On the $\alpha-\psi$ - Contractive Mappings in C^{*}-Algebra Valued b-Rectangular Metric Spaces and Fixed Point Theorems

Mohamed Rossafi ${ }^{1, *}$, Abdelkarim Kari ${ }^{2}$, Hafida Massit ${ }^{3}$
${ }^{1}$ LaSMA Laboratory Department of Mathematics, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, B. P. 1796 Fes Atlas, Morocco mohamed.rossafi@usmba.ac.ma
${ }^{2}$ AMS Laboratory Faculty of Sciences Ben M'Sik, Hassan II University, Casablanca, Morocco abdkrimkariprofes@gmail.com
${ }^{3}$ Laboratory of Partial Differential Equations, Spectral Algebra and Geometry Department of Mathematics, Faculty of Sciences, University Ibn Tofail, Kenitra, Morocco massithafida@yahoo.fr
*Correspondence: mohamed.rossafi@usmba.ac.ma

Abstract. This present paper extends a version of $\alpha-\psi$-contraction in C^{*}-algebra valued rectangular b-metric spaces and establishing the existence and uniqueness of fixed point for them. Non-trivial examples are further provided to support the hypotheses of our results.

1. Introduction

A C*-algebra valued metric spaces were introduced by Ma et al. [6] as a generalization of metric spaces they proved certain fixed point theorems, by giving the definition of C^{*}-algebra valued contractive mapping analogous to Banach contraction principle. Many mathematicians worked on this interesting space.

Various fixed point results were established on such spaces, see [1-3] and references therein.
Combining conditions used for definitions of C^{*}-algebra valued metric and generalized metric spaces, G Kalapana and Tasneem [4] announced the notions of C^{*}-algebra valued metric space and establish nice results of fixed point on such space.

In this paper, inspired by the work done in [9], we introduce the notion of $\alpha-\psi$-contraction and establish some new fixed point theorems for mappings in the setting of complete C^{*}-algebra valued rectangular b- metric spaces.

Moreover, an illustrative examples is presented to support the obtained results.

Received: 18 Dec 2021.
Key words and phrases. fixed point; C^{*}-algebra valued metric spaces; $\alpha-\psi$ - contraction; $\alpha-\psi-C^{*}$ valued contraction.

2. PRELIMINARIES

Throughout this paper, we denote \mathbb{A} by an unital (i.e , unity element I) C^{*}-algebra with linear involution $*$, such that for all $x, y \in \mathbb{A}$,

$$
(x y)^{*}=y^{*} x^{*} \text {, and } x^{* *}=x .
$$

We call an element $x \in \mathbb{A}$ a positive element, denote it by $x \succeq \theta$
if $x \in \mathbb{A}_{h}=\left\{x \in \mathbb{A}: x=x^{*}\right\}$ and $\sigma(x) \subset \mathbb{R}_{+}$,where $\sigma(x)$ is the spectrum of x.Using positive element , we can define a partial ordering \preceq on \mathbb{A}_{h} as follows :

$$
x \preceq y \text { if and only if } y-x \succeq \theta
$$

where θ means the zero element in \mathbb{A}.
we denote the set $x \in \mathbb{A}: x \succeq \theta$ by \mathbb{A}_{+}and $|x|=\left(x^{*} x\right)^{\frac{1}{2}}$.
and \mathbb{A}^{\prime} will denote the set $\left\{a \in \mathbb{A}_{+} ; a b=b a, \forall b \in \mathbb{A}\right\}$
Lemma 2.1. [8] Suppose that \mathbb{A} is a unital C^{*}-algebra with a unit I,
(1) for any $x \in \mathbb{A}_{+}$we have $x \preceq I \Longleftrightarrow\|x\| \leq 1$
(2) If $a \in \mathbb{A}_{+}$with $\|a\|<\frac{1}{2}$ then I $-a$ is unvertible and $\left\|a(1-a)^{-1}\right\|<1$
(3) Suppose that $a, b \in \mathbb{A}_{+}$and $a b=b a$, then $a b \succeq \theta$
(4) Let $a \in \mathbb{A}^{\prime}$, if $b, c \in \mathbb{A}$, with $b \succeq c \succeq \theta$, and $I-a \in \mathbb{A}_{+}^{\prime}$ is invertible operator, then $(I-a)^{-1} b \succeq(I-a)^{-1} c$

