ISSN: 2527-3159 (print) 2527-3167 (online)

A Note On The Partition Dimension of Thorn of Fan Graph

Auli Mardhaningsih

Andalas University, aulimardhaningsih@gmail.com

doi: https://doi.org/10.15642/mantik.2019.5.1.45-49

Abstrak: Misalkan G adalah suatu graf terhubung.Himpunan titikV(G) di partisi menjadi k buah partisi S₁, S₂,..., S_k yang saling lepas. Notasikan $\Pi = \{S_1, S_2, ..., S_k\}$.Maka representasi v \in V(G) terhadap phi didefenisikan : r(v|\Pi)=(d(v,S_1),d(v,S_2),...,d(v,S_k)), Jika untuk setiap dua titik yang berbeda $u, v \in$ V(G) berlaku r(u|\Pi) = r(v|\Pi), maka Π dikatakan partisi penyelesaian dari graf G. Graf kipas diperoleh dari operasi graf hasil tambah K₁+P_n. Graf kipas dinotasikan dengan $F_{1,n}$ untuk n \geq 2. Graf thorn untuk graf kipas diperoleh dengan cara menambahkan daun sebanyak l_i kesetiap titik di graf kipas, dinotasikan dengan $Th(F_{1,n}, l_1, l_2, ..., l_{n+1})$. Pada tulisan ini, akan dibahas tentang dimensi partisi graf thorn dari graf kipas F_{1,n}untuk n = 2, 3,4.

Kata kunci: Partisi penyelesaian, dimensi partisi, graf kipas, graf thorn

Abstract: Let G = (V, E) be a connected graph and $S \subseteq V(G)$. For a vertex $v \in V(G)$ and an ordered *k*-partition $\Pi = \{S_1, S_2, ..., S_k\}$ of V(G), the presentation of v concerning Π is the *k*-vector $r(v|\Pi) = (d(v, S_1), d(v, S_2), ..., d(v, S_k))$, where $d(v, S_i)$ denotes the distance between v and S_i for $i \in \{1, 2, ..., n\}$. The *k*-partition Π is said to be resolving if for every two vertices $u, v \in V(G)$, the representation $r(u|\Pi) \neq r(v|\Pi)$. The minimum k for which there is a resolving *k*-partition of V(G) is called the partition dimension of G, denoted by pd(G). Let $V(G) = \{x_1, x_2, ..., x_n\}$. Let $l_1, l_2, ..., l_n$ be non-negative integer, $l_i \geq 1$, for $i \in \{1, 2, ..., n\}$. The thorn of G, with parameters $l_1, l_2, ..., l_n$ is obtained by attaching l_i vertices of degree one to the vertex x_i , denoted by $Th(G, l_1, l_2, ..., l_n)$. In this paper, we determine the partition dimension of $Th(G, l_1, l_2, ..., l_n)$ where $G \approx F_{1,n}$, the fan on n+1 vertices, for n = 2,3,4.

Keywords: Resolving partition, partition dimension, fan, thorn graph

1. Introduction

Let G = (V, E) be an arbitrary connected graph. [1] defined the partition dimension as follows. Let u and v be two vertices in V(G). The distance d(u, v) is the length of the shortest path between u and v in G. For an ordered set $\Pi = \{S_1, S_2, ..., S_k\}$ of vertices in a connected graph G and a vertex v of G, the k-vector $r(v|\Pi) =$ $(d(v, S_1), d(v, S_2), ..., d(v, S_k))$, is the presentation of v with respect to Π . The minimum k for which there is a resolving k-partition of V(G) is called the partition dimension of G, denoted by pd(G). All notation in graph theory needed in this paper refers to [2].

Stated the following theorem.

Theorem 1.1. [2] Let G be a connected graph on n vertices, $n \ge 2$. Then pd(G) = 2 if and only if $G \simeq P_n$.

In the same paper, Chartrand et al. [2] also gave the necessary condition in partitioning the set of vertices as follows.

Lemma 1.2. [2] Suppose that Π is the resolving partition of V(G) and $u, v \in V(G)$. If d(u, w) = d(v, w) for every vertex $w \in V(G) \setminus \{u, v\}$ then u and v belong to a different class of Π .

2. Main Results

The fan $F_{1,n}$ on n + 1 vertices is defined as the graph constructed by joining K_1 and P_n , denoted by $K_1 + P_n$ where K_1 is the complete graph on 1 vertex and P_n Is a path on n vertices, for $n \ge 2$. The vertex set and edge set of $F_{1,n}$ are as follows.

 $V(F_{1,n}) = \{x_i | 1 \le i \le n+1\},\$ $E(F_{1,n}) = \{x_1 x_t | 1 \le t \le n\} \cup \{x_s x_{s+1} | 1 \le s \le n-1\}.$

 $l_1, l_2, ..., l_{n+1}$ Be some positive integer. The thorn graph of $F_{1,n}$ is obtained by adding l_i leaves to vertex x_i , for $1 \le i \le n+1$, denoted by $Th(F_{1,n}, l_1, l_2, ..., l_{n+1})$. The construction of thorn graph is taken from [3]. The vertex set and edge set of $H \simeq Th(F_{1,n}, l_1, l_2, ..., l_{n+1})$ are as follows.

