Some Investigations on a Class of Analytic and Univalent Functions Involving q-Differentiation

Ayotunde Olajide Lasode*©, Timothy Oloyede Opoola
Department of Mathematics, Faculty of Physical Sciences, University of Ilorin, Ilorin, Nigeria
lasode_ayo@yahoo.com,opoola.to@unilorin.edu.ng
*Correspondence: lasode_ayo@yahoo.com

Abstract. We use the concept of q-differentiation to define a class $\mathcal{E}_{q}(\beta, \delta)$ of analytic and univalent functions. The investigations thereafter includes coefficient estimates, inclusion property and some conditions for membership of some analytic functions to be in the class $\mathcal{E}_{q}(\beta, \delta)$. Our results generalize some known and new ones.

1. Introduction and Definitions

We let $\mathcal{U D}=\{z: z \in \mathbb{C},|z|<1\}$ represent the unit disk and \mathcal{A} represent the class of normalized analytic functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{m=2}^{\infty} a_{m} z^{m}, \quad z \in \mathcal{U D} \tag{1}
\end{equation*}
$$

where $f(0)=0=f^{\prime}(0)-1$. Also, let \mathcal{S} represent a subset of \mathcal{A} containing functions univalent in $\mathcal{U D}$. A function f in \mathcal{S} is a member of class $\mathcal{B} \mathcal{T}(\delta)$ of bounded turning functions of order δ if it satisfies the geometric condition

$$
\mathcal{R e} f^{\prime}(z)>\delta \in[0,1), \quad z \in \mathcal{U D}
$$

Let $\mathcal{B} \mathcal{T}(0)=\mathcal{B T}$ represent the class of bounded turning functions. It is known (see [1]) that $f \in \mathcal{B} \mathcal{T}$ are univalent functions. Also, a function f in \mathcal{S} is a member of class $\mathcal{C V}(\delta)$ of convex functions of order δ if it satisfies the geometric condition

$$
\mathcal{R e}\left(z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right)>\delta \in[0,1), \quad z \in \mathcal{U D}
$$

Let $\mathcal{C V}(0)=\mathcal{C} \mathcal{V}$ represent the class of convex functions.
The importance of operators in geometric function theory cannot be underrated. For instance see $[2,13,15]$ for some known ones.

In 1908, Jackson [7] (see also [3, 4, 8-11]) initiated the concept of q-calculus as follows.
Received: 21 Jan 2022.
Key words and phrases. Analytic functions; Carathéodory functions; univalent functions; bounded turning function; coefficient bound; inclusion property and q-calculus.

Definition 1.1. For $q \in(0,1)$, the q-differentiation of function $f \in \mathcal{A}$ is defined by

$$
\begin{equation*}
\mathcal{D}_{q} f(0)=f^{\prime}(0), \quad \mathcal{D}_{q} f(z)=\frac{f(z)-f(q z)}{z(1-q)}(z \neq 0) \quad \text { and } \quad \mathcal{D}_{q}^{2} f(z)=\mathcal{D}_{q}\left(\mathcal{D}_{q} f(z)\right) \tag{2}
\end{equation*}
$$

Obviously, applying (2) in (1) gives us

$$
\begin{equation*}
\mathcal{D}_{q} f(z)=1+\sum_{m=2}^{\infty}[m]_{q} a_{m} z^{m-1} \quad \text { and } \quad z \mathcal{D}_{q}^{2} f(z)=\sum_{m=2}^{\infty}[m-1]_{q}[m]_{q} a_{m} z^{m-1} \tag{3}
\end{equation*}
$$

where $[m]_{q}=\frac{1-q^{m}}{1-q}$ and $\lim _{q \uparrow 1}[m]_{q}=m$.
For example if $f(z)=z^{m}$, then by using (2),

$$
\mathcal{D}_{q} f(z)=\mathcal{D}_{q}\left(z^{m}\right)=\frac{1-q^{m}}{1-q} z^{m-1}=[m]_{q} z^{m-1}
$$

and observe that

$$
\lim _{q \Uparrow 1} \mathcal{D}_{q} f(z)=\lim _{q \uparrow 1}\left([m]_{q} z^{m-1}\right)=m z^{m-1}=f^{\prime}(z)
$$

where $f^{\prime}(z)$ is the classical differentiation.
In this work, the q-differential operator was used to define a class of analytic functions and generalize some results.

