Hopf bifurcation (in red) points at Bogdanov-Takens bifurcations (BT).

Moreover, BT points are also intersections between the limit point and Hopf curves. Hopf bifurcation

serves as an oscillation source, which induces the oscillating viral load. The stability of the bifurcating

limit cycles are determined by the sign of the first Lyapunov coefficient of the corresponding Hopf

bifurcation. A positive first Lyapunov coefficient indicates a subcritical Hopf bifurcation, which induces

unstable limit cycles; while a negative first Lyapunov coefficient implies a supercritical Hopf bifurcation,

which bifurcates stable limit cycles. A zero first Lyapunov coefficient represents an occurrence of a

generalized Hopf bifurcation (GH), which separates subcritical and supercritical Hopf bifurcations in

the Hopf curve. For the parameter values of a and r, indicating the death and proliferation rates of

the infected CD4 T-cell, we plot a close-up 2-dimensional bifurcation diagram r vs a in biologically

meaningful ranges in Figure 2(b). The blue curve represents a branching point (BP) or transcritical

bifurcation, which is plotted according to R0(a, r) = 1. Here R0 is the basic reproduction number. The

top Hopf curve represents Hopf bifurcation because the vertical axis range is below the BT point in

Figure 2(a), that is a < 3.114226. Therefore, for positive a and r values, two red Hopf curves and a

blue transcritical curve enclose a parameter range plotted in yellow, in which model (1) demonstrates

oscillating viral loads.

Three parameter values a = 2.9333, a = 2.9428 and a = 3.8, are chosen in the yellow region in the

closeup of Figure 2(b). The corresponding 1-dimensional bifurcation diagrams are plotted in the left

column of Figure 3. Oscillations occur between two supercritical Hopf bifurcations in Figure 3(a) and

(b). The oscillation peak values are shown in terms of the uninfected CD4 T-cell population (x). The

corresponding oscillation periods are followed in the right panel. Large viral load oscillations occur

around r = 0.8 for both a = 2.9333 and a = 2.9428. For the case when a = 3.8, the transcritical

bifurcation occurs at a very large r value. The DFE is locally stable in the biologically meaningful

region of r. Numerical simulation in Figure 3(c) shows that the oscillation period obtained from the

supercritial Hopf bifurcation approaches infinity. The infinite period oscillation may be due to the

homoclinic cycle bifurcating from a local BT bifurcation. Therefore, large viral load oscillation may

occur around r = 3 for a = 3.8.

Biologically, if the proliferation rate (r) and death rate (a) for the infected CD4 T-cell population

are small, the uninfected CD4 T-cell population can stabilize/oscillate at a high level (see Figure 2(a)).

As the infection progresses, and the infected cell proliferation rate (r) increases, the uninfected T-cell
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(a)

(b)

Figure 2. (a) 1-dimensional bifurcation diagram: r vs x for model (1). (b): 2-
dimensional bifurcation diagram: r vs a for model (1).
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(a)

(b)

(c)

Figure 3. 1-dimensional bifurcation diagrams with a = 2.9333, 2.9428, 3.8 day−1 are
plotted in the left column of (a), (b), and (c). The corresponding periods vs bifurcation
parameter r are plotted in the right column. Oscillating viral loads with long periods
and blip spikes are plotted as inserts.

population can then stabilize/oscillate at a low level. It follows that the increase of the infected CD4

T-cell death rate (a) shows a prohibitive effect on disease progression.

The oscillatory behaviors discussed here are of interest as they may indicate the existence of viral

blips and provide the oscillatory base over which stochastic effects may generate large periodic viral

loads. In Figure 3 we show model outcomes with a regular oscillatory behavior (see sub-figure (a) and

(b)), and also cases that more closely reflect the occurrence of viral blips (see sub-figure (c)). We now

consider stochastic variability on the infected cell proliferation rate (r), modeled by a mean-reverting

process [2, 3]. The corresponding stochastic differential equation is written as

dr(t) = αr (re − r(t)) dt+ σrr(t)dW (t), (34)

where re is an approximated steady-state infected cell proliferation rate, and αr is related to the changing

speed of the proliferation rate. Moreover, limt→∞E(r(t)/r(0)) = re and limt→∞ V ar(r(t)/r(0)) =
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Figure 4. A plot of simulated viral blips considering a mean-reverting process on the
infected T-cell proliferation rate r. Parameter values and initial conditions are chosen
as a = 2.9333, re = 0.7, αr = 0.8, σr = 0.8, and r(0) = re. The other parameter values
are taken from Table 2
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r
. Figure 4 shows a simulation of the stochastic system considering a moderate variability, i.e.

σ2
r < 2αr. We observe that the viral load oscillates with varying period and amplitude. A further

exploration of a full stochastic model based on Model (1) is a course for future work.

Our analysis and simulations show that progression in the infected CD4 T-cell proliferation rate (r)

and the death rate (a) can generate various stages of HIV progression, including low and high level

infection, oscillating viral loads, and, perhaps, viral blips.

