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Abstrak: Misalkan G adalah suatu graf terhubung.Himpunan titikV(G) di partisi menjadi k buah 

partisi S1, S2,…, Sk yang saling lepas. Notasikan Π = {S1, S2, ..., Sk}.Maka representasi v ∈V(G) 

terhadap phi didefenisikan : r(v|Π)=(d(v,S1),d(v,S2),...,d(v,Sk)), Jika untuk setiap dua titik yang 

berbeda 𝑢, 𝑣 ∈ V(G) berlaku r(u|Π) = r(v|Π), maka Π dikatakan partisi penyelesaian dari graf G. 

Graf kipas diperoleh dari operasi graf hasil tambah K1+Pn. Graf kipas dinotasikan dengan 𝐹1,𝑛 

untuk n ≥ 2. Graf thorn untuk graf kipas diperoleh dengan cara menambahkan daun sebanyak 

li kesetiap titik di graf kipas, dinotasikan dengan 𝑇ℎ(𝐹1,𝑛, 𝑙1, 𝑙2, … , 𝑙𝑛+1). Pada tulisan ini, akan 

dibahas tentang dimensi partisi graf thorn dari graf kipas F1,nuntuk n = 2, 3,4. 
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Abstract: Let 𝐺 = (𝑉, 𝐸) be a connected graph and 𝑆 ⊆ 𝑉(𝐺). For a vertex 𝑣 ∈ 𝑉(𝐺) and an 

ordered k-partition Π = {𝑆1, 𝑆2, … , 𝑆𝑘} of 𝑉(𝐺), the presentation of 𝑣 concerning Π is the k-vector 

𝑟(𝑣|Π) = (𝑑(𝑣, 𝑆1), 𝑑(𝑣, 𝑆2), … , 𝑑(𝑣, 𝑆𝑘)), where 𝑑(𝑣, 𝑆𝑖) denotes the distance between 𝑣 and 𝑆𝑖 

for 𝑖 ∈ {1,2, … , 𝑛}. The k-partition Π is said to be resolving if for every two vertices 𝑢, 𝑣 ∈ 𝑉(𝐺), 

the representation 𝑟(𝑢|Π) ≠ 𝑟(𝑣|Π). The minimum k for which there is a resolving k-partition of 

𝑉(𝐺) is called the partition dimension of 𝐺, denoted by 𝑝𝑑(𝐺). Let 𝑉(𝐺) = {𝑥1, 𝑥2, … , 𝑥𝑛}. Let 

𝑙1, 𝑙2, … , 𝑙𝑛 be non-negative integer, 𝑙𝑖 ≥ 1,for 𝑖 ∈ {1,2, … , 𝑛}. The thorn of 𝐺, with parameters 

𝑙1, 𝑙2, … , 𝑙𝑛 is obtained by attaching 𝑙𝑖 vertices of degree one to the vertex 𝑥𝑖, denoted by 

𝑇ℎ(𝐺, 𝑙1, 𝑙2, … , 𝑙𝑛). In this paper, we determine the partition dimension of 𝑇ℎ(𝐺, 𝑙1, 𝑙2, … , 𝑙𝑛)where 

𝐺 ≃  𝐹1,𝑛, the fan on n+1 vertices, for 𝑛 = 2,3,4. 
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1. Introduction 

Let 𝐺 = (𝑉, 𝐸) be an arbitrary connected graph. [1] defined the partition dimension 

as follows. Let 𝑢 and 𝑣 be two vertices in 𝑉(𝐺). The distance 𝑑(𝑢, 𝑣) is the length of the 

shortest path between 𝑢 and 𝑣in 𝐺. For an ordered set Π = {𝑆1, 𝑆2, … , 𝑆𝑘} of vertices in a 

connected graph 𝐺 and a vertex 𝑣of 𝐺, the k-vector 𝑟(𝑣|Π) =
(𝑑(𝑣, 𝑆1), 𝑑(𝑣, 𝑆2), … , 𝑑(𝑣, 𝑆𝑘)), is the presentation of 𝑣 with respect to Π. The minimum 

k for which there is a resolving k-partition of 𝑉(𝐺) is called the partition dimension of 𝐺, 

denoted by 𝑝𝑑(𝐺). All notation in graph theory needed in this paper refers to [2]. 

Stated the following theorem. 

 

Theorem 1.1. [2] Let 𝐺 be a connected graph on n vertices, 𝑛 ≥ 2. Then 𝑝𝑑(𝐺) = 2 if 

and only if 𝐺 ≃ 𝑃𝑛. 

In the same paper, Chartrand et al. [2] also gave the necessary condition in 

partitioning the set of vertices as follows. 

 

Lemma 1.2. [2] Suppose that Π is the resolving partition of  𝑉(𝐺)and 𝑢, 𝑣 ∈ 𝑉(𝐺). If 

𝑑(𝑢, 𝑤) = 𝑑(𝑣, 𝑤)  for every vertex 𝑤 ∈ 𝑉(𝐺)\{𝑢, 𝑣}  then 𝑢 and 𝑣 belong to a different 

class of  Π. 

