$$
\text { *-K-Operator Frame for } \operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X})
$$

Mohamed Rossafi ${ }^{1, *}$, Roumaissae El Jazzar ${ }^{2}$ and Ali Kacha ${ }^{2}$
${ }^{1}$ LaSMA Laboratory Department of Mathematics, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, B. P. 1796 Fes Atlas, Morocco
mohamed.rossafi@usmba.ac.ma
${ }^{2}$ Laboratory of Partial Differential Equations, Spectral Algebra and Geometry Department of Mathematics, Faculty of Sciences, University Ibn Tofail, Kenitra, Morocco
roumaissae.eljazzar@uit.ac.ma, ali.kacha@yahoo.fr
*Correspondence: rossafimohamed@gmail.com

Abstract. In this work, we introduce the concept of $*$-K-operator frames in Hilbert pro- C^{*}-modules, which is a generalization of K-operator frame. We present the analysis operator, the synthesis operator and the frame operator. We also give some properties and we study the tensor product of *-K-operator frame for Hilbert pro- C^{*}-modules.

1. Introduction

Duffin and Schaeffer introduced the notion of frame in nonharmonic Fourier analysis in 1952 [3]. In 1986 the work of Duffin and Schaeffer were reintroduced and developed by Grossman and Meyer [7]. The concept of frame on Hilbert space has already been successfully extended to pro-C^{*}-algebras and Hilbert modules. Many properties of frames in Hilbert C^{*}-modules are valid for frames of multipliers in Hilbert modules over pro-C*-algebras [9].

Operator frames for $B(\mathcal{H})$ is a new notion of frames that Li and Cio introduced in [11] and generalized by Rossafi in [16]. In this work we introduce the notion of $*$-K-operator frame for the space $\operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X})$ of all adjointable operators on a Hilbert pro- C^{*}-module for \mathcal{X}.

This paper is divided into three sections. In section 2 we recall some fundamental definitions and notations of Hilbert pro- C^{*}-modules. In section 3 we introduce the $*$-K-operator Frame and we give some of its properties. Lastly we investigate tensor product of Hilbert pro- C^{*}-modules, we show that tensor product of $*-K$-operator frames for Hilbert pro- C^{*}-modules \mathcal{X} and \mathcal{Y}, present an *-K-operator frames for $\mathcal{X} \otimes \mathcal{Y}$, and tensor product of their frame operators is the frame operator of their tensor product of $*-K$-operator frames.

Received: 18 Nov 2021.
Key words and phrases. frame; *-K-operator frame; K-operator frame pro- C^{*}-algebra; Hilbert pro- C^{*}-modules; tensor product.

2. Preliminaries

The basic information about pro- C^{*}-algebras can be found in the works $[4-6,8,12,14,15]$.
C^{*}-algebra whose topology is induced by a family of continuous C^{*}-seminorms instead of a C^{*}-norm is called pro-C*-algebra. Hilbert pro- C^{*}-modules are generalizations of Hilbert spaces by allowing the inner product to take values in a pro- C^{*}-algebra rather than in the field of complex numbers.

Pro- C^{*}-algebra is defined as a complete Hausdorff complex topological *-algebra \mathcal{A} whose topology is determined by its continuous C^{*}-seminorms in the sens that a net $\left\{a_{\alpha}\right\}$ converges to 0 if and only if $p\left(a_{\alpha}\right)$ converges to 0 for all continuous C^{*}-seminorm p on $\mathcal{A}[8,10,15]$, and we have:

1) $p(a b) \leq p(a) p(b)$
2) $p\left(a^{*} a\right)=p(a)^{2}$
for all $a, b \in \mathcal{A}$
If the topology of pro- C^{*}-algebra is determined by only countably many C^{*}-seminorms, then it is called a $\sigma-C^{*}$-algebra.
We denote by $\operatorname{sp}(a)$ the spectrum of a such that: $\operatorname{sp}(a)=\left\{\lambda \in \mathbb{C}: \lambda 1_{\mathcal{A}}-a\right.$ is not invertible $\}$ for all $a \in \mathcal{A}$. Where \mathcal{A} is unital pro- C^{*}-algebra with unite $1_{\mathcal{A}}$.
The set of all continuous C^{*}-seminorms on \mathcal{A} is denoted by $S(\mathcal{A})$. If \mathcal{A}^{+}denotes the set of all positive elements of \mathcal{A}, then \mathcal{A}^{+}is a closed convex C^{*}-seminorms on \mathcal{A}.

