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Abstrak. Kurva Zenga adalah alat untuk mengukur 

ketidakmerataan pendapatan yang merepresentasikan rasio 

pendapatan antara kelompok pendapatan bawah dan kelompok 

pendapatan atas. Kurva Zenga yang tepat adalah kurva Zenga yang 

dapat mendeteksi variasi pada rasio tersebut. Dalam paper ini, 

penulis menurunkan bentuk fungsional kurva Zenga yang berasal 

dari model kurva Lorenz versi Rohde. Hasil penelitian ini 

menyimpulkan bahwa bentuk fungsional kurva Zenga dari model 

kurva Lorenz versi Rohde adalah konstanta sehingga dia tidak 

dapat merepresentasikan fenomena ketidakmerataan yang 

sesungguhnya terjadi. 
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Abstract. The Zenga curve is a tool to measure income inequality 

that represents the income ratio between the bottom income group 

and the top income group. A proper Zenga curve is a Zenga curve 

that can detect variations in the Ratio. In this paper, we derive the 

functional form of the Zenga curve from Rohde's Lorenz curve 

model. The result of this paper is that the functional form of the 

Zenga curve from Rohde's version of the Lorenz curve model is a 

constant. It cannot represent the truly happening phenomenon of 

inequality. 
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1. Introduction 

 

The Lorenz curve is a popular analytical tool used in research on income inequality. 

The Lorenz curve is a visual representation that can reflect income distribution inequality. 

This curve build by Lorenz [1] to represent the unequal distribution of wealth. Furthermore, 

the Lorenz curve can be expressed in the functional form (parametric model) that is not 

derived directly from inverse of the cumulative distribution function [2 - 7], but Gastwirth 

[8] formulated a Lorenz curve model formula that can be derived from inverse of the 

cumulative distribution function. The Gastwirth formula [8] has a weakness: the researcher 

must determine the statistical distribution fit for the data before fitting the Lorenz curve. 

On the other hand, several functional forms of Lorenz curves are known without first 

knowing the exact statistical distribution of the data, such as Lorenz Curve-Rohde [2], 

Lorenz Curve-Raasche [4], Lorenz Curve-Ortega [5], Lorenz Curve-Chotikapanich [9], etc. 

Rohde [2] suggested that his version of the Lorenz curve is more fit than the Lorenz curve 

model with one other parameter such as Lorenz Curve based Pareto Distribution [2], Lorenz 

Curve-Gupta [10], Lorenz Curve-Chotikapanich [9], Lorenz Curve-Kakwani [11]. 

In addition to the Lorenz curve, there is also a curve that represents the ratio of the 

average income of the lowest income group to the average income of the top income group 

called the Zenga curve. The Zenga curve can be derived from the Lorenz curve [12] [13]. 

The Zenga curve is more sensitive to detect changes in the income structure of the 

community than the Lorenz curve when there is an additional income effect on the 

community [14].  

The authors argue that the Zenga curve may not detect the variation in ratio of the 

average income of the lowest income group to the average income of the top income group. 

It is presumably due to the Lorenz curve specification used in the income distribution 

modeling. Therefore, this study focuses on investigating the functional form of the Zenga 

curve of Rohde's Lorenz Curve. If the functional form of the Zenga curve is constant, the 

arguments previously described are proven. Rohde's Lorenz Curve was chosen based on 

the explanation at the end of the first paragraph. 

 

2. Method 
 

2.1.  Rohde's version of the Lorenz Curve 

Suppose 𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) represents the cumulative distribution function (CDF) of 

the random variable X, assuming the value of X is a positive (non-negative) value. Then 

𝐹−1(𝑝) = inf{𝑥: 𝐹(𝑥) ≥ 𝑝}, it means that the inverse of CDF is a quantile. The Lorenz 

curve, 𝐿(𝑝) formulated as follows: 

𝐿(𝑝) = 𝑞 =
1

𝜇𝑋
∫ 𝐹−1(𝑠)𝑑𝑠

𝑝

0

 

where 𝜇𝑋 is the mean of X. In this paper, X represents the expenditure/income of the 

population/households, 𝑞  is the cumulative proportion of expenditure/income (0 ≤ 𝑞 ≤ 1) 

received by the cumulative proportion of the population or households (𝑝: 0 ≤ 𝑝 ≤ 1). 

The Lorenz curve must have the following characteristics: 

𝑑𝐿

𝑑𝑝
> 0,

𝑑2𝐿

𝑑𝑝2
> 0, 𝐿(𝑝) = 0, 𝐿(0) = 0, 𝐿(1) = 1 

Rohde [2] proposed the Lorenz curve model, 𝐿𝑅(𝑝; 𝛽), as follows: 

𝐿𝑅(𝑝; 𝛽) =
(𝛽 − 1)𝑝

𝛽 − 𝑝
 , 𝛽 > 1, 0 ≤ 𝑝 ≤ 1.                                 (1) 

Meanwhile, to estimate the parameter in equation (1), the author uses the method proposed 

by Castillo, et al. [15] based on the point (𝑝𝑖, 𝑞𝑖), 𝑖 = 1, . . , 𝑛 on the empirical Lorenz curve: 
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�̂�𝑖 =
𝑝𝑖(1 − 𝑞𝑖)

𝑝𝑖 − 𝑞𝑖
                                                    (2) 

It happens that 𝑝𝑖 = 𝑞𝑖 = 0 that causing the value of �̂�𝑖 cannot be defined so that it must 

be deleted which implies that the number of �̂�𝑖 is reduced by one (𝑛 − 1) in equations 

