ISSN: 2527-3159 (print) 2527-3167 (online)

On the Relation of the Total Graph of a Ring and a Product of Graphs

Mohammad Nafie Jauhari

Universitas Islam Negeri Maulana Malik Ibrahim, Malang, Indonesia,

Article history:	Abstrak. Graf total atas suatu ring R, dinotasikan dengan $T(\Gamma(R))$,
Received Aug 31, 2022	didefinisikan sebagai suatu graf dengan himpunan titik
Revised , Dec 25, 2022 Accepted , Dec 31, 2022	$V(T(\Gamma(R))) = R$ dan dua titik berbeda $u, v \in V(T(\Gamma(R)))$
	bertetangga jika dan hanya jika $u + v \in Z(R)$, di mana $Z(R)$
Kata Kunci:	merupakan pembagi nol dari R. Perkalian Kartesius dari dua graf
Grup, Total graf,	G dan H merupakan suatu graf yang dinotasikan dengan $G \times H$
Isomorfisma,	di mana himpunan titiknya adalah $V(G \times H) = V(G) \times V(H)$
Perkalian Kartesius	dan dua titik berbeda (u_1, v_1) dan (u_2, v_2) di $V(G \times H)$
	bertetangga jika dan hanya jika: 1) $u_1 = u_2$ dan $v_1v_2 \in H$; atau
	2) $v_1 = v_2$ dan $u_1u_2 \in E(G)$. Isomorfisma dari graf G dan H adalah suatu fungsi bijektif $\phi: V(G) \to V(H)$ sedemikian sehingga $u, v \in V(G)$ bertetangga jika dan hanya jika $f(u), f(v) \in V(H)$ bertetangga. Akan dibuktikan bahwa graf
	$T(\Gamma(\mathbb{Z}_{2n}))$ isomorf dengan graf $P_2 \times K_n$ untuk setiap bilangan
	((1,p)) $(1,p)$ $(1,p)$ $(1,p)$
	prinia p.
Keywords:	Abstract. The total graph of a ring R, denoted as $T(\Gamma(R))$, is
Keywords: Group, Total graph, Isomorphism,	Abstract. The total graph of a ring <i>R</i> , denoted as $T(\Gamma(R))$, is defined to be a graph with vertex set $V(T(\Gamma(R))) = R$ and two
Keywords: Group, Total graph, Isomorphism, Cartesian product	Abstract. The total graph of a ring <i>R</i> , denoted as $T(\Gamma(R))$, is defined to be a graph with vertex set $V(T(\Gamma(R))) = R$ and two distinct vertices $u, v \in V(T(\Gamma(R)))$ are adjacent if and only if $u + V(\Gamma(R))$
Keywords: Group, Total graph, Isomorphism, Cartesian product	Abstract. The total graph of a ring <i>R</i> , denoted as $T(\Gamma(R))$, is defined to be a graph with vertex set $V(T(\Gamma(R))) = R$ and two distinct vertices $u, v \in V(T(\Gamma(R)))$ are adjacent if and only if $u + v \in Z(R)$, where $Z(R)$ is the zero divisor of <i>R</i> . The Cartesian product of two graphs <i>G</i> and <i>H</i> is a graph with the vertex set $V(G \times H) = V(G) \times V(H)$ and two distinct vertices (u_1, v_1) and (u_2, v_2) are adjacent if and only if: 1) $u_1 = u_2$ and $v_1v_2 \in H$; or 2) $v_1 = v_2$ and $u_1u_2 \in E(G)$. An isomorphism of graphs <i>G</i> dan <i>H</i> is a bijection $\phi: V(G) \to V(H)$ such that $u, v \in V(G)$ are adjacent if and only if $f(u), f(v) \in V(H)$ are adjacent. This paper proved that $T(\Gamma(\mathbb{Z}_{2n}))$ and $P_2 \times K_n$ are isomorphic for every odd prime <i>p</i> .

How to cite:

M. N. Jauhari, "On the Relation of Total Graph of a Ring and a Product of Graphs", J. Mat. Mantik, vol. 8, no. 2, pp. 99-104, December 2022.

CONTACT: Mohammad Nafie Jauhari 😋 nafie.jauhari@uin-malang.ac.id 🙎 Department of Mathematics, UIN Maulana Malik Ibrahim, Malang, East Java 65144

1. Introduction

Investigating group or ring properties and its structures from their graph representation become a new trend in graph theoretic research. Many authors proved that there are tight bonds between the rings and graphs. Aalipour in [1] investigated the chromatic number and clique number of a commutative ring. [2] gave a novel application of a central-vertex complete graph to a commutive ring. In 2008, [3] investigated the commutive graph of rings generated from matrices over a finite filed. Three years after the graph of a ring was introduced in [4], [5] proposed useful applications of semirings in mathematics and theoretical computer science. One interest in applying graph invariant on a group also showed in [6] in the properties of zero-divisor graphs. Another useful graph generated from group or ring structure is Cayley graphs which has many useful applications in solving and understanding a variety problem in several scientific interests [7].

