On the $\alpha - \psi -$ Contractive Mappings in C^* -Algebra Valued b-Rectangular Metric Spaces and Fixed Point Theorems

Mohamed Rossafi^{1,*}, Abdelkarim Kari², Hafida Massit³

¹LaSMA Laboratory Department of Mathematics, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, B. P. 1796 Fes Atlas, Morocco mohamed.rossafi@usmba.ac.ma

²AMS Laboratory Faculty of Sciences Ben M'Sik, Hassan II University, Casablanca, Morocco abdkrimkariprofes@gmail.com

³Laboratory of Partial Differential Equations, Spectral Algebra and Geometry Department of Mathematics, Faculty of Sciences, University Ibn Tofail, Kenitra, Morocco massithafida@yahoo.fr

*Correspondence: mohamed.rossafi@usmba.ac.ma

ABSTRACT. This present paper extends a version of $\alpha - \psi$ -contraction in C^* -algebra valued rectangular b-metric spaces and establishing the existence and uniqueness of fixed point for them. Non-trivial examples are further provided to support the hypotheses of our results.

1. INTRODUCTION

A C^* -algebra valued metric spaces were introduced by Ma et al. [6] as a generalization of metric spaces they proved certain fixed point theorems, by giving the definition of C^* -algebra valued contractive mapping analogous to Banach contraction principle. Many mathematicians worked on this interesting space.

Various fixed point results were established on such spaces, see [1–3] and references therein.

Combining conditions used for definitions of C^* -algebra valued metric and generalized metric spaces, G Kalapana and Tasneem [4] announced the notions of C^* -algebra valued metric space and establish nice results of fixed point on such space.

In this paper, inspired by the work done in [9], we introduce the notion of $\alpha - \psi$ -contraction and establish some new fixed point theorems for mappings in the setting of complete C^* -algebra valued rectangular b- metric spaces.

Moreover, an illustrative examples is presented to support the obtained results.

Received: 18 Dec 2021.

Key words and phrases. fixed point; C^{*}-algebra valued metric spaces; $\alpha - \psi - c$ contraction; $\alpha - \psi - C^*$ valued contraction.

2. PRELIMINARIES

Throughout this paper, we denote \mathbb{A} by an unital (i.e ,unity element I) C^* -algebra with linear involution *, such that for all $x, y \in \mathbb{A}$,

$$(xy)^* = y^*x^*$$
, and $x^{**} = x$.

We call an element $x \in \mathbb{A}$ a positive element, denote it by $x \succeq \theta$

if $x \in A_h = \{x \in A : x = x^*\}$ and $\sigma(x) \subset \mathbb{R}_+$,where $\sigma(x)$ is the spectrum of x. Using positive element ,we can define a partial ordering \leq on A_h as follows :

 $x \preceq y$ if and only if $y - x \succeq \theta$

where θ means the zero element in A.

we denote the set $x \in \mathbb{A} : x \succeq \theta$ by \mathbb{A}_+ and $|x| = (x^*x)^{\overline{2}}$. and \mathbb{A}' will denote the set $\{a \in \mathbb{A}_+; ab = ba, \forall b \in \mathbb{A}\}$

Lemma 2.1. [8] Suppose that \mathbb{A} is a unital C^* -algebra with a unit I,

- (1) for any $x \in \mathbb{A}_+$ we have $x \preceq I \iff ||x|| \leq 1$
- (2) If $a \in \mathbb{A}_+$ with $||a|| < \frac{1}{2}$ then 1 a is unvertible and $||a(1-a)^{-1}|| < 1$
- (3) Suppose that $a, b \in \mathbb{A}_+$ and ab = ba, then $ab \succeq \theta$
- (4) Let $a \in \mathbb{A}'$, if $b, c \in \mathbb{A}$, with $b \succeq c \succeq \theta$, and $I a \in \mathbb{A}'_+$ is invertible operator, then $(I a)^{-1}b \succeq (I a)^{-1}c$

Definition 2.2. [4] Let X be a non-empty set and $b \in A$ such that $b \succeq I$. suppose the mapping $d : X \times X \to \mathbb{A}_+$ satisfies:

- (i) $d(x, y) = \theta$ if and only if x = y;
- (ii) d(x, y) = d(y, x) for all distinct points $x, y \in X$;
- (iii) $d(x, y) \leq b[d(x, u) + d(u, v) + d(v, y)]$ for all $x, y \in X$ and for all distinct points $u, v \in X \{x, y\}$.