2. Relevant Lemmas

We represent by \mathcal{P} the well-known class of analytic functions of the form

$$
\begin{equation*}
p(z)=1+\sum_{m=1}^{\infty} c_{m} z^{m}, \quad \mathcal{R e} p(z)>0, \quad z \in \mathcal{U D} \tag{4}
\end{equation*}
$$

and by $\mathcal{P}(\delta) \subseteq \mathcal{P}(0)=\mathcal{P}$ the class whose members are of the form

$$
\begin{equation*}
p_{\delta}(z)=1+\sum_{m=1}^{\infty}(1-\delta) c_{m} z^{m}, \quad \mathcal{R e} p(z)>\delta \in[0,1), \quad z \in \mathcal{U D} . \tag{5}
\end{equation*}
$$

The following lemmas shall be required to proof our results.
Lemma 2.1 ([14]). Let $g(z)=\sum_{m=1}^{\infty} a_{m} z^{m} \prec G(z)=\sum_{m=1}^{\infty} b_{m} z^{m}, z \in \mathcal{U D}$ where $G(z)$ is univalent in $\mathcal{U D}$ and $G(\mathcal{U D})$ is a convex domain, then $\left|a_{m}\right| \leq\left|b_{1}\right|, m \in \mathbb{N}$. Equality holds for the function $g(z)=G\left(\tau z^{m}\right),|\tau|=1$.

The lemmas that follow are the q-analogous versions of the original ones as referenced.
Lemma 2.2 ([6]). Let $p(z)$ be analytic in $\mathcal{U D}$ such that $p(0)=1$. If

$$
\mathcal{R e}\left(\frac{z \mathcal{D}_{q}(p(z))}{p(z)}+1\right)>\frac{3 \delta-1}{2 \delta}, z \in \mathcal{U D} \text {. }
$$

then for $\alpha=(\delta-1) / \delta(\delta \in[1 / 2,1))$, $\mathcal{R e} p(z)>2^{\alpha}$. The constant 2^{α} is the best possible.
Lemma 2.3 ([5]). Let $u=u_{1}+u_{2} i$ and $v=v_{1}+v_{2} i$ such that $\gamma(u, v): \mathbb{C}^{2} \longrightarrow \mathbb{C}$ is a complex-valued function such that
(1) $\gamma(u, v)$ is continuous in $\Pi \subset \mathbb{C}^{2}$,
(2) $(1,0) \in \Pi$ and $\mathcal{R e}(\gamma(1,0))>0$ and
(3) $\left.\operatorname{Re} e\left(\gamma\left(\xi+(1-\xi) u_{2} i, v_{1}\right)\right) \leq \xi(0 \leq \xi<1)\right)$ if $\left(\xi+(1-\xi) u_{2} i, v_{1}\right) \in \Pi$ and $v_{1} \leq-\frac{1}{2}(1-\xi)\left(1+u_{2}^{2}\right)$ and $\operatorname{Re}\left(\gamma\left(\xi+(1-\xi) u_{2} i, v_{1}\right)\right) \geq \xi(\xi>1)$ if $\left(\xi+(1-\xi) u_{2} i, v_{1}\right) \in \Pi$ and $v_{1} \geq \frac{1}{2}(1-\xi)\left(1+u_{2}^{2}\right)$.
If $p(z) \in \mathcal{P}$ for $\left(p(z), z \mathcal{D}_{q} p(z)\right) \in \Pi$ and $\mathcal{R e} e\left(\gamma\left(p(z), z \mathcal{D}_{q} p(z)\right)\right)>\xi, z \in \mathcal{U D}$, then $\mathcal{R e p}(z)>\xi$ in $\mathcal{U D}$.

