On the Relation of the Total Graph of a Ring and a Product of Graphs

Mohammad Nafie Jauhari
Universitas Islam Negeri Maulana Malik Ibrahim, Malang, Indonesia,

Article history:

Received Aug 31, 2022
Revised, Dec 25, 2022
Accepted, Dec 31, 2022

Kata Kunci:

Grup, Total graf,
Isomorfisma,
Perkalian Kartesius

Keywords:

Group, Total graph,
Isomorphism,
Cartesian product

Abstract

Abstrak. Graf total atas suatu ring R, dinotasikan dengan $T(\Gamma(R))$, didefinisikan sebagai suatu graf dengan himpunan titik $V(T(\Gamma(R)))=R$ dan dua titik berbeda $u, v \in V(T(\Gamma(R)))$ bertetangga jika dan hanya jika $u+v \in Z(R)$, di mana $Z(R)$ merupakan pembagi nol dari R. Perkalian Kartesius dari dua graf G dan H merupakan suatu graf yang dinotasikan dengan $G \times H$ di mana himpunan titiknya adalah $V(G \times H)=V(G) \times V(H)$ dan dua titik berbeda $\left(u_{1}, v_{1}\right)$ dan $\left(u_{2}, v_{2}\right)$ di $V(G \times H)$ bertetangga jika dan hanya jika: 1) $u_{1}=u_{2}$ dan $v_{1} v_{2} \in H$; atau 2) $v_{1}=v_{2}$ dan $u_{1} u_{2} \in E(G)$. Isomorfisma dari graf G dan H adalah suatu fungsi bijektif $\phi: V(G) \rightarrow V(H)$ sedemikian sehingga $u, v \in V(G)$ bertetangga jika dan hanya jika $f(u), f(v) \in V(H)$ bertetangga. Akan dibuktikan bahwa graf $T\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)$ isomorf dengan graf $P_{2} \times K_{p}$ untuk setiap bilangan prima p.

Abstract

The total graph of a ring R, denoted as $T(\Gamma(R))$, is defined to be a graph with vertex set $V(T(\Gamma(R)))=R$ and two distinct vertices $u, v \in V(T(\Gamma(R)))$ are adjacent if and only if $u+$ $v \in Z(R)$, where $Z(R)$ is the zero divisor of R. The Cartesian product of two graphs G and H is a graph with the vertex set $V(G \times H)=V(G) \times V(H)$ and two distinct vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ are adjacent if and only if: 1) $u_{1}=u_{2}$ and $v_{1} v_{2} \in H$; or 2) $v_{1}=v_{2}$ and $u_{1} u_{2} \in E(G)$. An isomorphism of graphs G dan H is a bijection $\phi: V(G) \rightarrow V(H)$ such that $u, v \in V(G)$ are adjacent if and only if $f(u), f(v) \in V(H)$ are adjacent. This paper proved that $T\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)$ and $P_{2} \times K_{p}$ are isomorphic for every odd prime p.

How to cite:

M. N. Jauhari, "On the Relation of Total Graph of a Ring and a Product of Graphs", J. Mat. Mantik, vol. 8, no. 2, pp. 99-104, December 2022.

1. Introduction

Investigating group or ring properties and its structures from their graph representation become a new trend in graph theoretic research. Many authors proved that there are tight bonds between the rings and graphs. Aalipour in [1] investigated the chromatic number and clique number of a commutative ring. [2] gave a novel application of a central-vertex complete graph to a commutive ring. In 2008, [3] investigated the commutive graph of rings generated from matrices over a finite filed. Three years after the graph of a ring was introduced in [4], [5] proposed useful applications of semirings in mathematics and theoretical computer science. One interest in applying graph invariant on a group also showed in [6] in the properties of zero-divisor graphs. Another useful graph generated from group or ring structure is Cayley graphs which has many useful applications in solving and understanding a variety problem in several scientific interests [7].

The graph isomorphism itself has many applications in real life and many scientific fields [8]. [9] stated briefly about its application in the atomic structures and [10] showed how it can be applied in biochemical data. To prove the isomorphism of two graphs is an NP-problem in which there is no specific algorithm or certain way that works for all graphs in consideration [11]. In 1996, [12] proposed a good graph isomorphism algorithm but still troublesome for a large graphs.

Considering those applications of ring generated graphs, the applications of the graph isomorphisms, and the isomorphism-related algorithm complexity, finding an isomorphism of ring-structured graphs and the graph obtained from certain operation is a challenging task and a potential new interest in graph theory research. This paper considers the relation between the total graph of \mathbb{Z}_{p} and $P_{2} \times K_{p}$ for all odd prime p.