Then (X, \mathbb{A}_+, d) is called a C^* -algebra valued rectangular *b*-metric space.

Example 2.3. Let $X = \mathbb{R}$ and $\mathbb{A} = M_2(\mathbb{R})$. Define d(x, y) = diag(|x - y|, 2|x - y|) where $x, y \in \mathbb{R}$. It is easy to verify d is a C^* - algebra-valued rectangular b- metric and $(X, M_2(\mathbb{R}), d)$ is a copmlete C^* -algebra valued rectangular b-metric space.

Definition 2.4. [9] If $\psi : A \to B$ is a linear mapping in C^* -algebra, it is said to be positive if $\psi(A^+) \subseteq B^+$. In this case $\psi(A_h) \subseteq B_h$, and the restriction map $\psi : A_h \to B_h$ is increasing.

Definition 2.5. [9] Suppose that *A* and *B* are C^* -algebra.

A mapping $\psi: A
ightarrow B$ is said to be C^* - homomorphism if :

- (i) $\psi(ax + by) = a\psi(x) + b\psi(y)$ for all $a, b \in \mathbb{C}$ and $x, y \in A$
- (ii) $\psi(xy) = \psi(x)\psi(y)$ for all $x, y \in A$

- (iii) $\psi(x^*) = \psi(x)^*$ for all $x \in A$
- (iv) ψ maps the unit in A to the unit in B.

Definition 2.6. [9] Let A and B be C^* -algebra spaces and let $\psi : A \to B$ be a homomorphism then ψ is called an *- homomorphism if it is one to one *- homomorphism.

A C^* -algebra A is *-isomorphic to a C^* -algebra B if there exists *- isomorphism of A onto B.

Definition 2.7. [9] Let Ψ be the set of positive functions $\psi : A^+ \to A^+$ satisfying the following conditions :

- (i) ψ is continous and nondecrasing
- (ii) $\psi(a) = \theta$ if and only if $a = \theta$
- (iii) $\lim_{n\longrightarrow\infty}\psi^n(a)= heta,\ (a\succ heta), \sum_{n=1}^{\infty}\psi^n(a)<\infty$
- (iv) The series $\sum_{k=1}^{\infty} b^k \psi^k(a) < \infty$ for $a \succ \theta$ is increasing and continuous at θ .

Corollary 2.8. [9] Every C^* – homomorphism is contractive and hence bounded.

Lemma 2.9. Every *- homomorphism is positive.

Definition 2.10. [9] Let X be a nonempty set and $\alpha : X \times X \to \mathbb{A}'_+$ be a function, we say that the self map \mathcal{T} is α - admissible if

 $(x, y) \in X \times X, \alpha(x, y) \succeq I \Rightarrow \alpha(Tx, Ty) \succeq I$, where I the unit of A.

Definition 2.11. [9] Let (X, \mathbb{A}, d) be a C^* -algebra valued b- metric space and $T : X \to X$ is mapping, we say that T is an $\alpha - \psi$ - contractive mapping if there exist two functions $\alpha : X \times X \to \mathbb{A}_+$ and $\psi \in \Psi$ such that

$$\alpha(x, y)d(Tx, Ty) \preceq \psi(d(x, y))$$
, for all $x, y \in X$

3. MAIN RESULT

In [9] introduced the concept of $\alpha - \psi -$ contractive mappings in a unital C^* -algebra valued b- metric space. In this paper we will develop the definitions in case of unital C^* -algebra valued rectangular b- metric space and give some Banach fixed point theorems.