3. Main Results

The definition of the investigated class is as follows.
A function $f(z) \in \mathcal{A}$ is a member of the class $\mathcal{E}_{q}(\beta, \delta)$ if the condition

$$
\begin{equation*}
\mathcal{R e}\left(\mathcal{D}_{q} f(z)+\frac{1+e^{i \beta}}{2} z \mathcal{D}_{q}^{2} f(z)\right)>\delta, \quad \delta \in[0,1), \beta \in(-\pi, \pi], \quad z \in \mathcal{U D} \tag{6}
\end{equation*}
$$

holds.
When parameters in (6) are varied, the class $\mathcal{E}_{q}(\beta, \delta)$ reduces to some well-known classes of analytic functions that have been studied by some authors. These are cited in our corollaries and remarks.

The following are the proved results.
Theorem 3.1. Let $\beta \in(-\pi, \pi]$ and $\delta \in[0,1)$, if condition (6) holds, then

$$
\mathcal{E}_{q}(\beta, \delta) \subset \mathcal{B} \mathcal{T}_{q}(\delta)
$$

$\mathcal{B} \mathcal{T}_{q}(\delta)$ is the class of q-bounded turning function of order δ.
Proof. Let $p(z)=\mathcal{D}_{q} f(z)$ so that $\mathcal{D}_{q} p(z)=\mathcal{D}_{q}^{2} f(z)$ and for $\kappa=\left(1+e^{i \beta}\right) / 2$, then (6) can be expressed as

$$
\begin{equation*}
\mathcal{R e}\left(p(z)+\kappa z \mathcal{D}_{q} p(z)\right)>\delta . \tag{7}
\end{equation*}
$$

In view of the conditions in Lemma 2.3 and for $p(z)$ in (7), we define the function

$$
\gamma(u, \nu)=u+\kappa \nu
$$

on the domain Π of \mathbb{C}^{2}, then
(i) clearly, $\gamma(u, \nu)$ satisfies the condition (1) in Lemma 2.3,
(ii) for $(1,0) \in \Pi, \gamma(1,0)=1 \Longrightarrow \mathcal{R e}(\gamma(1,0))>0$ and
(iii) $\gamma\left(\delta+(1-\delta) u_{2} i, \nu_{1}\right)=\delta+\frac{1+\cos \delta}{2} \nu_{1}+\left((1-\delta) u_{2}+\frac{\sin \delta}{2} \nu_{1}\right) i$, thus,

$$
\mathcal{R e}\left(\gamma\left(\delta+(1-\delta) u_{2} i, \nu_{1}\right)\right)=\delta+\frac{1+\cos \beta}{2} \nu_{1} \leq \delta
$$

for $\nu_{1} \leq-\frac{1}{2}(1-\delta)\left(1+u_{2}^{2}\right)$.

Now since $\gamma(u, \nu)$ satisfies all the conditions $(1-3)$ in Lemma 2.3, then it implies that

$$
\mathcal{R e p}(z)=\mathcal{R e}\left(\mathcal{D}_{q} f(z)\right)>\delta, \quad z \in \mathcal{U D}
$$

hence the proof is complete.
Corollary 3.2 ($[1]$). Since class $\mathcal{B T}_{q}(\delta)$ is well-known to consist of univalent functions, then $\mathcal{E}_{q}(\beta, \delta) \subset \mathcal{B} \mathcal{T}_{q}(\delta)$ consists of univalent functions.