2. Preliminaries

A graph G is a pair $G=(V, E)$ for non-empty set V and $E \subseteq[V]^{2}$ (the elements of E are 2 -element subsets of V). For terminologies and notations concerning to a graph and its invariants, please consider [13]. This preliminary covers the definitions related to ring and the total graph of a ring. It also provides some definitions related to graph isomorphism and a graph operation.

Definition 1. Ring [14]

A ring R is a set with two binary operations, addition and multiplication, such that for all $a, b, c \in R$:

1. $a+b=b+a$,
2. $(a+b)+c=a+(b+c)$,
3. There is an additive identity 0 ,
4. There is an element $-a \in R$ such that $a+(-a)=0$,
5. $a(b c)=(a b) c$, and
6. $a(b+c)=a b+a c$ and $(b+c) a=b a+c a$.

With this definition, $\mathbb{Z}_{2 p}$, an integer modulo $2 p$ set, equipped with addition and multiplication modulo $2 p$ operation is a ring.

Definition 2. Zero Divisor [14]
A zero-divisor is a nonzero element a of a commutative ring R such that there is a nonzero element $b \in R$ with $a b=0$.

Definition 3. Total Graph of a Ring [15]

Let R be a ring and $Z(R)$ denotes the zero divisor of R. The total graph of R, denoted by $T(\Gamma(R))$ is an undirected graph with elements of R as its vertices, and for distinct $x, y \in R$, the vertices x and y are adjacent if and only if $x+y \in Z(R)$.

From those definitions of zero divisor and total graph, we will construct a total graph of $\mathbb{Z}_{2 p}$ for an odd prime p.

Definition 4. Graph Homomorphism and Isomorphism [13]
Let $G=\left(V_{G}, E_{G}\right)$ and $H=\left(V_{H}, E_{H}\right)$ be graphs. A map $\varphi: V_{G} \rightarrow V_{H}$ is a homomorphism from G to H if it preserves the adjacency of the vertices. In another word, $\{x, y\} \in E_{G} \Rightarrow$ $\{\varphi(x), \varphi(y)\} \in E_{H}$. If φ is bijective and φ^{-1} is also a homomorphism, then φ is an isomorphism and G is said to be isomorphic to H.

Definition 5. Cartesian Product [13]
The Cartesian product of two graphs G and H is a graph with the vertex set $V(G \times H)=$ $V(G) \times V(H)$ and two distinct vertices $\left(u_{1}, v_{1}\right)$ and (u_{2}, v_{2}) are adjacent if and only if: 1) $u_{1}=u_{2}$ and $v_{1} v_{2} \in H$; or 2) $v_{1}=v_{2}$ and $u_{1} u_{2} \in E(G)$. An isomorphism of graphs G dan H is a bijection $\phi: V(G) \rightarrow V(H)$ such that $u, v \in V(G)$ are adjacent if and only if $f(u), f(v) \in V(H)$ are adjacent.

3. Main Results

In this section we will prove the isomorphism of the total graph of $\mathbb{Z}_{2 p}$ and $P_{2} \times K_{p}$. We will investigate several properties of $T\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)$ before we proof the isomorphism. Those investigations will be provided as lemmas and theorems equipped with their proofs. To characterize $T\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)$, we consider its vertex set, the degree of each vertex, and the clique it has as subgraphs, since $P_{2} \times K_{p}$ can easily be considered and seen from those properties.

Lemma 1. The zero divisor of $\mathbb{Z}_{2 p}$ is

$$
Z\left(\mathbb{Z}_{2 p}\right)=\{p\} \cup\{2 n: n=1,2, \ldots, n-1\}
$$

for every odd prime p.

Proof.

For each $x \in \mathbb{Z}_{2 p}$, the exactly one of the following holds: $x=p, x$ is even, and $x \neq p$ is odd.
Case 1, $x=p$
Since $2 p=0$ and $2 \in \mathbb{Z}_{2 p}$, we conclude that $p \in Z\left(\mathbb{Z}_{2 p}\right)$.
Case 2, x is even
Let $x=2 m$ for some $m \in \mathbb{Z}$. Since $x p=2 m p=m \cdot 2 p=m \cdot 0=0$ and $p \in \mathbb{Z}_{2 p}$, we conclude that $x \in Z\left(\mathbb{Z}_{2 p}\right)$ for all even $x \in \mathbb{Z}_{2 p}$.