Definition 2.2. [4] Let X be a non-empty set and $b \in A$ such that $b \succeq I$. supposa the mapping $d: X \times X \rightarrow \mathbb{A}_{+}$satisfies:
(i) $d(x, y)=\theta$ if and only if $x=y$;
(ii) $d(x, y)=d(y, x)$ for all distinct points $x, y \in X$;
(iii) $d(x, y) \preceq b[d(x, u)+d(u, v)+d(v, y)]$ for all $x, y \in X$ and for all distinct points $u, v \in$ $X-\{x, y\}$.

Then $\left(X, \mathbb{A}_{+}, d\right)$ is called a C^{*}-algebra valued rectangular b-metric space.
Example 2.3. Let $X=\mathbb{R}$ and $\mathbb{A}=M_{2}(\mathbb{R})$. Define $d(x, y)=\operatorname{diag}(|x-y|, 2|x-y|)$ where $x, y \in \mathbb{R}$. It is easy to verify d is a $C^{*}-$ algebra-valued rectangular $b-$ metric and $\left(X, M_{2}(\mathbb{R}), d\right)$ is a copmlete C^{*}-algebra valued rectangular b-metric space.

Definition 2.4. [9] If $\psi: A \rightarrow B$ is a linear mapping in C^{*}-algebra, it is said to be positive if $\psi\left(A^{+}\right) \subseteq B^{+}$. In this case $\psi\left(A_{h}\right) \subseteq B_{h}$, and the restriction map $\psi: A_{h} \rightarrow B_{h}$ is increasing.

Definition 2.5. [9] Suppose that A and B are C^{*}-algebra.
A mapping $\psi: A \rightarrow B$ is said to be C^{*} - homomorphism if :
(i) $\psi(a x+b y)=a \psi(x)+b \psi(y)$ for all $a, b \in \mathbb{C}$ and $x, y \in A$
(ii) $\psi(x y)=\psi(x) \psi(y)$ for all $x, y \in A$
(iii) $\psi\left(x^{*}\right)=\psi(x)^{*}$ for all $x \in A$
(iv) ψ maps the unit in A to the unit in B.

Definition 2.6. [9] Let A and B be C^{*}-algebra spaces and let $\psi: A \rightarrow B$ be a homomorphism then ψ is called an $*-$ homomorphism if it is one to one $*-$ homomorphism.
A C^{*}-algebra A is $*$-isomorphic to a C^{*}-algebra B if there exists $*-$ isomorphism of A onto B.
Definition 2.7. [9] Let ψ be the set of positive functions $\psi: A^{+} \rightarrow A^{+}$satisfying the following conditions:
(i) ψ is continous and nondecrasing
(ii) $\psi(a)=\theta$ if and only if $a=\theta$
(iii) $\lim _{n \rightarrow \infty} \psi^{n}(a)=\theta,(a \succ \theta), \sum_{n=1}^{\infty} \psi^{n}(a)<\infty$
(iv) The series $\sum_{k=1}^{\infty} b^{k} \psi^{k}(a)<\infty$ for $a \succ \theta$ is increasing and continuous at θ.