Example 2.1. Every C^{*}-algebra is a pro- C^{*}-algebra.

Proposition 2.2. [8] Let \mathcal{A} be a unital pro- C^{*}-algebra with an identity $1_{\mathcal{A}}$. Then for any $p \in S(\mathcal{A})$, we have:
(1) $p(a)=p\left(a^{*}\right)$ for all $a \in A$
(2) $p\left(1_{\mathcal{A}}\right)=1$
(3) If $a, b \in \mathcal{A}^{+}$and $a \leq b$, then $p(a) \leq p(b)$
(4) If $1_{\mathcal{A}} \leq b$, then b is invertible and $b^{-1} \leq 1_{\mathcal{A}}$
(5) If $a, b \in \mathcal{A}^{+}$are invertible and $0 \leq a \leq b$, then $0 \leq b^{-1} \leq a^{-1}$
(6) If $a, b, c \in \mathcal{A}$ and $a \leq b$ then $c^{*} a c \leq c^{*} b c$
(7) If $a, b \in \mathcal{A}^{+}$and $a^{2} \leq b^{2}$, then $0 \leq a \leq b$

Definition 2.3. [15] A pre-Hilbert module over pro- C^{*}-algebra \mathcal{A}, is a complex vector space E which is also a left \mathcal{A}-module compatible with the complex algebra structure, equipped with an \mathcal{A}-valued inner product $\langle.,\rangle . E \times E \rightarrow \mathcal{A}$ which is \mathbb{C}-and \mathcal{A}-linear in its first variable and satisfies the following conditions:

1) $\langle\xi, \eta\rangle^{*}=\langle\eta, \xi\rangle$ for every $\xi, \eta \in E$
2) $\langle\xi, \xi\rangle \geq 0$ for every $\xi \in E$
3) $\langle\xi, \xi\rangle=0$ if and only if $\xi=0$
for every $\xi, \eta \in E$. We say E is a Hilbert \mathcal{A}-module (or Hilbert pro- C^{*}-module over \mathcal{A}). If E is complete with respect to the topology determined by the family of seminorms

$$
\bar{p}_{E}(\xi)=\sqrt{p(\langle\xi, \xi\rangle)} \quad \xi \in E, p \in S(\mathcal{A})
$$

Let \mathcal{A} be a pro- C^{*}-algebra and let \mathcal{X} and \mathcal{Y} be Hilbert \mathcal{A}-modules and assume that I and J be countable index sets. A bounded \mathcal{A}-module map from \mathcal{X} to \mathcal{Y} is called an operators from \mathcal{X} to \mathcal{Y}. We denote the set of all operator from \mathcal{X} to \mathcal{Y} by $\operatorname{Hom}_{\mathcal{A}}(\mathcal{X}, \mathcal{Y})$.

Definition 2.4. [1] An \mathcal{A}-module map $T: \mathcal{X} \longrightarrow \mathcal{Y}$ is adjointable if there is a map $T^{*}: \mathcal{Y} \longrightarrow \mathcal{X}$ such that $\langle T \xi, \eta\rangle=\left\langle\xi, T^{*} \eta\right\rangle$ for all $\xi \in \mathcal{X}, \eta \in \mathcal{Y}$, and is called bounded if for all $p \in S(\mathcal{A})$, there is $M_{p}>0$ such that $\overline{p_{\mathcal{Y}}}(T \xi) \leq M_{p} \overline{\mathcal{X}}(\xi)$ for all $\xi \in \mathcal{X}$.
We denote by $\operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X}, \mathcal{Y})$, the set of all adjointable operator from \mathcal{X} to \mathcal{Y} and $\operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X})=$ $\operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X}, \mathcal{X})$