To complete our analysis, we now consider kq, u and β as bifurcation parameters, along with a and r.

Figure 5 shows two parameter bifurcation diagrams for every parameter pair. These figures demonstrate

the same outcomes as those previously discussed (saddle-node bifurcation, transcritical bifurcation,

Bogdanov-Takens bifurcation, supercritical and subcritical Hopf bifurcations, and generalized Hopf

bifurcation).

6. Discussion

Mathematical models describing HIV infection in-host offer a way to understand the dynamics of

HIV during different disease stages. The vast majority of mathematical studies in the literature focus

on the acute and latent stages of infection, ignoring the progression from HIV to AIDS. We have

developed a mathematical model that includes biological mechanisms that have been associated with

HIV progression to AIDS. These include: thymic involution, a reduction in T-cell production by age of

an individual, density dependent logistic growth in the CD4 T-cell population, and the effects of the

latently infected cell pool, immune system exhaustion, and contributions of production of free virus

from other cells pools.

It is currently unknown how much each of the processes listed above contribute to the health status

of the host in the progression of HIV to AIDS. In the absence of prior data on the problem that we are

considering, we determine the most significant parameters which can substantially change the model
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Figure 5. 2-dimensional bifurcation diagrams for the model (1).

output behaviors through an uncertainty and sensitivity analysis, using a statistical based Latin hyper-

cube sampling (LHS) and partial rank correlation coefficient (PRCC) analysis on all model parameters

on clinically feasible parameter intervals. This uncertainty and sensitivity analysis provides the most

influential parameters to different model outcomes of interest at the infected equilibrium. We find that

the proliferation and death rates of the productively infected CD4 T-cell pool (r and a) most affect the

total T-cell count (x+ y), while the production rate of free virus from other cell pools and/or a change

in production by productively infected CD4 T cells (kq) and the death rate of virus (u) significantly

influence the total viral load. We also find that the ratio of total cell count to virus ((x+ y)/v) is most

affected by kq and u, and that HIV progression to AIDS is most affected by decreases in u (immune

exhaustion), and increases in kq (activation and proliferation of latently infected cells and other infected

cell types).

To show the fate of the disease, we carry out bifurcation analyses on a, r, kq, u, and β. Corresponding

numerical simulations provide parameter regions within HIV progression stages, clearance, relapse,

remission, and recurrence, can occur. Our numerical and analytical results not only can be related to

specific biological processes, but also give the relative importance of each process.
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Monocytes and dendritic cells have been implicated as HIV reservoirs using in vitro and ex vivo

models of viral infection [16]. Monocytes and macrophages, after infection with HIV virus are resistant

to cytopathic effects and persist throughout the course of infection as long-term stable reservoirs for

HIV-1 which produce virus, and can disseminate the virus to tissues [36]. These cells have also been

shown to contribute to the pathogenesis of HIV via the impairment of effector functions [36]. Although

it is known that HIV interacts with monocytes, macrophages and dendritic cells, some key questions

remain to be answered to fully understand the pathogenesis of HIV to AIDS. For instance, the relative

contributions of these cell types in the development and persistence of the HIV latently infected cells

reservoir, the activation of these cells, and the individual contributions of these cells in both viral

and host aspects in the progression to AIDS remain to be elucidated. Mathematical models explicitly

including these cells lines can contribute to this area of study. Our results confirm the importance of

macrophages and dendritic cells to HIV progression to AIDS.

Assumption Reference
x0 ∈ [600, 1400] [62]
R0 ∈ [1, 40] [56]
a > r(1− x0

T ) Determined by Equation (12)
x+ y ∈ [200, 1400] 200 CD4 T-cell/µL denotes AIDS diagnosis. Upper

bound is the same as the range for x0, for simplicity.

Table 1. Filter criteria for sensitivity and uncertainty analysis.

Para. Definition Unit Range Reference

λ Generating rate of naive T
cells from thymus

day−1µl−1 70− 120 estimated

ε Viral load when T-cell
load decreases to half of its
normal value

µl−1 10−5 − 10 [53]

p Homeostatic proliferation
rate of T cells

µl−1 cell−1 day−1 0.03− 4 [53] [72] [71]

r Infected T cells prolifera-
tion rate

µl−1cell−1 day−1 10−5 − 3 [71]

T Maximum T-cell popula-
tion level

µl−1 800− 1200 [53] [32] [71]

β Infection rate of healthy
T-cell by HIV virus in-
fected

µl−1 cell−1 virus−1 day−1 10−5 − 0.5 [18] [72] [71]

d Death rate of uninfected T
cells

µl−1 cell−1 day−1 0.007− 0.1 [6] [18] [53]

a Death rate of infected T
cells

µl−1 cell−1 day−1 0.5− 1.4 [45] [54]

u Clearance rate µl−1 virus−1 day−1 3− 36 [54] [55]
kq Number of virus produced

by lysing an infected T-
cell

µl−1 cell−1 day−1 6− 3000 [63] [57] [58]

Table 2. List of parameter values of model (1)
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