Corollary 2.8. [9] Every C^{*} - homomorphism is contractive and hence bounded.
Lemma 2.9. Every *- homomorphism is positive.
Definition 2.10. [9] Let X be a nonempty set and $\alpha: X \times X \rightarrow \mathbb{A}_{+}^{\prime}$ be a function, wesay that the self map T is α - admissible if
$(x, y) \in X \times X, \alpha(x, y) \succeq I \Rightarrow \alpha(T x, T y) \succeq I$,where I the unit of \mathbb{A}.
Definition 2.11. [9] Let (X, \mathbb{A}, d) be a C^{*}-algebra valued b - metric space and $T: X \rightarrow X$ is mapping, we say that T is an $\alpha-\psi$ - contractive mapping if there exist two functions $\alpha: X \times X \rightarrow$ \mathbb{A}_{+}and $\psi \in \psi$ such that

$$
\alpha(x, y) d(T x, T y) \preceq \psi(d(x, y)), \text { for all } x, y \in X
$$

3. Main result

In [9] introduced the concept of $\alpha-\psi$ - contractive mappings in a unital C^{*}-algebra valued $b-$ metric space. In this paper we will develop the definitions in case of unital C^{*}-algebra valued rectangular $b-$ metric space and give some Banach fixed point theorems.

Definition 3.1. Let (X, \mathbb{A}, d) be a C^{*}-algebra valued b - rectangular metric space and $T: X \rightarrow X$ is mapping, we say that T is an $\alpha-\psi$ - contractive mapping if there exist two functions α : $X \times X \rightarrow \mathbb{A}_{+}$and $\psi \in \Psi$ such that

$$
\begin{equation*}
\alpha(x, y) d(T x, T y) \preceq \psi(d(x, y)), \text { forall } x, y \in X \tag{3.1}
\end{equation*}
$$

Theorem 3.2. Let (X, \mathbb{A}, d) be a complete C^{*}-algebra valued rectangular b - metric space and let $T: X \rightarrow X$ be a α, ψ - contractive mapping satisfying the following conditions:
(i) T is α-admissible
(ii) There exists $x_{0} \in X$ such that $\alpha\left(x_{0}, T x_{0}\right) \succeq 1$
(iii) for all $x, y \in X$, there exists $z \in X$ such that $\alpha(x, z) \succeq 1$ and $\alpha(y, z) \succeq 1$
(iv) T is continuous

Then, T has a unique fixed point in X.
Proof. Let $x_{0} \in X$ such that $\alpha\left(x_{0}, T x_{0}\right) \succeq I$ and define a sequence $\left\{x_{n}\right\} \in X$ such that $x_{n+1}=T x_{n}$, $\forall n \in \mathbb{N}$. Suppose that there exists $n \in \mathbb{N}$ such that $x_{n}=T x_{n}$. Then x_{n} is a fixed point of T and the proof is finished.

Hence, we assume that $x_{n} \neq T x_{n+1}, \forall n \in \mathbb{N}$, since T is α-admissible, we get

$$
\alpha\left(x_{0}, x_{1}\right)=\alpha\left(x_{0}, T x_{0}\right) \succeq I \Rightarrow \alpha\left(T x_{0}, T^{2} x_{0}\right)=\alpha\left(x_{1}, x_{2}\right) \succeq I .
$$

Continuing this process, we have

$$
\begin{equation*}
\alpha\left(x_{n}, x_{n+1}\right) \succeq l \quad \forall n \in \mathbb{N} . \tag{3.2}
\end{equation*}
$$

By 3.1 and 3.2, we get

$$
\begin{aligned}
d\left(x_{n}, x_{n+1}\right) & =d\left(T x_{n-1}, T x_{n}\right) \preceq \alpha\left(x_{n-1}, x_{n}\right) d\left(T x_{n-1}, T x_{n}\right) \\
& \preceq \psi\left(d\left(x_{n-1}, x_{n}\right)\right) \\
& \preceq \\
& \preceq \psi^{n}\left(d\left(x_{0}, x_{1}\right)\right) .
\end{aligned}
$$