The graph isomorphism itself has many applications in real life and many scientific fields [8]. [9] stated briefly about its application in the atomic structures and [10] showed how it can be applied in biochemical data. To prove the isomorphism of two graphs is an NP-problem in which there is no specific algorithm or certain way that works for all graphs in consideration [11]. In 1996, [12] proposed a good graph isomorphism algorithm but still troublesome for a large graphs.

Considering those applications of ring generated graphs, the applications of the graph isomorphisms, and the isomorphism-related algorithm complexity, finding an isomorphism of ring-structured graphs and the graph obtained from certain operation is a challenging task and a potential new interest in graph theory research. This paper considers the relation between the total graph of \mathbb{Z}_p and $P_2 \times K_p$ for all odd prime p.

2. Preliminaries

A graph G is a pair G = (V, E) for non-empty set V and $E \subseteq [V]^2$ (the elements of E are 2-element subsets of V). For terminologies and notations concerning to a graph and its invariants, please consider [13]. This preliminary covers the definitions related to ring and the total graph of a ring. It also provides some definitions related to graph isomorphism and a graph operation.

Definition 1. Ring [14]

A ring *R* is a set with two binary operations, addition and multiplication, such that for all $a, b, c \in R$:

- 1. a+b=b+a,
- 2. (a+b) + c = a + (b+c),
- 3. There is an additive identity 0,
- 4. There is an element $-a \in R$ such that a + (-a) = 0,
- 5. a(bc) = (ab)c, and
- 6. a(b + c) = ab + ac and (b + c)a = ba + ca.

With this definition, \mathbb{Z}_{2p} , an integer modulo 2p set, equipped with addition and multiplication modulo 2p operation is a ring.

Definition 2. Zero Divisor [14]

A zero-divisor is a nonzero element *a* of a commutative ring *R* such that there is a nonzero element $b \in R$ with ab = 0.

Definition 3. Total Graph of a Ring [15]

Let *R* be a ring and *Z*(*R*) denotes the zero divisor of *R*. The total graph of *R*, denoted by $T(\Gamma(R))$ is an undirected graph with elements of *R* as its vertices, and for distinct $x, y \in R$, the vertices *x* and *y* are adjacent if and only if $x + y \in Z(R)$.

From those definitions of zero divisor and total graph, we will construct a total graph of \mathbb{Z}_{2p} for an odd prime *p*.

Definition 4. Graph Homomorphism and Isomorphism [13]

Let $G = (V_G, E_G)$ and $H = (V_H, E_H)$ be graphs. A map $\varphi: V_G \to V_H$ is a homomorphism from *G* to *H* if it preserves the adjacency of the vertices. In another word, $\{x, y\} \in E_G \Rightarrow$ $\{\varphi(x), \varphi(y)\} \in E_H$. If φ is bijective and φ^{-1} is also a homomorphism, then φ is an isomorphism and *G* is said to be isomorphic to *H*.

Definition 5. Cartesian Product [13]

The Cartesian product of two graphs *G* and *H* is a graph with the vertex set $V(G \times H) = V(G) \times V(H)$ and two distinct vertices (u_1, v_1) and (u_2, v_2) are adjacent if and only if: 1) $u_1 = u_2$ and $v_1v_2 \in H$; or 2) $v_1 = v_2$ and $u_1u_2 \in E(G)$. An isomorphism of graphs *G* dan *H* is a bijection $\phi: V(G) \rightarrow V(H)$ such that $u, v \in V(G)$ are adjacent if and only if $f(u), f(v) \in V(H)$ are adjacent.

3. Main Results

In this section we will prove the isomorphism of the total graph of \mathbb{Z}_{2p} and $P_2 \times K_p$. We will investigate several properties of $T(\Gamma(\mathbb{Z}_{2p}))$ before we proof the isomorphism. Those investigations will be provided as lemmas and theorems equipped with their proofs. To characterize $T(\Gamma(\mathbb{Z}_{2p}))$, we consider its vertex set, the degree of each vertex, and the clique it has as subgraphs, since $P_2 \times K_p$ can easily be considered and seen from those properties.

Lemma 1. The zero divisor of \mathbb{Z}_{2p} is

$$Z(\mathbb{Z}_{2p}) = \{p\} \cup \{2n: n = 1, 2, \dots, n-1\}$$

for every odd prime *p*.

Proof.