Corollary 3.3. $\lim _{q \uparrow 1} \mathcal{E}_{q}(\beta, \delta) \subset \mathcal{B T}(\delta), \quad z \in \mathcal{U D}$.
Theorem 3.4. If $f \in \mathcal{A}$ is such that

$$
\begin{equation*}
\mathcal{R} e\left(\frac{z \mathcal{D}_{q}\left(\mathcal{D}_{q} f(z)+\kappa z \mathcal{D}_{q}^{2} f(z)\right)}{\mathcal{D}_{q} f(z)+\kappa z \mathcal{D}_{q}^{2} f(z)}\right)>\frac{\delta-1}{2 \delta}, \tag{8}
\end{equation*}
$$

then

$$
\mathcal{R e}\left(\mathcal{D}_{q} f(z)+\kappa z \mathcal{D}_{q}^{2} f(z)\right)>2^{(\delta-1) / \delta}, \quad \delta \in[1 / 2,1), \quad z \in \mathcal{U D}
$$

and $\kappa=\left(1+e^{i \beta}\right) / 2$.
Proof. From (6), let $p(z)=\mathcal{D}_{q} f(z)+\kappa z \mathcal{D}_{q}^{2} f(z)$, then by logarithmic q-differentiation we obtain

$$
\frac{z \mathcal{D}_{q} p(z)}{p(z)}+1=\frac{z \mathcal{D}_{q}\left(\mathcal{D}_{q} f(z)+\kappa z \mathcal{D}_{q}^{2} f(z)\right)}{\mathcal{D}_{q} f(z)+\kappa z \mathcal{D}_{q}^{2} f(z)}+1 .
$$

Now applying Lemma 2.2 gives

$$
\mathcal{R e}\left(\frac{z \mathcal{D}_{q} p(z)}{p(z)}+1\right)=\operatorname{Re}\left(\frac{z \mathcal{D}_{q}\left(\mathcal{D}_{q} f(z)+\kappa z \mathcal{D}_{q}^{2} f(z)\right)}{\mathcal{D}_{q} f(z)+\kappa z \mathcal{D}_{q}^{2} f(z)}+1\right)>\frac{3 \delta-1}{2 \delta}
$$

implies that

$$
\mathcal{R} e\left(\frac{z \mathcal{D}_{q}\left(\mathcal{D}_{q} f(z)+\kappa z \mathcal{D}_{q}^{2} f(z)\right)}{\mathcal{D}_{q} f(z)+\kappa z \mathcal{D}_{q}^{2} f(z)}\right)>\frac{\delta-1}{2 \delta}
$$

and by the same Lemma 2.2 the proof in complete.
Corollary 3.5. If $f \in \mathcal{A}$ satisfies condition (8), then $f \in \mathcal{E}_{q}\left(\beta, 2^{(\delta-1) / \delta}\right)$.
Corollary 3.6. If $f \in \lim _{q \uparrow 1} \mathcal{E}_{q}(\beta, 1 / 2)$ is such that

$$
\mathcal{R e}\left(\frac{z(1+\kappa) f^{\prime \prime}(z)+\kappa z^{2} f^{\prime \prime \prime}(z)}{f^{\prime}(z)+\kappa z f^{\prime \prime}(z)}\right)>-\frac{1}{2},
$$

then

$$
\mathcal{R e}\left(f^{\prime}(z)+\kappa z f^{\prime \prime}(z)\right)>1 / 2, \quad z \in \mathcal{U D} .
$$

Corollary 3.7. If $f \in \mathcal{E}_{q}(\pi, 1 / 2)$ is such that

$$
\begin{equation*}
\mathcal{R e}\left(\frac{z \mathcal{D}_{q}\left(\mathcal{D}_{q} f(z)\right)}{\mathcal{D}_{q} f(z)}\right)>-\frac{1}{2}, \tag{9}
\end{equation*}
$$

then

$$
\mathcal{R e}\left(\mathcal{D}_{q} f(z)\right)>\frac{1}{2} .
$$

This means that if condition (9) holds, then f is a q-bounded turning function of order $1 / 2$. Now if $q \uparrow 1$, then

$$
\begin{equation*}
\mathcal{R e}\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>-\frac{1}{2} \tag{10}
\end{equation*}
$$

implies

$$
\mathcal{R e}\left(f^{\prime}(z)\right)>\frac{1}{2} \quad z \in \mathcal{U D}
$$