For $m \geq 1$ and $p \geq 1$, it follows that

$$
\begin{aligned}
& \quad d\left(x_{m+p}, x_{m}\right) \preceq b\left[d\left(x_{m+p}, x_{m+p-1}\right)+d\left(x_{m+p-1}, x_{m+p-2}\right)+d\left(x_{m+p-2}, x_{m}\right)\right] \\
& \quad \preceq b d\left(x_{m+p}, x_{m+p-1}\right)+b d\left(x_{m+p-1}, x_{m+p-2}\right)+b\left[b \left[d\left(x_{m+p-2}, x_{m+p-3}\right)+d\left(x_{m+p-3}, x_{m+p-4}\right)+\right.\right. \\
& \left.\left.d\left(x_{m+p-4}, x_{m}\right)\right]\right] \\
& \quad=b d\left(x_{m+p}, x_{m+p-1}\right)+b d\left(x_{m+p-1}, x_{m+p-2}\right)+b^{2} d\left(x_{m+p-2}, x_{m+p-3}\right)+b^{2} d\left(x_{m+p-3}, x_{m+p-4}\right)+ \\
& b^{2} d\left(x_{m+p-4}, x_{m}\right) \\
& \quad \preceq b d\left(x_{m+p}, x_{m+p-1}\right)+b d\left(x_{m+p-1}, x_{m+p-2}\right)+b^{2} d\left(x_{m+p-2}, x_{m+p-3}\right)+b^{2} d\left(x_{m+p-3}, x_{m+p-4}\right)+ \\
& \ldots .+b^{\frac{p-1}{2}} d\left(x_{m+3}, x_{m+2}\right)+b^{\frac{p-1}{2}} d\left(x_{m+2}, x_{m+1}\right)+b^{\frac{p-1}{2}} d\left(x_{m+1}, x_{m}\right) \\
& \quad \preceq b \psi^{m+p-1}\left(d\left(x_{0}, x_{1}\right)\right)+b \psi^{m+p-2}\left(d\left(x_{0}, x_{1}\right)\right)+\ldots+b^{\frac{p-1}{2}} d\left(x_{0}, x_{1}\right)
\end{aligned}
$$

Since $b \preceq I$, using definition 2.6 we have

$$
d\left(x_{m}, x_{m+p}\right) \preceq b \psi^{m+p-1}\left(d\left(x_{0}, x_{1}\right)\right)+b \psi^{m+p-2}\left(d\left(x_{0}, x_{1}\right)\right)+\ldots+b^{\frac{p-1}{2}} d\left(x_{0}, x_{1}\right) \rightarrow \theta \text { as } n \rightarrow+\infty
$$

Therefore $\left\{x_{n}\right\}$ is a Cauchy sequence in X. By the completeness of (X, \mathbb{A}, d) there exists an $x \in X$ such that

$$
\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} T x_{n-1}=x .
$$

From continuity of T and by uniqueness of the limit, we get $T x=x$, ie. x is a fixed point of T.
Now suppose that $y \neq x$ is another fixed point of T.

From (iii), there exists $z \in X$ such that $\alpha(x, z) \succeq I$ and $\alpha(y, z) \succeq I$.
Since T is α - admissible, we have

$$
\alpha\left(x, T^{n} z\right) \succeq I \text { and } \alpha\left(y, T^{n} z\right) \succeq I \text { for all } n \in \mathbb{N}
$$

Using (1), we obtain

$$
\begin{aligned}
& d\left(x, T^{n} z\right)=d\left(T x, T\left(T^{n-1} z\right)\right) \\
& \preceq \alpha\left(x, T^{n-1} z\right) d\left(T x, T\left(T^{n-1} z\right)\right) \\
& \preceq \psi^{n}(d(x, z)) \rightarrow \theta \text { as } n \rightarrow \infty
\end{aligned}
$$