For each $x \in \mathbb{Z}_{2p}$, the exactly one of the following holds: x = p, x is even, and $x \neq p$ is odd.

Case 1, x = p

Since 2p = 0 and $2 \in \mathbb{Z}_{2p}$, we conclude that $p \in Z(\mathbb{Z}_{2p})$.

Case 2, x is even

Let x = 2m for some $m \in \mathbb{Z}$. Since $xp = 2mp = m \cdot 2p = m \cdot 0 = 0$ and $p \in \mathbb{Z}_{2p}$, we conclude that $x \in Z(\mathbb{Z}_{2p})$ for all even $x \in \mathbb{Z}_{2p}$.

Case 3, $x \neq p$ is odd

If x = 1, then $xy \neq 0$ for all $0 \neq y \in \mathbb{Z}_{2p}$.

We will show that $1 \neq x \notin Z(\mathbb{Z}_{2p})$ by using a contradiction. Suppose on the contrary, that $x \in Z(\mathbb{Z}_{2p})$. Consequently, there exists $0 \neq y \in \mathbb{Z}_{2p}$ such that xy = 0. It follows that gcd(x, 2p) > 1. Since the factor of 2p is 2 and p, we obtain that x divides p. It is a contradiction since p is a prime number.

Lemma 2. Let *p* be an odd prime. Let $A \subseteq \mathbb{Z}_{2p}$ be the set of all odd elements of \mathbb{Z}_{2p} and $B \subseteq \mathbb{Z}_{2p}$ be the set of all even elements of \mathbb{Z}_{2p} . $\{u, v\} \in E\left(T\left(\Gamma(\mathbb{Z}_{2p})\right)\right)$ for all $u, v \in A$ and $\{x, y\} \in E\left(T\left(\Gamma(\mathbb{Z}_{2p})\right)\right)$ for all $x, y \in B$. In another word, the vertices in *A* dan *B* form cliques in $T\left(\Gamma(\mathbb{Z}_{2p})\right)$.

Proof.

Let $u, v \in A$ and let u = 2s + 1 and v = 2t + 1 for some $s, t \in \mathbb{Z}$. We obtain u + v = 2s + 1 + 2t + 1 $= 2(s + t + 1) \in Z(\mathbb{Z}_{2n}).$

Therefore $\{u, v\} \in E\left(T\left(\Gamma(\mathbb{Z}_{2p})\right)\right)$ for all $u, v \in A$. Let $x, y \in A$ and let x = 2s and y = 2t for some $s, t \in \mathbb{Z}$. We obtain x + y = 2s + 2t

 $= 2(s+t) \in Z(\mathbb{Z}_{2p}).$

Therefore $\{x, y\} \in E\left(T\left(\Gamma(\mathbb{Z}_{2p})\right)\right)$ for all $x, y \in B$.

It proves that *A* and *B* form cliques in $T(\Gamma(\mathbb{Z}_{2p}))$.

Lemma 3. Let *A* and *B* be sets defined in Lemma 2 and *p* be an odd prime number. For each $v \in A$ there is a unique $x \in B$ such that

$$\{v, x\} \in E\left(T\left(\Gamma(\mathbb{Z}_{2p})\right)\right).$$

Proof.

For each $v \in A$, choose x = p - v. It can be easily verified that $x \in B$ since p and v are both odd numbers. On the other hand, let $x \in B$ and $x \neq p - v$. Suppose that $\{v, x\} \in E\left(T\left(\Gamma(\mathbb{Z}_{2p})\right)\right)$, that is $v + x \in Z(\mathbb{Z}_{2p})$. Since v is odd and x is even, it follows that v + x is an odd number and $v + x = p \Leftrightarrow x = p - v$, a contradiction. This proves that $\{v, p - v\} \in E\left(T\left(\Gamma(\mathbb{Z}_{2p})\right)\right), \forall x \in A$.

Analogous to this proof, we can easily prove that for each $x \in B$ there is a unique $v \in A$ such that

$$\{v, x\} \in E\left(T\left(\Gamma\left(\mathbb{Z}_{2p}\right)\right)\right)$$

Before we discuss the main problem, consider Figure 1 that represents the graph $T(\Gamma(\mathbb{Z}_{2p}))$ for several p.

Figure 1. $T(\Gamma(\mathbb{Z}_{2p}))$ for $p \in \{3,5,7\}$.

Theorem 1. For any odd prime p, $T(\Gamma(\mathbb{Z}_{2p}))$ is isomorph to $P_2 \times K_p$.