(4), (5), dan (6). Estimation of 𝛽 [15] in equation (1) is: 

�̂�𝑀 =
1

𝑛 − 1
∑ �̂�𝑖

𝑛−1

𝑖=1

                                                 (3) 

�̂�𝑀𝑒𝑑 = Median (�̂�1, �̂�2, … , �̂�𝑛−1)                          (4) 

 

�̂�𝐿𝑆 =
∑ 𝑝𝑖(1 − 𝑞𝑖)(𝑝𝑖 − 𝑞𝑖)𝑛−1

𝑖=1

∑ (𝑝𝑖 − 𝑞𝑖)2𝑛−1
𝑖=1

                                 (5) 

 

 

2.2.  Zenga Curve 

The Zenga curve is formulated as follows [11]: 

𝑍(𝑝) =
𝑝 − 𝐿(𝑝)

𝑝(1 − 𝐿(𝑝))
.                                               (6) 

The Zenga curve 𝑍(𝑝) measures the inequality between the bottom 100𝑝% of the 

population against the top 100(1- 𝑝)% by comparing the mean expenditures of the two 

groups. Equation (6) shows that the Zenga curve can be derived from the Lorenz curve. 

Then based on equation (6), the Zenga index can also be formulated as follows: 

𝜁 = ∫ 𝑍(𝑝)𝑑𝑝

1

0

.                                                    (7) 

 

3. Results and Application 
 

By combining equation (1) into equation (6), it will get: 

 

                                         𝑍𝑅(𝑝) =
𝑝 − 𝐿𝑅(𝑝)

𝑝(1 − 𝐿𝑅(𝑝))
=

𝑝 −
(𝛽 − 1)𝑝

𝛽 − 𝑝

𝑝 (1 −
(𝛽 − 1)𝑝

𝛽 − 𝑝
)
 

                =

𝑝(𝛽 − 𝑝) − (𝛽 − 1)𝑝
𝛽 − 𝑝

𝑝 (
𝛽 − 𝑝 − (𝛽 − 1)𝑝

𝛽 − 𝑝
)

=
𝑝(𝛽 − 𝑝) − 𝑝(𝛽 − 1)

𝑝(𝛽 − 𝑝 − (𝛽 − 1)𝑝)
                    

                                                     =
𝑝((𝛽 − 𝑝) − (𝛽 − 1))

𝑝(𝛽 − 𝑝 − (𝛽 − 1)𝑝)
=

((𝛽 − 𝑝) − (𝛽 − 1))

(𝛽 − 𝑝 − (𝛽 − 1)𝑝)
              

                               =
−𝑝 + 1

𝛽 − 𝑝 − 𝛽𝑝 + 𝑝
=

1 − 𝑝

𝛽 − 𝛽𝑝
=

1 − 𝑝

𝛽(1 − 𝑝)
                           (8) 

So, equation (8) can be simplified to: 

𝑍𝑅(𝑝) =
1

𝛽
                                                                  (9) 

 

Equation (9) is a function in the form of a constant, meaning that regardless of the value of 

𝑝, then 𝑍𝑅(𝑝) always has a value of 1 𝛽⁄ . The functional form of equation (9) is also known 
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as the uniform function or constant. However, it should be noted that in equation (8) the 

condition 𝛽 ≠ 𝑝 must be fulfilled. Then based on equation (7), the Zenga index 𝜁𝑅 (10) is 

obtained whose formulation is the same as equation (9). It's happening because equation 

(9) is a constant. 

𝜁𝑅 = ∫ 𝑍𝑅(𝑝)𝑑𝑝

1

0

= ∫
1

𝛽
𝑑𝑝

1

0

=
1

𝛽
∫ 𝑑𝑝

1

0

=
1

𝛽
(𝑝|0

1) =
1

𝛽
           (10) 

The application of the Zenga curve formulation and the Zenga index using the research 

results of Ref. [16]: 

𝐿𝑅(𝑝; 𝛽) =
0.485𝑝

1.485 − 𝑝
                                            (11) 

 

Equation (11) uses �̂�𝑀𝑒𝑑 in equation (4) because the estimation results produce a minimum 

mean squared error (MSE) compared to �̂�𝑀 (3) and �̂�𝐿𝑆 (5) in the case of this study. Based 

on equation (10) the Zenga curve and Zenga index can be derived from equations (9) and 

(10) are: 

𝜁𝑅 = 𝑍𝑅(𝑝) =
1

1.485
= 0.673.                                 (12) 

The interpretation of the Zenga curve (12) derived from Rohde's version of the Lorenz 

curve is that the average household income at each level p of the lowest income group is 

67.3% lower than the average income of all levels of the top income group of the 

population. The Zenga curve derived from Rohde's Lorenz curve has a weakness, namely 

that it assumes that the ratio of income between the lowest and the top group for all levels 

is constant (uniform). This does not reflect the reality of what happened. Supposedly, the 

ratio varies at each level of p. Because the Zenga curve depends on the Lorenz curve, the 

correct functional form of the Lorenz curve is the key so that the Zenga curve represents 

the phenomenon. 

 

4. Conclusions  

Based on the material, it said that the functional form of the Zenga curve from Rohde's 

Lorenz curve model is a constant with the condition that 𝛽 ≠ 𝑝, but it has not reflected the 

reality. It implies that the Zenga index has the same formulation as its functional model. 

The correct functional form of the Lorenz curve is the key so that the Zenga curve 

represents the real phenomenon inequality.  
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