 $V(H) = \{x_i | 1 \le i \le n+1\} \cup \{x_{ij} | 1 \le i \le n+1, 1 \le j \le l_i\}, \text{ and } E(H) = \{x_1 x_t | 1 \le t \le n\} \cup \{x_s x_{s+1} | 1 \le s \le n-1\} \cup \{x_i x_{ij} | 1 \le i \le n, 1 \le j \le n\}.$

In Theorem 2.1 we determine the partition dimension of $Th(F_{1,2}, l_1, l_2, l_3)$ for $l_i \ge 1$, $i \in 1,2,3$.

Theorem 2.1. Let $Th(F_{1,2}, l_1, l_2, l_3)$ be thorn of fan $F_{1,2}$ with $l_i \ge 1$, $i \in 1,2,3$. Denote $l_{max} = \max\{l_1, l_2, l_3\}$.

The partition dimension of $Th(F_{1,2}, l_1, l_2, l_3)$ is

$$pd(Th(F_{1,2}, l_1, l_2, l_3)) = \begin{cases} 3, \text{ for } l_{max} = 1, 2 \text{ or } 3\\ l_{max}, \text{ for } l_{max} \ge 4 \end{cases}$$

Figure 1. $Th(F_{1,2}, l_1, l_2, l_3)$

Proof. The proof is divided into two cases.

Case 1. $1 \le l_{max} \le 3$.

Let $H_1 \simeq Th(F_{1,2}, l_1, l_2, l_3)$, with $1 \le l_{max} \le 3$. Because $H_1 \ne P_n$ then from Theorem 1.1, it is obtained that $pd(H_1) \ge 3$. Next, it will be shown that $pd(H_1) \le 3$ by constructing three ordered partitions. Note that from Lemma 1.2, every leaf at the vertex x_i Must be on a different partition. Therefore, we define $\Pi = \{S_1, S_2, S_3\}$, where $S_i = \{x_i, x_{ki} | 1 \le i \le 3, 1 \le k \le 3\}$,

Because of $d(v, S_i) = 0$ while $d(u, S_i) \neq 0$ for $v \in S_i$ and $u \notin S_i$, it is clear that every two vertices in different partitions have different representations. Therefore, it is sufficient to check the representations of two vertices in the same partition. Because of $d(x_{ki}, S_j) = d(x_i, S_j) + 1$ for $i \neq j$, $1 \leq i, j \leq 3$, then $r(x_{ki}|\Pi) \neq r(x_i|\Pi)$. Thus, we have that $pd(H_1) \leq 3$.

Case 2. $l_{max} \ge 4$.

Let $H_2 \simeq Th(F_{1,2}, l_1, l_2, l_3)$, with $l_{max} \ge 4$. Let $l_{max} = m$ and suppose that $pd(H_2) = m - 1$. Then we have $\Pi = \{S_1, S_2, \dots, S_{m-1}\}$. Thus there are at least two vertices, namely x_{1p} and x_{1q} , in the same partition, for $1 \le p$, $q \le m$. But from Lemma 1.2, x_{1p} and x_{1q} . Must be placed in different partitions. Therefore, $|\Pi| \ge m$, a contradiction.

Next, we construct $\Pi = \{S_1, S_2, ..., S_m\}$, where $S_i = \{x_i, x_{ki} | 1 \le i \le 3, 1 \le k \le 3\}$,

 $S_j = \{ x_{kj} | 1 \le k \le 3, \ 4 \le j \le l_{max} \},\$

Because of $d(x_{ki}, S_j) = d(x_i, S_j) + 1$ for $i \neq j$, $1 \leq i, j \leq l_{max}$, then $r(x_{ki}|\Pi) \neq r(x_i|\Pi)$. Next, because of $d(x_{ki}, S_j) \neq d(x_{li}, S_j) + 1$ for $k \neq l$, $1 \leq k, l \leq l_{max}$, it is clear that $r(x_{ki}|\Pi) \neq r(x_{li}|\Pi)$. Therefore, we have $pd(H_2) \leq l_{max}$.

In Theorem 2.2 we determine the partition dimension of $Th(F_{1,3}, l_1, l_2, l_3, l_4)$ for $l_i \ge 1$, $i \in 1,2,3,4$.