This means that if condition (10) holds, then f is a bounded turning function of order 1/2.
Corollary 3.8. If $f \in \mathcal{\mathcal { E } _ { q }}(0,1 / 2)$ is such that

$$
\begin{equation*}
\mathcal{R} e\left(\frac{z \mathcal{D}_{q}\left(\mathcal{D}_{q} f(z)+z \mathcal{D}_{q}^{2} f(z)\right)}{\mathcal{D}_{q} f(z)+z \mathcal{D}_{q}^{2} f(z)}\right)>-\frac{1}{2} \tag{11}
\end{equation*}
$$

then

$$
\mathcal{R} e\left(\mathcal{D}_{q} f(z)+z \mathcal{D}_{q}^{2} f(z)\right)>\frac{1}{2}
$$

and if $q \uparrow 1$,

$$
\mathcal{R e}\left(\frac{2 z f^{\prime \prime}(z)+z^{2} f^{\prime \prime \prime}(z)}{f^{\prime}(z)+z f^{\prime \prime}(z)}\right)>-\frac{1}{2}
$$

implies that

$$
\mathcal{R e} e\left(f^{\prime}(z)+z f^{\prime \prime}(z)\right)>1 / 2, \quad z \in \mathcal{U D}
$$

Theorem 3.9. Let $\beta \in(-\pi, \pi]$ and $\delta \in[0,1)$, then the function

$$
\begin{equation*}
f(z)=z+a_{m} z^{m} \in \mathcal{E}_{q}(\beta, \delta), \quad m=\{2,3, \ldots\} \tag{12}
\end{equation*}
$$

if

$$
\begin{equation*}
\left|a_{m}\right| \leq \frac{2}{[m]_{q}\left\{\left|X_{m}\right|-\left(\left(2+[m-1]_{q}\right) \cos \theta+[m-1]_{q} \cos \left(\beta+\theta_{0}\right)\right)\right\}} \tag{13}
\end{equation*}
$$

where

$$
\left.\begin{array}{l}
X_{m}=2+[m-1]_{q}\left(1+e^{i \beta}\right) \tag{14}\\
\left|X_{m}\right|=\sqrt{2\left\{2+[m-1]_{q}\left(2+[m-1]_{q}\right)(1+\cos \beta)\right\}} \geq 2
\end{array}\right\}
$$

and θ_{0} attains minimum at

$$
\begin{equation*}
\theta_{0}=\pi+\arctan \left(\frac{-[m-1]_{q} \sin \beta}{2+[m-1]_{q}(1+\cos \beta)}\right) . \tag{15}
\end{equation*}
$$

Proof. Firstly, applying (2) in (12) gives

$$
\left.\begin{array}{c}
\mathcal{D}_{q} f(z)=1+[m]_{q} a_{m} z^{m-1} \tag{16}\\
z \mathcal{D}_{q}^{2} f(z)=[m-1]_{q}[m]_{q} a_{m} z^{m-1}
\end{array}\right\} .
$$

Note that it suffices to study the condition that for $|z|=1$,

$$
\begin{equation*}
\left|\mathcal{D}_{q} f(z)+\frac{1+e^{i \beta}}{2} z \mathcal{D}_{q}^{2} f(z)-1\right|<\mathcal{R} e\left\{\mathcal{D}_{q} f(z)+\frac{1+e^{i \beta}}{2} z \mathcal{D}_{q}^{2} f(z)\right\} \tag{17}
\end{equation*}
$$

so that by putting (16) into (17) we obtain

$$
\begin{aligned}
&\left|[m]_{q} a_{m} z^{m-1}+\frac{1}{2}[m-1]_{q}[m]_{q}\left(1+e^{i \beta}\right) a_{m} z^{m-1}\right| \\
&<\mathcal{R} e\left\{1+[m]_{q} a_{m} z^{m-1}+\frac{1}{2}[m-1]_{q}[m]_{q}\left(1+e^{i \beta}\right) a_{m} z^{m-1}\right\} .
\end{aligned}
$$