Definition 2.5. [1] Let \mathcal{A} be a pro- C^{*}-algebra and \mathcal{X}, \mathcal{Y} be two Hilbert \mathcal{A}-modules. The operator $T: \mathcal{X} \rightarrow \mathcal{Y}$ is called uniformly bounded below, if there exists $C>0$ such that for each $p \in S(\mathcal{A})$,

$$
\bar{p}_{\mathcal{Y}}(T \xi) \leqslant C \bar{p}_{\mathcal{X}}(\xi), \quad \text { for all } \xi \in \mathcal{X}
$$

and is called uniformly bounded above if there exists $C^{\prime}>0$ such that for each $p \in S(\mathcal{A})$,

$$
\begin{gathered}
\bar{p}_{\mathcal{Y}}(T \xi) \geqslant C^{\prime} \bar{p}_{\mathcal{X}}(\xi), \quad \text { for all } \xi \in \mathcal{X} \\
\|T\|_{\infty}=\inf \{M: M \text { is an upper bound for } T\} \\
\hat{p}_{\mathcal{Y}}(T)=\sup \left\{\bar{p}_{\mathcal{Y}}(T(x)): \xi \in \mathcal{X}, \quad \bar{p}_{\mathcal{X}}(\xi) \leqslant 1\right\}
\end{gathered}
$$

It's clear to see that, $\hat{p}(T) \leqslant\|T\|_{\infty}$ for all $p \in S(\mathcal{A})$.
Proposition 2.6. [2]. Let \mathcal{X} be a Hilbert module over pro-C*-algebra \mathcal{A} and T be an invertible element in $\operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X})$ such that both are uniformly bounded. Then for each $\xi \in \mathcal{X}$,

$$
\begin{gathered}
\left\|T^{-1}\right\|_{\infty}^{-2}\langle\xi, \xi\rangle \leq\langle T \xi, T \xi\rangle \leq\|T\|_{\infty}^{2}\langle\xi, \xi\rangle . \\
\text { 3. *-K-OPERATOR FRAME FOR } \operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X})
\end{gathered}
$$

We begin this section with the definition of a K-operator frame.
Definition 3.1. Let $\left\{T_{i}\right\}_{i \in I}$ be a family of adjointable operators on a Hilbert \mathcal{A}-module \mathcal{X} over a unital pro- C^{*}-algebra, and let $K \in \operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X}) .\left\{T_{i}\right\}_{i \in I}$ is called a K-operator frame for $\operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X})$, if there exist two positive constants $A, B>0$ such that

$$
\begin{equation*}
A\left\langle K^{*} \xi, K^{*} \xi\right\rangle \leq \sum_{i \in 1}\left\langle T_{i} \xi, T_{i} \xi\right\rangle \leq B\langle\xi, \xi\rangle, \forall \xi \in \mathcal{X} . \tag{3.1}
\end{equation*}
$$

The numbers A and B are called lower and upper bound of the K-operator frame, respectively. If

$$
A\left\langle K^{*} \xi, K^{*} \xi\right\rangle=\sum_{i \in I}\left\langle T_{i} \xi, T_{i} \xi\right\rangle,
$$

the K-operator frame is an A-tight. If $A=1$, it is called a normalized tight K-operator frame or a Parseval K-operator frame.

We will now move to define the $*-K$-operator frame for $\operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X})$.
Definition 3.2. Let $\left\{T_{i}\right\}_{i \in I}$ be a family of adjointable operators on a Hilbert \mathcal{A}-module \mathcal{X} over a unital pro- C^{*}-algebra, and let $K \in \operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X}) . \quad\left\{T_{i}\right\}_{i \in I}$ is called a $*$ - K-operator frame for $\operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{H})$, if there exists two nonzero elements A and B in \mathcal{A} such that

$$
\begin{equation*}
A\left\langle K^{*} \xi, K^{*} \xi\right\rangle A^{*} \leq \sum_{i \in I}\left\langle T_{i} \xi, T_{i} \xi\right\rangle \leq B\langle\xi, \xi\rangle B^{*}, \forall \xi \in \mathcal{X} \tag{3.2}
\end{equation*}
$$

The elements A and B are called lower and upper bounds of the $*-K$-operator frame, respectively. If

$$
A\left\langle K^{*} \xi, K^{*} \xi\right\rangle^{*}=\sum_{i \in I}\left\langle T_{i} \xi, T_{i} \xi\right\rangle,
$$

the $*-K$-operator frame is an A-tight. If $A=1$, it is called a normalized tight $*-K$-operator frame or a Parseval $*-K$-operator frame.