Definition 3.1. Let (X, \mathbb{A}, d) be a C^* -algebra valued b- rectangular metric space and $T : X \to X$ is mapping, we say that T is an $\alpha - \psi$ - contractive mapping if there exist two functions α : $X \times X \to \mathbb{A}_+$ and $\psi \in \Psi$ such that

$$\alpha(x, y)d(Tx, Ty) \leq \psi(d(x, y)), \text{ for all } x, y \in X$$
(3.1)

Theorem 3.2. Let (X, \mathbb{A}, d) be a complete C^* -algebra valued rectangular b- metric space and let $T : X \to X$ be a α, ψ - contractive mapping satisfying the following conditions:

(i) T is α - admissible

- (ii) There exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \succeq I$
- (iii) for all $x, y \in X$, there exists $z \in X$ such that $\alpha(x, z) \succeq I$ and $\alpha(y, z) \succeq I$
- (iv) T is continuous

Then, T has a unique fixed point in X.

Proof. Let $x_0 \in X$ such that $\alpha(x_0, Tx_0) \succeq I$ and define a sequence $\{x_n\} \in X$ such that $x_{n+1} = Tx_n$, $\forall n \in \mathbb{N}$. Suppose that there exists $n \in \mathbb{N}$ such that $x_n = Tx_n$. Then x_n is a fixed point of T and the proof is finished.

Hence, we assume that $x_n \neq T x_{n+1}$, $\forall n \in \mathbb{N}$, since T is α -admissible, we get

$$\alpha(x_0, x_1) = \alpha(x_0, Tx_0) \succeq I \Rightarrow \alpha(Tx_0, T^2x_0) = \alpha(x_1, x_2) \succeq I.$$

Continuing this process, we have

$$\alpha(x_n, x_{n+1}) \succeq I \quad \forall n \in \mathbb{N}.$$
(3.2)

By 3.1 and 3.2, we get

$$d(x_n, x_{n+1}) = d(Tx_{n-1}, Tx_n) \preceq \alpha(x_{n-1}, x_n)d(Tx_{n-1}, Tx_n)$$
$$\leq \psi(d(x_{n-1}, x_n))$$
$$\leq \\ \leq \psi^n(d(x_0, x_1)).$$

For $m \ge 1$ and $p \ge 1$, it follows that

 $\begin{aligned} &d(x_{m+p}, x_m) \leq b[d(x_{m+p}, x_{m+p-1}) + d(x_{m+p-1}, x_{m+p-2}) + d(x_{m+p-2}, x_m)] \\ &\leq bd(x_{m+p}, x_{m+p-1}) + bd(x_{m+p-1}, x_{m+p-2}) + b[b[d(x_{m+p-2}, x_{m+p-3}) + d(x_{m+p-3}, x_{m+p-4}) + d(x_{m+p-4}, x_m)]] \\ &= bd(x_{m+p}, x_{m+p-1}) + bd(x_{m+p-1}, x_{m+p-2}) + b^2d(x_{m+p-2}, x_{m+p-3}) + b^2d(x_{m+p-3}, x_{m+p-4}) + b^2d(x_{m+p-4}, x_m) \\ &\leq bd(x_{m+p}, x_{m+p-1}) + bd(x_{m+p-1}, x_{m+p-2}) + b^2d(x_{m+p-2}, x_{m+p-3}) + b^2d(x_{m+p-3}, x_{m+p-4}) + \dots + b^{\frac{p-1}{2}}d(x_{m+3}, x_{m+2}) + b^{\frac{p-1}{2}}d(x_{m+2}, x_{m+1}) + b^{\frac{p-1}{2}}d(x_{m+1}, x_m) \\ &\leq b\psi^{m+p-1}(d(x_0, x_1)) + b\psi^{m+p-2}(d(x_0, x_1)) + \dots + b^{\frac{p-1}{2}}d(x_0, x_1) \\ &\text{Since } b \leq I, \text{ using definition } 2.6 \text{ we have} \\ &d(x_m, x_{m+p}) \leq b\psi^{m+p-1}(d(x_0, x_1)) + b\psi^{m+p-2}(d(x_0, x_1)) + \dots + b^{\frac{p-1}{2}}d(x_0, x_1) \to \theta \text{ as } n \to +\infty \\ &\text{Therefore } \{x_n\} \text{ is a Cauchy sequence in } X. \text{ By the completeness of } (X, \mathbb{A}, d) \text{ there exists an} \end{aligned}$

 $x \in X$ such that

$$\lim_{n\to\infty} x_n = \lim_{n\to\infty} Tx_{n-1} = x.$$

From continuity of T and by uniqueness of the limit, we get Tx = x, i.e. x is a fixed point of T.