Now letting $\left|a_{m}\right|=r, a_{m} z^{m-1}=r e^{i \theta}$ and using (14) we obtain

$$
\begin{equation*}
\left|\frac{1}{2}[m]_{q} r e^{i \theta} X_{m}\right| \leq \mathcal{R} e\left\{1+[m]_{q} r e^{i \theta}+\frac{1}{2}[m-1]_{q}[m]_{q}\left(1+e^{i \beta}\right) r e^{i \theta}\right\} \tag{18}
\end{equation*}
$$

so that

$$
\begin{equation*}
\frac{1}{2}[m]_{q} r\left|X_{m}\right| \leq \mathcal{R e} \mathcal{F} \tag{19}
\end{equation*}
$$

where

$$
\mathcal{F}=1+[m]_{q} r e^{i \theta}+\frac{1}{2}[m-1]_{q}[m]_{q}\left(1+e^{i \beta}\right) r e^{i \theta}
$$

in (18). Further simplification gives

$$
\mathcal{F}=1+[m]_{q} r \cos \theta+\frac{1}{2}[m-1]_{q}[m]_{q} r \cos \theta+\frac{1}{2}[m-1]_{q}[m]_{q} r \cos (\beta+\theta)+\mathcal{I} m(\mathcal{F})
$$

so that

$$
\begin{equation*}
\mathcal{R} e \mathcal{F}=1+\frac{1}{2}[m]_{q} r\left\{2 \cos \theta+[m-1]_{q} \cos \theta+[m-1]_{q} \cos (\beta+\theta)\right\}=\psi \tag{20}
\end{equation*}
$$

Now (19) becomes

$$
\frac{1}{2}[m]_{q} r\left|X_{m}\right| \leq 1+\frac{1}{2}[m]_{q} r\left\{\left(2+[m-1]_{q}\right) \cos \theta+[m-1]_{q} \cos (\beta+\theta)\right\}
$$

and by simplification we obtain (13).
To know the values of θ where (20) attains minimum implies that

$$
\frac{\partial \psi}{\partial \theta}=-\frac{r[m]_{q}}{2}\left\{\left(2+[m-1]_{q}\right) \sin \theta+[m-1]_{q} \sin (\beta+\theta)\right\}
$$

implies that

$$
\left(2+[m-1]_{q}\right) \sin \theta+[m-1]_{q} \sin (\beta+\theta)=0
$$

so that

$$
\tan \theta=\frac{-[m-1]_{q} \sin \beta}{2+[m-1]_{q}(1+\cos \beta)}
$$

which simplifies to (15).

Corollary 3.10. Let $f(z)=z+a_{m} z^{m} \in \mathcal{E}_{q}(0, \delta)$ and $m=\{2,3, \ldots\}$, then

$$
\left|a_{m}\right| \leq \frac{1}{[m]_{q}\left\{\sqrt{1+2[m-1]_{q}+[m-1]_{q}^{2}}+1+[m-1]_{q}\right\}}
$$

and if $q \uparrow 1$, then

$$
\left|a_{m}\right| \leq \frac{1}{2 m^{2}} .
$$

Corollary 3.11. Let $f(z)=z+a_{m} z^{m} \in \mathcal{E}_{q}(\pi, \delta)$ and $m=\{2,3, \ldots\}$, then