 

2. Main Results 

The fan 𝐹1,𝑛 on 𝑛 + 1 vertices is defined as the graph constructed by joining 𝐾1 and 

𝑃𝑛, denoted by 𝐾1 + 𝑃𝑛 where 𝐾1 is the complete graph on 1 vertex and 𝑃𝑛 Is a path on 𝑛 

vertices, for 𝑛 ≥ 2. The vertex set and edge set of  𝐹1,𝑛 are as follows.  

 

 𝑉(𝐹1,𝑛) = {𝑥𝑖|1 ≤ 𝑖 ≤ 𝑛 + 1}, 

 𝐸(𝐹1,𝑛) = {𝑥1𝑥𝑡|1 ≤ 𝑡 ≤ 𝑛} ∪ {𝑥𝑠𝑥𝑠+1|1 ≤ 𝑠 ≤ 𝑛 − 1}. 

 

𝑙1, 𝑙2, … , 𝑙𝑛+1Be some positive integer. The thorn graph of 𝐹1,𝑛 is obtained by adding 𝑙𝑖 

leaves to vertex 𝑥𝑖, for 1 ≤ 𝑖 ≤ 𝑛 + 1, denoted by 𝑇ℎ(𝐹1,𝑛, 𝑙1, 𝑙2, … , 𝑙𝑛+1). The 

construction of thorn graph is taken from [3]. The vertex set and edge set of 𝐻 ≃

𝑇ℎ(𝐹1,𝑛, 𝑙1, 𝑙2, … , 𝑙𝑛+1) are as follows. 

 

 𝑉(𝐻) = {𝑥𝑖|1 ≤ 𝑖 ≤ 𝑛 + 1} ∪ {𝑥𝑖𝑗 |1 ≤ 𝑖 ≤ 𝑛 + 1, 1 ≤ 𝑗 ≤ 𝑙𝑖}, and 

 𝐸(𝐻) = {𝑥1𝑥𝑡|1 ≤ 𝑡 ≤ 𝑛}  ∪ {𝑥𝑠𝑥𝑠+1|1 ≤ 𝑠 ≤ 𝑛 − 1} ∪

{𝑥𝑖𝑥𝑖𝑗|1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛}. 

 

In Theorem 2.1 we determine the partition dimension of  𝑇ℎ(𝐹1,2, 𝑙1, 𝑙2, 𝑙3)for 𝑙𝑖 ≥ 1,

𝑖 ∈ 1,2,3. 
 

Theorem 2.1. Let 𝑇ℎ(𝐹1,2, 𝑙1, 𝑙2, 𝑙3) be thorn of fan 𝐹1,2with 𝑙𝑖 ≥ 1, 𝑖 ∈ 1,2,3. Denote 

𝑙𝑚𝑎𝑥 = max {𝑙1, 𝑙2, 𝑙3}. 

The partition dimension of  𝑇ℎ(𝐹1,2, 𝑙1, 𝑙2, 𝑙3) is 

 

𝑝𝑑(𝑇ℎ(𝐹1,2, 𝑙1, 𝑙2, 𝑙3)) = {
3,   𝑓𝑜𝑟 𝑙𝑚𝑎𝑥 = 1, 2 𝑜𝑟 3

𝑙𝑚𝑎𝑥 , 𝑓𝑜𝑟 𝑙𝑚𝑎𝑥 ≥ 4        
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Figure 1. 𝑇ℎ(𝐹1,2, 𝑙1, 𝑙2, 𝑙3) 

 

Proof. The proof is divided into two cases. 

 

Case 1. 1 ≤ 𝑙𝑚𝑎𝑥 ≤ 3. 

Let 𝐻1 ≃ 𝑇ℎ(𝐹1,2, 𝑙1, 𝑙2, 𝑙3), with 1 ≤ 𝑙𝑚𝑎𝑥 ≤ 3. Because 𝐻1 ≠ 𝑃𝑛 then from Theorem 

1.1, it is obtained that 𝑝𝑑(𝐻1) ≥ 3. Next, it will be shown that 𝑝𝑑(𝐻1) ≤ 3 by 

constructing three ordered partitions. Note that from Lemma 1.2, every leaf at the vertex 

𝑥𝑖 Must be on a different partition. Therefore, we define Π = {𝑆1, 𝑆2, 𝑆3}, where 

𝑆𝑖 = {𝑥𝑖 , 𝑥𝑘𝑖|1 ≤ 𝑖 ≤ 3, 1 ≤ 𝑘 ≤ 3}, 

Because of 𝑑(𝑣, 𝑆𝑖) = 0 while 𝑑(𝑢, 𝑆𝑖) ≠ 0 for 𝑣 ∈ 𝑆𝑖and 𝑢 ∉ 𝑆𝑖, it is clear that every 

two vertices in different partitions have different representations. Therefore, it is 

sufficient to check the representations of two vertices in the same partition. Because of 

𝑑(𝑥𝑘𝑖 , 𝑆𝑗) = 𝑑(𝑥𝑖 , 𝑆𝑗) + 1for 𝑖 ≠ 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 3, then 𝑟(𝑥𝑘𝑖|Π) ≠ 𝑟(𝑥𝑖|Π). Thus, we 

have that 𝑝𝑑(𝐻1) ≤ 3. 