Now suppose that $y \neq x$ is another fixed point of T.

From (*iii*), there exists $z \in X$ such that $\alpha(x, z) \succeq I$ and $\alpha(y, z) \succeq I$.

Since T is α - admissible, we have

$$\alpha(x, T^n z) \succeq I$$
 and $\alpha(y, T^n z) \succeq I$ for all $n \in \mathbb{N}$

Using (1), we obtain

$$d(x, T^{n}z) = d(Tx, T(T^{n-1}z))$$

$$\leq \alpha(x, T^{n-1}z)d(Tx, T(T^{n-1}z))$$

$$\leq \psi^{n}(d(x, z)) \rightarrow \theta \text{ as } n \rightarrow \infty.$$

Thus, $T^n z = x$. Similary $T^n z = y$ as $n \to \infty$ So, the uniqueness of the limit we obtain x = y. \Box

Example 3.3. Let $X = \mathbb{R}$ and $\mathbb{A} = M_2(\mathbb{R})$ as given in Example 2.3, define $T : X \to X$, by $Tx = \frac{x}{3}$ and $\alpha : X \times X \to M_2(\mathbb{R})$ such that

$$\alpha(x,y) = \begin{pmatrix} |x-y| & 0\\ 0 & 0 \end{pmatrix} \text{ thus, } T \text{ is } \alpha - \text{ admissible,}$$

and $\psi: M_2(\mathbb{R})^+ \to M_2(\mathbb{R})^+$, $\psi(a) = \begin{pmatrix} a^2 & 0 \\ 0 & a^2 \end{pmatrix} \quad \forall a \in (\mathbb{R})^+.$

This is clear that T is $\alpha - \psi -$ contractive mapping and satisfies $\alpha(x, y)d(Tx, Ty) \preceq \psi(d(x, y))$, for all $x, y \in X$

Theorem 3.4. Let (X, \mathbb{A}, d) be a complete C^* -algebra valued rectangular b- metric space and let $T : X \to X$ be a α, ψ - contractive mapping of Kannan type ie,

$$\alpha(x, y)d(Tx, Ty) \leq \psi(d(Tx, x) + d(Ty, y))$$
(3.3)

for all x, $y \in X$ Where $\psi \in \Psi$ and $\alpha : X \times X \to \mathbb{A}_+$

and the following conditions holds:

- (i) T is α admissible
- (ii) There exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \succeq I$
- (iii) T is continuous

Then, T has a fixed point in X.

Proof. By (3.3), we obtain

$$d(x_{n}, x_{n+1}) = d(Tx_{n-1}, Tx_{n}) \leq \alpha(x_{n-1}, x_{n})d(Tx_{n-1}, Tx_{n})$$

$$\leq \psi(d(Tx_{n-1}, x_{n-1}) + d(Tx_{n}, x_{n})) = \psi(d(x_{n}, x_{n-1}) + d(x_{n+1}, x_{n}))$$

$$= \psi(d(x_{n}, x_{n-1})) + \psi(d(x_{n+1}, x_{n}))$$

$$(I - \psi)(d(x_{n}, x_{n-1})) \leq \psi(d(x_{n}, x_{n-1}))$$

from Lemma 2.1 and Definition 2.6, we obtain

$$d(x_n, x_{n+1}) \preceq (I - \psi)^{-1} \psi(d(x_n, x_{n-1})) = \Phi(d(x_n, x_{n-1}))$$
 where
 $\Phi = (I - \psi)^{-1} \psi$