Proof. Let $V(P_2)$ and $V(K_p)$ be labeled as $\{p_1, p_2\}$ and $\{k_0, k_1, ..., k_{p-1}\}$ respectively. The vertices of the resulting graph obtained from the Cartesian product, $P_2 \times K_p$, is therefore labeled

$$\{(p_1, k_1), (p_1, k_2), \dots, (p_1, k_p), (p_2, k_1), (p_2, k_2), \dots, (p_2, k_p)\}$$

in which

 $\{(p_s, k_i), (p_s, k_j)\} \in E(P_2 \times K_p), \forall i, j \in \{1, 2, ..., p\}$

and $i \neq j$, for $s \in \{1,2\}$. Other edges to consider is $\{(p_1, k_i), (p_2, k_{(p-i \mod p)+1})\} \in E(P_2 \times K_p), \forall i \in \{1, 2, ..., p\}$. Here, the "mod" in " $p - i \mod p$ " is a modulus operator, not a modulus relation.

Consider the function $\varphi: V\left(T\left(\Gamma(\mathbb{Z}_{2p})\right)\right) \to V(P_2 \times K_p)$ defined as follows: $\varphi(x) = \begin{cases} \left(P_1, \left(\frac{p-x}{2} \mod p\right) + 1\right), & \text{if } x \text{ is odd} \\ \\ \left(P_2, \frac{x}{2} + 1\right), & \text{if } x \text{ is even.} \end{cases}$

Since φ is a bijective function that preserves adjacency of the vertices of $V\left(T\left(\Gamma(\mathbb{Z}_{2p})\right)\right)$ and $V(P_2 \times K_p)$, we conclude that $T\left(\Gamma(\mathbb{Z}_{2p})\right)$ and $P_2 \times K_p$ are isomorphic.

Figure 1 and Figure 2 show some examples of the mapping result of φ .

Figure 2. the mapping result of φ from $T(\Gamma(\mathbb{Z}_{2\cdot 5}))$ to $P_2 \times K_5$

Figure 3. the mapping result of φ from $T(\Gamma(\mathbb{Z}_{2,7}))$ to $P_2 \times K_7$

4. Conclusion

From the discussion, we conclude that $T(\Gamma(\mathbb{Z}_{2p}))$ and $P_2 \times K_p$ are isomorphic.

References

- [1] G. Aalipour and S. Akbari, "Application of some combinatorial arrays in coloring of total graph of a commutative ring," May 2013.
- [2] J. D. LaGrange, "Weakly central-vertex complete graphs with applications to commutative rings," *J. Pure Appl. Algebr.*, vol. 214, no. 7, pp. 1121–1130, Jul. 2010.
- [3] A. Abdollahi, "Commuting graphs of full matrix rings over finite fields," *Linear Algebra Appl.*, 2008.
- [4] R. P. Grimaldi, "Graphs from rings," Congr. Numer, vol. 71, pp. 95–104, 1990.
- [5] J. S. Golan, "The theory of semirings with applications in mathematics and theoretical computer science.," p. 318, 1992.
- [6] D. F. Anderson, T. Asir, A. Badawi, and T. Tamizh Chelvam, *Graphs from Rings*. 2021.
- [7] A. Kelarev, J. Ryan, and J. Yearwood, "Cayley graphs as classifiers for data mining: The influence of asymmetries," *Discrete Math.*, vol. 309, no. 17, pp. 5360–5369, Sep. 2009.
- [8] S. Y. Hsieh, C. W. Huang, and H. H. Chou, "A DNA-based graph encoding scheme with its applications to graph isomorphism problems," *Appl. Math. Comput.*, vol. 203, no. 2, pp. 502–512, Sep. 2008.
- [9] M. Grohe and P. Schweitzer, "The graph isomorphism problem," *Commun. ACM*, vol. 63, no. 11, pp. 128–134, 2020.
- [10] V. Bonnici, R. Giugno, A. Pulvirenti, D. Shasha, and A. Ferro, "A subgraph isomorphism algorithm and its application to biochemical data," *BMC Bioinformatics*, vol. 14, no. SUPPL7, pp. 1–13, Apr. 2013.
- [11] C. S. Calude, M. J. Dinneen, and R. Hua, "QUBO formulations for the graph isomorphism problem and related problems," *Theor. Comput. Sci.*, vol. 701, pp. 54– 69, Nov. 2017.
- [12] X. Y. Jiang and H. Bunke, "Including geometry in graph representations: A quadratic-time graph isomorphism algorithm and its applications," *Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics)*, vol. 1121, pp. 110–119, 1996.
- [13] R. Diestel, "Graph Theory (5th Edition)," Springer, 2017.
- [14] J. Gallian, *Contemporary Abstract Algebra*. 2021.
- [15] D. F. Anderson and A. Badawi, "The total graph of a commutative ring," *J. Algebr.*, vol. 320, no. 7, pp. 2706–2719, Oct. 2008.