$$
\left|a_{m}\right| \leqq \frac{1}{2[m]_{q}}
$$

and if $q \uparrow 1$, then

$$
\left|a_{m}\right| \leq \frac{1}{2 m}
$$

Remark 3.12. Let $q \uparrow 1$, then Theorem 3.9 becomes the result in [18].
Theorem 3.13 (Coefficient Estimates). Let $\beta \in(-\pi, \pi], \delta \in[0,1)$ and let $G(z)=1+b_{1} z+$ $b_{2} z^{2}+\cdots \in \mathcal{C} \mathcal{V}(\delta)$. If $f \in \mathcal{A}$ belongs to $\mathcal{E}_{q}(\beta, \delta)$, then

$$
\begin{equation*}
\left|a_{m}\right| \leq \frac{2(1-\delta)\left|b_{1}\right|}{[m]_{q}\left|X_{m}\right|}, \quad m=\{2,3, \ldots\} \tag{21}
\end{equation*}
$$

where $\left|X_{m}\right|$ is defined in (14).
Proof. Let $f(z) \in \mathcal{E}_{q}(\beta, \delta)$, therefore from (6) and using (5),

$$
\begin{equation*}
\mathcal{D}_{q} f(z)+\frac{1+e^{i \beta}}{2} z \mathcal{D}_{q}^{2} f(z)=\delta+(1-\delta) p(z), \quad z \in \mathcal{U D} \tag{22}
\end{equation*}
$$

Now putting (3) and (4) into (22) and simplifying gives

$$
1+\sum_{m=2}^{\infty}\left\{1+[m-1]_{q}\left(\frac{1+e^{i \beta}}{2}\right)\right\}[m]_{q} a_{m} z^{m-1}=1+\sum_{m=2}^{\infty}(1-\delta) c_{m-1} z^{m-1}
$$

which implies that

$$
\left\{2+[m-1]_{q}\left(1+e^{i \beta}\right)\right\} \frac{[m]_{q}}{2} a_{m}=(1-\delta) c_{m-1}, \quad m=\{2,3, \ldots\}
$$

where by applying (14) we obtain

$$
\begin{equation*}
X_{m} \frac{[m]_{q}}{2(1-\delta)} a_{m}=c_{m-1}, \quad m=\{2,3, \ldots\} \tag{23}
\end{equation*}
$$

Since $G(\mathcal{U D})$ is a convex domain, then from Lemma 2.1, (23) becomes

$$
\left|X_{m} \frac{[m]_{q}}{2(1-\delta)} a_{m}\right|=\left|c_{m-1}\right| \leq\left|b_{1}\right|
$$

and simplifying further we obtain (21).

Corollary 3.14. Let $f(z) \in \mathcal{E}_{q}(0, \delta)$, then

$$
\left|a_{m}\right| \leq \frac{(1-\delta)\left|b_{1}\right|}{\sqrt{1+2[m-1]_{q}+[m-1]_{q}^{2}}}
$$

and if $q \uparrow 1$, then

$$
\left|a_{m}\right| \leq \frac{(1-\delta)\left|b_{1}\right|}{m}, \quad m=\{2,3, \ldots\} .
$$

Corollary 3.15. Let $f \in \mathcal{E}_{q}(\pi, \delta)$, then

$$
\left|a_{m}\right| \leq \frac{(1-\delta)\left|b_{1}\right|}{[m]_{q}}
$$

and if $q \uparrow 1$, then

$$
\left|a_{m}\right| \leq \frac{(1-\delta)\left|b_{1}\right|}{m}, \quad m=\{2,3, \ldots\}
$$

Remark 3.16. Let $p(z) \in \mathcal{P}$ and $\phi(z)=1+\frac{2}{\pi^{2}}\left(\ln \frac{1+\sqrt{z}}{1-\sqrt{z}}\right)^{2}$. If $q \uparrow 1$,
(1) $\beta=\pi$ and $G(z)=p(z)$, then Theorem 3.13 becomes the result in [12].
(2) and $G(z)=p(z)$, then Theorem 3.13 becomes the result in [16].
(3) and $G(z)=\phi(z)$, then Theorem 3.13 becomes the result in [18].
(4) and $\beta=0$, then Theorem 3.13 becomes the result in [17].