Case 3, $x \neq p$ is odd
If $x=1$, then $x y \neq 0$ for all $0 \neq y \in \mathbb{Z}_{2 p}$.
We will show that $1 \neq x \notin Z\left(\mathbb{Z}_{2 p}\right)$ by using a contradiction. Suppose on the contrary, that $x \in Z\left(\mathbb{Z}_{2 p}\right)$. Consequently, there exists $0 \neq y \in \mathbb{Z}_{2 p}$ such that $x y=0$. It follows that $\operatorname{gcd}(x, 2 p)>1$. Since the factor of $2 p$ is 2 and p, we obtain that x divides p. It is a contradiction since p is a prime number.

Jurnal Matematika MANTIK

Vol. 8, No. 2, December 2022, pp. 99-104

Lemma 2. Let p be an odd prime. Let $A \subseteq \mathbb{Z}_{2 p}$ be the set of all odd elements of $\mathbb{Z}_{2 p}$ and $B \subseteq \mathbb{Z}_{2 p}$ be the set of all even elements of $\mathbb{Z}_{2 p} \cdot\{u, v\} \in E\left(T\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)\right)$ for all $u, v \in A$ and $\{x, y\} \in E\left(T\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)\right)$ for all $x, y \in B$. In another word, the vertices in $A \operatorname{dan} B$ form cliques in $T\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)$.

Proof.

Let $u, v \in A$ and let $u=2 s+1$ and $v=2 t+1$ for some $s, t \in \mathbb{Z}$. We obtain

$$
\begin{aligned}
u+v & =2 s+1+2 t+1 \\
& =2(s+t+1) \in Z\left(\mathbb{Z}_{2 p}\right) .
\end{aligned}
$$

Therefore $\{u, v\} \in E\left(T\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)\right)$ for all $u, v \in A$.
Let $x, y \in A$ and let $x=2 s$ and $y=2 t$ for some $s, t \in \mathbb{Z}$. We obtain

$$
\begin{aligned}
x+y & =2 s+2 t \\
& =2(s+t) \in Z\left(\mathbb{Z}_{2 p}\right) .
\end{aligned}
$$

Therefore $\{x, y\} \in E\left(T\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)\right)$ for all $x, y \in B$.
It proves that A and B form cliques in $T\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)$.
Lemma 3. Let A and B be sets defined in Lemma 2 and p be an odd prime number. For each $v \in A$ there is a unique $x \in B$ such that

$$
\{v, x\} \in E\left(T\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)\right) .
$$

Proof.

For each $v \in A$, choose $x=p-v$. It can be easily verified that $x \in B$ since p and v are both odd numbers. On the other hand, let $x \in B$ and $x \neq p-v$. Suppose that $\{v, x\} \in$ $E\left(T\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)\right)$, that is $v+x \in Z\left(\mathbb{Z}_{2 p}\right)$. Since v is odd and x is even, it follows that $v+$ x is an odd number and $v+x=p \Leftrightarrow x=p-v$, a contradiction. This proves that $\{v, p-v\} \in E\left(T\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)\right), \forall x \in A$.
Analogous to this proof, we can easily prove that for each $x \in B$ there is a unique $v \in A$ such that

$$
\{v, x\} \in E\left(T\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)\right) .
$$

Before we discuss the main problem, consider Figure 1 that represents the graph $T\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)$ for several p.

Figure 1. $T\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)$ for $p \in\{3,5,7\}$.

Theorem 1. For any odd prime $p, T\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)$ is isomorph to $P_{2} \times K_{p}$.
Proof. Let $V\left(P_{2}\right)$ and $V\left(K_{p}\right)$ be labeled as $\left\{p_{1}, p_{2}\right\}$ and $\left\{k_{0}, k_{1}, \ldots, k_{p-1}\right\}$ respectively. The vertices of the resulting graph obtained from the Cartesian product, $P_{2} \times K_{p}$, is therefore labeled

$$
\left\{\left(p_{1}, k_{1}\right),\left(p_{1}, k_{2}\right), \ldots,\left(p_{1}, k_{p}\right),\left(p_{2}, k_{1}\right),\left(p_{2}, k_{2}\right), \ldots,\left(p_{2}, k_{p}\right)\right\}
$$

in which

$$
\left\{\left(p_{s}, k_{i}\right),\left(p_{s}, k_{j}\right)\right\} \in E\left(P_{2} \times K_{p}\right), \forall i, j \in\{1,2, \ldots, p\}
$$

and $i \neq j$, for $s \in\{1,2\}$. Other edges to consider is $\left\{\left(p_{1}, k_{i}\right),\left(p_{2}, k_{(p-i \bmod p)+1}\right)\right\} \in$ $E\left(P_{2} \times K_{p}\right), \forall i \in\{1,2, \ldots, p\}$. Here, the " $\bmod ^{\prime}$ in " $p-i \bmod p$ " is a modulus operator, not a modulus relation.