Therefore

$$d(x_n, x_{n+1}) \preceq \Phi^n(d(x_0, x_1)) \forall n \in \mathbb{N}$$

For any $m \ge 1$ and $p \ge 1$ similary in Theorem 3.1 we have

$$d(x_m, x_{m+p}) \leq b\psi^{m+p-1}(d(x_0, x_1)) + b\psi^{m+p-2}(d(x_0, x_1)) + \dots + b^{\frac{p-1}{2}}d(x_0, x_1) \to \theta \text{ as } n \to +\infty.$$

Thus $\{x_n\}$ is a Cauchy sequence in X. By the completeness of (X, \mathbb{A}, d) , there exists $x \in X$ such that

$$\lim_{n\to\infty} x_n = \lim_{n\to\infty} Tx_{n-1} = x_n$$

the continuity of T gives that x is a fixed point of T.

To prove that x is the unique fixed point, we suppose that $y \in X$ is another fixed point of T. Then

$$\theta \leq d(x, y) = d(Tx, Ty)$$
$$\leq \alpha(x, y)d(Tx, Ty)$$
$$\leq \psi(d(Tx, x) + d(Ty, y))$$
$$= \psi(d(x, x) + d(y, y)) = \theta$$

Hence x = y. Therefore the fixed point is unique.

Theorem 3.5. Let (X, \mathbb{A}, d) be a complete C^* -algebra valued rectangular b- metric space and let $T : X \to X$ be a α, ψ - contractive mapping of Banach-Kannan type ie,

$$\alpha(x, y)d(Tx, Ty) \leq \psi(d(x, y) + d(Tx, x) + d(Ty, y))$$
(3.4)

for all $x, y \in X$ Where $\psi \in \Psi$ and $\alpha : X \times X \to \mathbb{A}_+$ such that $\psi(1 - \psi)^{-1} \preceq \frac{1}{2l}$, and the following conditions holds:

- (i) T is α admissible
- (ii) There exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \succeq I$
- (iii) T is continuous

Then, T has a fixed point in X

Proof. Using (3.4), we get

$$d(x_{n}, x_{n+1}) = d(Tx_{n-1}, Tx_{n}) \leq \alpha(x_{n-1}, x_{n})d(Tx_{n-1}, Tx_{n})$$

$$\leq \psi(d(x_{n-1}, x_{n}) + d(Tx_{n-1}, x_{n-1}) + d(Tx_{n}, x_{n}))$$

$$= \psi(d(x_{n-1}, x_{n})2I + d(x_{n}, x_{n+1})) \Rightarrow (I - \psi)(d(x_{n}, x_{n+1})) \leq 2I\psi(d(x_{n}, x_{n-1}))$$

$$\Rightarrow d(x_{n}, x_{n+1}) \leq 2I(I - \psi)^{-1}\psi(d(x_{n}, x_{n-1})) \leq \Phi(d(x_{n}, x_{n-1})).$$
Where

 $\varphi = 2I(I - \psi)^{-1}\psi.$

Then

$$d(x_n, x_{n+1}) \preceq \Phi^n(d(x_0, x_1))$$

We refer to the proof of the Theorem 3.1 we get that x is a fixed point of T. Now, if $y \neq x$ is another fixed point of T, we have

$$\theta \leq d(x, y) = d(Tx, Ty)$$
$$\leq \alpha(x, y)d(Tx, Ty)$$
$$\leq \psi(d(x, y) + d(Tx, x) + d(Ty, y))$$
$$= \psi(d(x, y) + d(x, x) + d(y, y)) = \psi(d(x, y)$$

So $d(x, y) = \theta$; ie x = y.

4. Applications

As application of $\alpha - \psi$ contractive in unital C^{*}-algebra valued rectangular b- metric spaces, existence and uniqueness results for a type of operator equation is given.

Example 4.1. Suppose that *H* is a Hilbert space, B(H) is the set of linear bounded operators on *H*. Let $A_1, A_2, ..., A_n, ... \in B(H)$

which satisfy $\sum_{n=1}^{\infty} \|A_n\| < 1$ and $Q \in B(H)_+$.