 

Case 2. 𝑙𝑚𝑎𝑥 ≥ 4. 

Let 𝐻2 ≃ 𝑇ℎ(𝐹1,2, 𝑙1, 𝑙2, 𝑙3), with 𝑙𝑚𝑎𝑥 ≥ 4. Let 𝑙𝑚𝑎𝑥 = 𝑚 and suppose that 𝑝𝑑(𝐻2) =

𝑚 − 1. Then we have Π = {𝑆1, 𝑆2, … , 𝑆𝑚−1}. Thus there are at least two vertices, namely 

𝑥1𝑝and 𝑥1𝑞, in the same partition, for 1 ≤ 𝑝, 𝑞 ≤ 𝑚. But from Lemma 1.2, 𝑥1𝑝 and 𝑥1𝑞 

Must be placed in different partitions. Therefore, |Π| ≥ 𝑚, a contradiction. 

Next, we construct Π = {𝑆1, 𝑆2, … , 𝑆𝑚}, where 

𝑆𝑖 = {𝑥𝑖 , 𝑥𝑘𝑖|1 ≤ 𝑖 ≤ 3, 1 ≤ 𝑘 ≤ 3}, 

𝑆𝑗 = {𝑥𝑘𝑗 |1 ≤ 𝑘 ≤ 3, 4 ≤ 𝑗 ≤ 𝑙𝑚𝑎𝑥}, 

Because of 𝑑(𝑥𝑘𝑖 , 𝑆𝑗) = 𝑑(𝑥𝑖 , 𝑆𝑗) + 1for 𝑖 ≠ 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑙𝑚𝑎𝑥 , then 𝑟(𝑥𝑘𝑖|Π) ≠

𝑟(𝑥𝑖|Π). Next, because of 𝑑(𝑥𝑘𝑖 , 𝑆𝑗) ≠ 𝑑(𝑥𝑙𝑖 , 𝑆𝑗) + 1for 𝑘 ≠ 𝑙, 1 ≤ 𝑘, 𝑙 ≤ 𝑙𝑚𝑎𝑥 , it is 

clear that 𝑟(𝑥𝑘𝑖|Π) ≠ 𝑟(𝑥𝑙𝑖|Π). Therefore, we have 𝑝𝑑(𝐻2) ≤ 𝑙𝑚𝑎𝑥 . ∎   

     

In Theorem 2.2 we determine the partition dimension of  𝑇ℎ(𝐹1,3, 𝑙1, 𝑙2, 𝑙3, 𝑙4)for 𝑙𝑖 ≥

1, 𝑖 ∈ 1,2,3,4. 

 

Theorem 2.2. Let 𝑇ℎ(𝐹1,3, 𝑙1, 𝑙2, 𝑙3, 𝑙4) be a thorn of fan 𝐹1,3with 𝑙𝑖 ≥ 1, 𝑖 ∈ 1,2,3,4. 

Denote 𝑙𝑚𝑎𝑥 = max {𝑙1, 𝑙2, 𝑙3, 𝑙4}. Let 𝑥𝑙𝑖
 be the vertex in 𝐹1,3 with 𝑙𝑖 leaves, and  |𝑥𝑙𝑚𝑎𝑥| 

be the number of vertices with 𝑙𝑚𝑎𝑥  Leaves. The partition dimension of  

𝑇ℎ(𝐹1,3, 𝑙1, 𝑙2, 𝑙3, 𝑙4) is 
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Figure2. 𝑇ℎ(𝐹1,3, 𝑙1, 𝑙2, 𝑙3, 𝑙4) 

 

Proof. The proof is similar to the proof of Theorem 2.1    ∎ 

 

In Theorem 2.3 we determine the partition dimension of  𝑇ℎ(𝐹1,4, 𝑙1, 𝑙2, 𝑙3, 𝑙4, 𝑙5)for 

𝑙𝑖 ≥ 1, 𝑖 ∈ 1,2,3,4,5. 

 

Theorem 2.3. Let 𝑇ℎ(𝐹1,4, 𝑙1, 𝑙2, 𝑙3, 𝑙4, 𝑙5) be a thorn of fan 𝐹1,4with 𝑙𝑖 ≥ 1, 𝑖 ∈ 1,2,3,4,5. 

Denote 𝑙𝑚𝑎𝑥 = max  {𝑙1, 𝑙2, 𝑙3, 𝑙4, 𝑙5}. Let 𝑥𝑙𝑖
 be the vertex in 𝐹1,4 with 𝑙𝑖 leaves, and  

|𝑥𝑙𝑚𝑎𝑥| be the number of vertices with 𝑙𝑚𝑎𝑥  Leaves. The partition dimension of  

𝑇ℎ(𝐹1,3, 𝑙1, 𝑙2, 𝑙3, 𝑙4, 𝑙5) is 
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Figure 3. 𝑇ℎ(𝐹1,4, 𝑙1, 𝑙2, 𝑙3, 𝑙4, 𝑙5) 

 

 

Proof. The proof is similar to the proof of Theorem 2.1 and Theorem 2.2.    
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