Acknowledgment. The authors would like to thank the referees for their careful reading of this manuscript and their valuable suggestions.

References

[1] J.W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. Math. Second Ser. 17 (1915) 12-22. https://doi.org/10.2307/2007212.
[2] F.M. Al-Oboudi, On univalent functions defined by a generalized differential operator, Intern. J. Math. Math. Sci. 27 (2004) 1429-1436. https://doi.org/10.1155/S0161171204108090.
[3] M.H. Annaby, Z.S. Mansour, q-Fractional Calculus and Equations, Springer-Verlag Inc., New York, 2012. https: //doi.org/10.1007/978-3-642-30898-7.
[4] A. Aral, V. Gupta, R.P. Agarwal, Applications of q-Calculus in Operator Theory, Springer-Verlag Inc., New York, 2013. https://doi.org/10.1007/978-1-4614-6946-9_1.
[5] K.O. Babalola, T.O. Opoola, Iterated integral transforms of Carathéodory functions and their application to analytic and univalent functions, Tamkang J. Math. 135 (2006) 429-446. https ://doi. org/10. 5556/j. tkjm. 37. 2006. 149.
[6] K.O. Babalola, λ-pseudo-starlike functions, J. Class. Anal. 3 (2013) 137-147. https://doi.org/10.7153/ jca-03-12.
[7] F.H. Jackson, On q-functions and a certain difference operator, Trans. Roy. Soc. Edinb. 46 (1908) 253-281. https: //doi.org/10.1017/S0080456800002751.
[8] F.H. Jackson, On q-difference, Amer. J. Math. 32 (1910) 305-314. https://doi. org/10. 2307/2370183.
[9] V. Kac, P. Cheung, Quantum Calculus, Springer-Verlag Inc., New York, 2002. https://doi.org/10.1007/ 978-1-4613-0071-7.
[10] A.O. Lasode, T.O. Opoola, Fekete-Szegö estimates and second Hankel determinant for a generalized subfamily of analytic functions defined by q-differential operator, Gulf J. Math. 11 (2021) 36-43. https://gjom.org/index. php/gjom/article/view/583.
[11] A.O. Lasode, T.O. Opoola, On a generalized class of bi-univalent functions defined by subordination and q-derivative operator, Open J. Math. Anal. 5 (2021) 46-52. https://doi.org/10.30538/psrp-oma2021. 0092.
[12] T.H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc. 104 (1962) 532-537. https://doi.org/10.1090/S0002-9947-1962-0140674-7.
[13] T.O. Opoola, On a subclass of univalent functions defined by a generalised differential operator, Int. J. Math. Anal. 11 (2017) 869-876. https://doi.org/10.12988/ijma.2017.7232.
[14] W. Rogosinski, On the coefficients of subordinate functions, Proc. Lond. Math. Soc. 48 (1945) 48-82. https: //doi.org/10.112/plms/s2-48.1.48.
[15] G.S. Sălăgean, Subclasses of univalent functions, Lect. Notes Math. 1013 (1983) 362-372. https://doi. org/10. 1007/BFb0066543.
[16] H. Silverman, E.M. Silvia, Characterizations for subclasses of univalent functions, Sci. Math. Jpn. 50 (1999) 103-109. https://www.jams.jp/notice/mj/50-1.html.
[17] H.M. Srivastava, D. Rǎducanu, P. Zaprawa, A certain subclass of analytic functions defined by means of differential subordination, Fac. Sci. Math. Univ. Niš, Serbia 30 (2016) 3743-3757. https://doi . org/10. 2298/FIL1614743S.
[18] L. Trojnar-Spelina, Characterizations of subclasses of univalent functions, Demonstr. Math. 38 (2005) 35-42. https : //doi.org/10.1515/dema-2005-0106.