Then the operator equation $X - \sum_{n=1}^{\infty} A_n^* X A_n = Q$ has a unique solution in B(H).

Proof. Set $a = (\sum_{n=1}^{\infty} ||A_n||)^p$ with $p \ge 1$, then ||a|| < 1. Without loss of generality, one can suppose that a > 0.

Choose a positive operator $M \in B(H)$. For $X, Y \in B(H)$ and $p \ge 1$, set $d(X, Y) = ||X - Y||^p M$. Then d(X, Y) is a C^* -algebra valued rectangular b- metric. Suppose that $X, Y, Z, W \in B(H)$ we have $||X - Y||^p \le 2^P(||X - Z||^p + ||Z - W||^p + ||W - Y||^p)$. Which implies that $d(X, Y) \le A[d(X, Z) + d(Z, W) + d(W, Y)]$ Where $A = 2^p I$. Consider the map $T : B(H) \rightarrow B(H)$ such that $T(X) = \sum_{n=1}^{\infty} A_n^* X A_n + Q$. Then

$$d(T(X), T(Y)) = ||T(X), T(Y)||^{p}M$$

= $||\sum_{n=1}^{\infty} A_{n}^{*}(X - Y)A_{n}||^{p}M$
 $\leq \sum_{n=1}^{\infty} ||A_{n}||^{2p}||X - Y||^{p}M$
 $\leq a^{2}d(X, Y)$

Let $\alpha : B(H) \times B(H) \rightarrow B(H)^+$ defined by $\alpha(X, Y) = (X, Y)I$

and $\psi : B(H)^+ \to B(H)^+$ defined by $\psi(X) = X$.

We get $\alpha(X, Y)d(TX, TY) \leq \psi(d(X, Y))$.

Using Theorem 3.1, there exists a unique fixed point X in B(H).

5. Acknowledgments

It is our great pleasure to thank the referee for his careful reading of the paper and for several helpful suggestions.

References

- H.H. Alsulami, R.P. Agarwal, E. Karapınar, F. Khojasteh, A short note on C*-valued contraction mappings, J. Inequal. Appl. 2016 (2016) 50. https://doi.org/10.1186/s13660-016-0992-5.
- [2] S. Chandok, D. Kumar, C. Park, C*-algebra-valued partial metric space and fixed point theorems. Proc. Math. Sci. 129 (2019) 37. https://doi.org/10.1007/s12044-019-0481-0.
- [3] M. Jleli, B. Samet, A new generalization of the Banach contraction principle. J. Inequal. Appl. 2014 (2014), 38. https://doi.org/10.1186/1029-242X-2014-38.
- [4] G. Kalapana, Z.S. Tasneem C*-algebra-valued rectangular b-metric spaces and some fixed point theorems, Commun.
 Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 68 (2019) 2198-2208. https://doi.org/10.31801/cfsuasmas.598146.
- [5] W. A. Kirk, N. Shahzad, Generalized metrics and Caristi's theorem, Fixed Point Theory Appl. 2013 (2013) 129. https://doi.org/10.1186/1687-1812-2013-129.
- [6] Z. Ma, L. Jiang, H. Sun, C*-algebra-valued metric spaces and related fixed point theorems, Fixed Point Theory Appl. (2014) 2014, 206. https://doi.org/10.1186/1687-1812-2014-206.
- [7] H. Massit, M. Rossafi, Fixed point for ψ- contractive mapping in C*- algebra valued rectangular b-metric, J. Math. Comput. Sci. 11(2021) 6507-6521. https://doi.org/10.28919/jmcs/6363.
- [8] G.J. Murphy, C*-Algebras and operator theory, Academic Press, London, UK, 1990.
- [9] S. Omran, I. Masmali, On the $(\alpha \psi)$ -contractive mappings in C*-algebra valued b-metric spaces and fixed point theorems, J. Math. 2021 (2021) 7865976. https://doi.org/10.1155/2021/7865976.
- [10] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for α ψ-contractive type mappings, Nonlinear Anal.: Theory Methods Appl. 75 (2012) 2154–2165. https://doi.org/10.1016/j.na.2011.10.014.