Thus, $T^{n} z=x$. Similary $T^{n} z=y$ as $n \rightarrow \infty$ So, the uniqueness of the limit we obtain $x=y$.
Example 3.3. Let $X=\mathbb{R}$ and $\mathbb{A}=M_{2}(\mathbb{R})$ as given in Example 2.3, define $T: X \rightarrow X$, by $T x=\frac{x}{3}$ and $\alpha: X \times X \rightarrow M_{2}(\mathbb{R})$ such that
$\alpha(x, y)=\left(\begin{array}{cc}|x-y| & 0 \\ 0 & 0\end{array}\right)$ thus, T is $\alpha-$ admissible,
and $\psi: M_{2}(\mathbb{R})^{+} \rightarrow M_{2}(\mathbb{R})^{+}, \psi(a)=\left(\begin{array}{cc}a^{2} & 0 \\ 0 & a^{2}\end{array}\right) \forall a \in(\mathbb{R})^{+}$.
This is clear that T is $\alpha-\psi$ - contractive mapping and satisfies
$\alpha(x, y) d(T x, T y) \preceq \psi(d(x, y))$, for all $x, y \in X$
Theorem 3.4. Let (X, \mathbb{A}, d) be a complete C^{*}-algebra valued rectangular b - metric space and let $T: X \rightarrow X$ be a α, ψ - contractive mapping of Kannan type ie,

$$
\begin{equation*}
\alpha(x, y) d(T x, T y) \preceq \psi(d(T x, x)+d(T y, y)) \tag{3.3}
\end{equation*}
$$

for all $x, y \in X$ Where $\psi \in \Psi$ and $\alpha: X \times X \rightarrow \mathbb{A}_{+}$ and the following conditions holds:
(i) T is α - admissible
(ii) There exists $x_{0} \in X$ such that $\alpha\left(x_{0}, T x_{0}\right) \succeq 1$
(iii) T is continuous

Then, T has a fixed point in X.

Proof. By (3.3), we obtain

$$
\begin{aligned}
& d\left(x_{n}, x_{n+1}\right)=d\left(T x_{n-1}, T x_{n}\right) \preceq \alpha\left(x_{n-1}, x_{n}\right) d\left(T x_{n-1}, T x_{n}\right) \\
& \preceq \prec\left(d \left(T x_{n-1},\right.\right.\left.\left.x_{n-1}\right)+d\left(T x_{n}, x_{n}\right)\right) \\
&=\psi\left(d\left(x_{n}, x_{n-1}\right)+d\left(x_{n+1}, x_{n}\right)\right) \\
&=\psi\left(d\left(x_{n}, x_{n-1}\right)\right)+\psi\left(d\left(x_{n+1}, x_{n}\right)\right) \\
&(I-\psi)\left(d\left(x_{n}, x_{n-1}\right)\right) \preceq \psi\left(d\left(x_{n}, x_{n-1}\right)\right)
\end{aligned}
$$

from Lemma 2.1 and Definition 2.6, we obtain

$$
\begin{gathered}
d\left(x_{n}, x_{n+1}\right) \preceq(I-\psi)^{-1} \psi\left(d\left(x_{n}, x_{n-1}\right)\right)=\Phi\left(d\left(x_{n}, x_{n-1}\right)\right) \text { where } \\
\Phi=(I-\psi)^{-1} \psi
\end{gathered}
$$

Therefore

$$
d\left(x_{n}, x_{n+1}\right) \preceq \phi^{n}\left(d\left(x_{0}, x_{1}\right)\right) \forall n \in \mathbb{N}
$$

For any $m \geq 1$ and $p \geq 1$ similary in Theorem 3.1 we have

$$
d\left(x_{m}, x_{m+p}\right) \preceq b \psi^{m+p-1}\left(d\left(x_{0}, x_{1}\right)\right)+b \psi^{m+p-2}\left(d\left(x_{0}, x_{1}\right)\right)+\ldots+b^{\frac{p-1}{2}} d\left(x_{0}, x_{1}\right) \rightarrow \theta \text { as } n \rightarrow+\infty
$$

Thus $\left\{x_{n}\right\}$ is a Cauchy sequence in X. By the completeness of (X, \mathbb{A}, d), there exists $x \in X$ such that

$$
\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} T x_{n-1}=x
$$

the continuity of T gives that x is a fixed point of T.
To prove that x is the unique fixed point, we suppose that $y \in X$ is another fixed point of T. Then

$$
\begin{gathered}
\theta \preceq d(x, y)=d(T x, T y) \\
\preceq \alpha(x, y) d(T x, T y) \\
\preceq \psi(d(T x, x)+d(T y, y)) \\
=\psi(d(x, x)+d(y, y))=\theta
\end{gathered}
$$

Hence $x=y$.Therefore the fixed point is unique.