Theorem 2.2. Let $Th(F_{1,3}, l_1, l_2, l_3, l_4)$ be a thorn of fan $F_{1,3}$ with $l_i \ge 1$, $i \in 1, 2, 3, 4$. Denote $l_{max} = \max\{l_1, l_2, l_3, l_4\}$. Let x_{l_i} be the vertex in $F_{1,3}$ with l_i leaves, and $|x_{lmax}|$ be the number of vertices with l_{max} Leaves. The partition dimension of $Th(F_{1,3}, l_1, l_2, l_3, l_4)$ is

$$pd(Th(F_{1,3}, l_1, l_2, l_3, l_4)) = \begin{cases} 3, \text{ for } l_{max} = 1 \text{ or } 2, \\\\ and \text{ for } l_{max} = 3, \text{ if } |x_{lmax}| = 1 \text{ or } 2, \\\\ 4, \text{ for } l_{max} = 3, \text{ if } |x_{lmax}| = 3 \text{ or } 4, \\\\ l_{max}, \text{ for } l_{max} \ge 4. \end{cases}$$

Figure 2. $Th(F_{1,3}, l_1, l_2, l_3, l_4)$

Proof. The proof is similar to the proof of Theorem 2.1

In Theorem 2.3 we determine the partition dimension of $Th(F_{1,4}, l_1, l_2, l_3, l_4, l_5)$ for $l_i \ge 1, i \in 1,2,3,4,5$.

Theorem 2.3. Let $Th(F_{1,4}, l_1, l_2, l_3, l_4, l_5)$ be a thorn of fan $F_{1,4}$ with $l_i \ge 1, i \in 1, 2, 3, 4, 5$. Denote $l_{max} = \max\{l_1, l_2, l_3, l_4, l_5\}$. Let x_{l_i} be the vertex in $F_{1,4}$ with l_i leaves, and $|x_{lmax}|$ be the number of vertices with l_{max} Leaves. The partition dimension of $Th(F_{1,3}, l_1, l_2, l_3, l_4, l_5)$ is

$$pd(Th(F_{1,4}, l_1, l_2, l_3, l_4, l_5)) = \begin{cases} 3, \text{ for } l_{max} = 1, \\ and \text{ for } l_{max} = 2, \text{ if } |x_{lmax}| = 1 \text{ or } 2, \\ and \text{ for } l_{max} = 3, \text{ if } |x_{lmax}| = 1, \\ 4, \text{ for } l_{max} = 2, \text{ if } |x_{lmax}| = 3, 4 \text{ or } 5, \\ and \text{ for } l_{max} = 3, \text{ if } |x_{lmax}| = 2, 3, 4 \text{ or } 5, \\ and \text{ for } l_{max} = 4, \text{ if } |x_{lmax}| = 2, 3, 4 \text{ or } 5, \\ and \text{ for } l_{max} = 4, \text{ if } |x_{lmax}| = 1, 2, 3 \text{ or } 4, \\ 5, \text{ for } l_{max} = 4, \text{ if } |x_{lmax}| = 5, \\ l_{max}, \text{ for } l_{max} \ge 5 \end{cases}$$

Figure 3. $Th(F_{1,4}, l_1, l_2, l_3, l_4, l_5)$

Proof. The proof is similar to the proof of Theorem 2.1 and Theorem 2.2.

References

- [1] G. Chartrand, S. E and Z. P, "The Partition dimension of a graph," *Aequationes Math*, pp. 45-54, 2000.
- [2] J. A. Bondy and U. Murty, Graph Theory with Applications, London, 1976.
- [3] A. "Partition dimension of amalgamation," *Bulletin of Mathematics*, pp. 161-167, 2012.
- [4] A. Kirlangic, "The Scattering number of thorn graph," *International Journal of computer math*, pp. 299-311, 2004.
- [5] E. Baskoro and D., "The partition dimension of corona product of two graph," *Far East J. Math. Sci,* pp. 181-196, 2012.
- [6] N. L. Biggs, R. Lloyd and R. Wilson, Graph theory, Oxford: 1736-1936, 1986.
- [7] G. Chartrand and S. E, "On partition dimension of a graph," *Congr. numer*, pp. 157-168, 1998.
- [8] E. Rahimah, L. Yulianti and D. Welyyanti, "Penentuan bilangan kromatik lokasi graf thorn dari graf roda," *jurnal matematika unand*, 2018.
- [9] J. Gross and J. Yellen, Graph theory and its applications (Second Edition), New York, 2006.
- [10] I. Gutman, "Distance in Thorny Graph," Publ.Ins.Math, pp. 31-36, 1998.
- [11] D. O. Haryeni, E. T. Baskoro, and S. W. Saputro, "On the partition dimension of disconnected graphs," 2017.
- [12] A. Juan, V. Rodriguez and L. Magdalena, "On the partition dimension of trees," discrete applied mathematics, pp. 204-209, 2014.
- [13] E. Lloyd, J. Bondy and U. Murt, "Graph theory with application," *the mathematical gazette*, pp. 62-63, 2007.
- [14] R. Munir, Matematika Diskrit, Bandung, 2003.
- [15] I. Tomescu, I. Javaid and S., "On the Partition Dimension and Conected Partition dimension of wheels," Ars Combinatoria, pp. 311-317, 2007.
- [16] I. Tomescu, "Discrepancies between metric dimension of a connected graph," *Discrete Math*, pp. 5026-5031, 2008.