Consider the function $\varphi: V\left(T\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)\right) \rightarrow V\left(P_{2} \times K_{p}\right)$ defined as follows:

$$
\varphi(x)=\left\{\begin{array}{r}
\left(P_{1},\left(\frac{p-x}{2} \bmod p\right)+1\right), \text { if } x \text { is odd } \\
\left(P_{2}, \frac{x}{2}+1\right), \text { if } x \text { is even. }
\end{array}\right.
$$

Since φ is a bijective function that preserves adjacency of the vertices of $V\left(T\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)\right)$ and $V\left(P_{2} \times K_{p}\right)$, we conclude that $T\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)$ and $P_{2} \times K_{p}$ are isomorphic.

Figure 1 and Figure 2 show some examples of the mapping result of φ.

Figure 2. the mapping result of φ from $T\left(\Gamma\left(\mathbb{Z}_{2 \cdot 5}\right)\right)$ to $P_{2} \times K_{5}$

Figure 3. the mapping result of φ from $T\left(\Gamma\left(\mathbb{Z}_{2 \cdot 7}\right)\right)$ to $P_{2} \times K_{7}$

4. Conclusion

From the discussion, we conclude that $T\left(\Gamma\left(\mathbb{Z}_{2 p}\right)\right)$ and $P_{2} \times K_{p}$ are isomorphic.

Jurnal Matematika MANTIK

Vol. 8, No. 2, December 2022, pp. 99-104

References

[1] G. Aalipour and S. Akbari, "Application of some combinatorial arrays in coloring of total graph of a commutative ring," May 2013.
[2] J. D. LaGrange, "Weakly central-vertex complete graphs with applications to commutative rings," J. Pure Appl. Algebr., vol. 214, no. 7, pp. 1121-1130, Jul. 2010.
[3] A. Abdollahi, "Commuting graphs of full matrix rings over finite fields," Linear Algebra Appl., 2008.
[4] R. P. Grimaldi, "Graphs from rings," Congr. Numer, vol. 71, pp. 95-104, 1990.
[5] J. S. Golan, "The theory of semirings with applications in mathematics and theoretical computer science.," p. 318, 1992.
[6] D. F. Anderson, T. Asir, A. Badawi, and T. Tamizh Chelvam, Graphs from Rings. 2021
[7] A. Kelarev, J. Ryan, and J. Yearwood, "Cayley graphs as classifiers for data mining: The influence of asymmetries," Discrete Math., vol. 309, no. 17, pp. 5360-5369, Sep. 2009.
[8] S. Y. Hsieh, C. W. Huang, and H. H. Chou, "A DNA-based graph encoding scheme with its applications to graph isomorphism problems," Appl. Math. Comput., vol. 203, no. 2, pp. 502-512, Sep. 2008.
[9] M. Grohe and P. Schweitzer, "The graph isomorphism problem," Commun. ACM, vol. 63, no. 11, pp. 128-134, 2020.
[10] V. Bonnici, R. Giugno, A. Pulvirenti, D. Shasha, and A. Ferro, "A subgraph isomorphism algorithm and its application to biochemical data," BMC Bioinformatics, vol. 14, no. SUPPL7, pp. 1-13, Apr. 2013.
[11] C. S. Calude, M. J. Dinneen, and R. Hua, "QUBO formulations for the graph isomorphism problem and related problems," Theor. Comput. Sci., vol. 701, pp. 5469, Nov. 2017.
[12] X. Y. Jiang and H. Bunke, "Including geometry in graph representations: A quadratic-time graph isomorphism algorithm and its applications," Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 1121, pp. 110-119, 1996.
[13] R. Diestel, "Graph Theory (5th Edition)," Springer, 2017.
[14] J. Gallian, Contemporary Abstract Algebra. 2021.
[15] D. F. Anderson and A. Badawi, "The total graph of a commutative ring," J. Algebr., vol. 320, no. 7, pp. 2706-2719, Oct. 2008.