Theorem 3.5. Let (X, \mathbb{A}, d) be a complete C^{*}-algebra valued rectangular b - metric space and let $T: X \rightarrow X$ be a α, ψ - contractive mapping of Banach-Kannan type ie,

$$
\begin{equation*}
\alpha(x, y) d(T x, T y) \preceq \psi(d(x, y)+d(T x, x)+d(T y, y)) \tag{3.4}
\end{equation*}
$$

for all $x, y \in X$ Where $\psi \in \psi$ and $\alpha: X \times X \rightarrow \mathbb{A}_{+}$such that $\psi(1-\psi)^{-1} \preceq \frac{1}{2 l}$,
and the following conditions holds:
(i) T is α-admissible
(ii) There exists $x_{0} \in X$ such that $\alpha\left(x_{0}, T x_{0}\right) \succeq 1$
(iii) T is continuous

Then, T has a fixed point in X

Proof. Using (3.4), we get

$$
\begin{aligned}
& d\left(x_{n}, x_{n+1}\right)=d\left(T x_{n-1}, T x_{n}\right) \preceq \alpha\left(x_{n-1}, x_{n}\right) d\left(T x_{n-1}, T x_{n}\right) \\
& \preceq \psi\left(d\left(x_{n-1}, x_{n}\right)+d\left(T x_{n-1}, x_{n-1}\right)+d\left(T x_{n}, x_{n}\right)\right) \\
& =\psi\left(d\left(x_{n-1}, x_{n}\right) 2 I+d\left(x_{n}, x_{n+1}\right)\right) \Rightarrow(I-\psi)\left(d\left(x_{n}, x_{n+1}\right)\right) \preceq 2 I \psi\left(d\left(x_{n}, x_{n-1}\right)\right) \\
& \Rightarrow d\left(x_{n}, x_{n+1}\right) \preceq 2 I(I-\psi)^{-1} \psi\left(d\left(x_{n}, x_{n-1}\right)\right) \preceq \Phi\left(d\left(x_{n}, x_{n-1}\right)\right) .
\end{aligned}
$$

Where

$$
\varphi=2 I(I-\psi)^{-1} \psi
$$

Then

$$
d\left(x_{n}, x_{n+1}\right) \preceq \Phi^{n}\left(d\left(x_{0}, x_{1}\right) .\right.
$$

We refer to the proof of the Theorem 3.1 we get that x is a fixed point of T. Now, if $y \neq x$ is another fixed point of T, we have

$$
\begin{gathered}
\theta \preceq d(x, y)=d(T x, T y) \\
\preceq \alpha(x, y) d(T x, T y) \\
\preceq \psi(d(x, y)+d(T x, x)+d(T y, y)) \\
=\psi(d(x, y)+d(x, x)+d(y, y))=\psi(d(x, y) .
\end{gathered}
$$

So $d(x, y)=\theta$; ie $x=y$.

4. Applications

As application of $\alpha-\psi$ contractive in unital C^{*}-algebra valued rectangular b - metric spaces, existence and uniqueness results for a type of operator equation is given.

Example 4.1. Suppose that H is a Hilbert space, $B(H)$ is the set of linear bounded operators on H. Let $A_{1}, A_{2}, \ldots, A_{n}, \ldots \in B(H)$
which satisfy $\sum_{n=1}^{\infty}\left\|A_{n}\right\|<1$ and $Q \in B(H)_{+}$.
Then the operator equation $X-\sum_{n=1}^{\infty} A_{n}^{*} X A_{n}=Q$ has a unique solution in $B(H)$.
Proof. Set $a=\left(\sum_{n=1}^{\infty}\left\|A_{n}\right\|\right)^{p}$ with $p \geq 1$, then $\|a\|<1$. Without loss of generality, one can suppose that $a>0$.

Choose a positive operator $M \in B(H)$. For $X, Y \in B(H)$ and $p \geq 1$, set
$d(X, Y)=\|X-Y\|^{p} M$.
Then $d(X, Y)$ is a C^{*}-algebra valued rectangular b - metric.
Suppose that $X, Y, Z, W \in B(H)$ we have
$\|X-Y\|^{p} \preceq 2^{P}\left(\|X-Z\|^{p}+\|Z-W\|^{p}+\|W-Y\|^{p}\right)$.
Which implies that $d(X, Y) \preceq A[d(X, Z)+d(Z, W)+d(W, Y)]$
Where $A=2^{p}$. Consider the map
$T: B(H) \rightarrow B(H)$ such that $T(X)=\sum_{n=1}^{\infty} A_{n}^{*} X A_{n}+Q$.
Then

$$
\begin{gathered}
d(T(X), T(Y))=\|T(X), T(Y)\|^{p} M \\
=\left\|\sum_{n=1}^{\infty} A_{n}^{*}(X-Y) A_{n}\right\|^{p} M \\
\preceq \sum_{n=1}^{\infty}\left\|A_{n}\right\|^{2 p}\|X-Y\|^{p} M \\
\preceq a^{2} d(X, Y)
\end{gathered}
$$

Let $\alpha: B(H) \times B(H) \rightarrow B(H)^{+}$defined by $\alpha(X, Y)=(X, Y) /$
and $\psi: B(H)^{+} \rightarrow B(H)^{+}$defined by $\psi(X)=X$.
We get $\alpha(X, Y) d(T X, T Y) \preceq \psi(d(X, Y))$.
Using Theorem 3.1, there exists a unique fixed point X in $B(H)$.

5. Acknowledgments

It is our great pleasure to thank the referee for his careful reading of the paper and for several helpful suggestions.

References

[1] H.H. Alsulami, R.P. Agarwal, E. Karapınar, F. Khojasteh, A short note on C^{*}-valued contraction mappings, J. Inequal. Appl. 2016 (2016) 50. https://doi.org/10.1186/s13660-016-0992-5.
[2] S. Chandok, D. Kumar, C. Park, C*-algebra-valued partial metric space and fixed point theorems. Proc. Math. Sci. 129 (2019) 37. https://doi.org/10.1007/s12044-019-0481-0.
[3] M. Jleli, B. Samet, A new generalization of the Banach contraction principle. J. Inequal. Appl. 2014 (2014), 38. https://doi.org/10.1186/1029-242X-2014-38.
[4] G. Kalapana, Z.S. Tasneem C^{*}-algebra-valued rectangular b-metric spaces and some fixed point theorems, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 68 (2019) 2198-2208. https://doi. org/10.31801/cfsuasmas. 598146.
[5] W. A. Kirk, N. Shahzad, Generalized metrics and Caristi's theorem, Fixed Point Theory Appl. 2013 (2013) 129. https://doi.org/10.1186/1687-1812-2013-129.
[6] Z. Ma, L. Jiang, H. Sun, C^{*}-algebra-valued metric spaces and related fixed point theorems, Fixed Point Theory Appl. (2014) 2014, 206. https://doi.org/10.1186/1687-1812-2014-206.
[7] H. Massit, M. Rossafi, Fixed point for ψ - contractive mapping in $C^{*}-$ algebra valued rectangular b-metric, J. Math. Comput. Sci. 11(2021) 6507-6521. https://doi.org/10.28919/jmcs/6363.
[8] G.J. Murphy, C*-Algebras and operator theory, Academic Press, London, UK, 1990.
[9] S. Omran, I. Masmali, On the $(\alpha-\psi)$-contractive mappings in C^{*}-algebra valued b-metric spaces and fixed point theorems, J. Math. 2021 (2021) 7865976. https://doi.org/10. 1155/2021/7865976.
[10] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\alpha-\psi$-contractive type mappings, Nonlinear Anal.: Theory Methods Appl. 75 (2012) 2154-2165. https://doi.org/10.1016/j.na.2011.10.014.