Example 3.3. Let $/ \infty$ be the set of all bounded complex-valued sequences. For any $u=\left\{u_{j}\right\}_{j \in N}, v=$ $\left\{v_{j}\right\}_{j \in \mathrm{~N}} \in 1^{\infty}$, we define

$$
u v=\left\{u_{j} v_{j}\right\}_{j \in N}, u^{*}=\left\{\bar{u}_{j}\right\}_{j \in N},\|u\|=\sup _{j \in \mathrm{~N}}\left|u_{j}\right| .
$$

Then $\mathcal{A}=\{\mid \infty,\|\|$.$\} is a \mathbb{C}^{*}$-algebra. Then \mathcal{A} is pro- \mathbb{C}^{*}-algebra.
Let $\mathcal{X}=C_{0}$ be the set of all null sequences. For any $u, v \in \mathcal{X}$ we define

$$
\langle u, v\rangle=u v^{*}=\left\{u_{j} \bar{u}_{j}\right\}_{j \in N} .
$$

Therefore \mathcal{X} is a Hilbert \mathcal{A}-module.
Define $f_{j}=\left\{f_{i}^{j}\right\}_{i \in \mathbf{N}^{*}}$ by $f_{i}^{j}=\frac{1}{2}+\frac{1}{i}$ if $i=j$ and $f_{i}^{j}=0$ if $i \neq j \forall j \in \mathbf{N}^{*}$.
Now define the adjointable operator $T_{j}: \mathcal{X} \rightarrow \mathcal{X}, \quad T_{j}\left\{\left(\xi_{i}\right)_{i}\right\}=\left(\xi_{i} f_{i}^{j}\right)_{i}$.
Then for every $x \in \mathcal{X}$ we have

$$
\sum_{j \in N}\left\langle T_{j} \xi, T_{j} \xi\right\rangle=\left\{\frac{1}{2}+\frac{1}{i}\right\}_{i \in N^{*}}\langle\xi, \xi\rangle\left\{\frac{1}{2}+\frac{1}{i}\right\}_{i \in \mathrm{~N}^{*}} .
$$

So $\left\{T_{j}\right\}_{j}$ is a $\left\{\frac{1}{2}+\frac{1}{i}\right\}_{i \in \mathrm{~N}^{*}}$-tight $*$-operator frame.
Let $K: \mathcal{H} \rightarrow \mathcal{H}$ defined by $K \xi=\left\{\frac{\xi_{i}}{i}\right\}_{i \in N^{*}}$.
Then for every $\xi \in \mathcal{X}$ we have

$$
\left\langle K^{*} \xi, K^{*} \xi\right\rangle \leq \sum_{j \in \mathrm{~N}}\left\langle T_{j} \xi, T_{j} \xi\right\rangle=\left\{\frac{1}{2}+\frac{1}{i}\right\}_{i \in \mathrm{~N}^{*}}\langle\xi, \xi\rangle\left\{\frac{1}{2}+\frac{1}{i}\right\}_{i \in \mathrm{~N}^{*}} .
$$

This shows that $\left\{T_{j}\right\}_{j \in \mathrm{~N}}$ is an $*-K$-operator frame with bounds $1,\left\{\frac{1}{2}+\frac{1}{i}\right\}_{i \in \mathrm{~N}^{*}}$.
Remark 3.4. (1) Every $*$-operator frame for $\operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X})$ is an $*$-K-operator frame, for any $K \in$ $\operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X}): K \neq 0$.
(2) If $K \in \operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X})$ is a surjective operator, then every $*-K$-operator frame for $\operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X})$ is an $*$-operator frame.

Example 3.5. Let \mathcal{X} be a finitely or countably generated Hilbert \mathcal{A}-module. $\operatorname{Hom}_{A}^{*}(\mathcal{X})$. Let $K \in \operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X})$ an invertible element such that both are uniformly bounded and $K \neq 0$. Let $\left\{T_{i}\right\}_{i \in l}$ be an $*$-operator frame for \mathcal{X} with bounds A and B, respectively. We have

$$
A\langle\xi, \xi\rangle A^{*} \leq \sum_{i \in I}\left\langle T_{i} \xi, T_{i} \xi\right\rangle \leq B\langle\xi, \xi\rangle B^{*}, \forall \xi \in \mathcal{X} .
$$

Or

$$
\left\langle K^{*} \xi, K^{*} \xi\right\rangle \leq\|K\|_{\infty}^{2}\langle\xi, \xi\rangle, \forall \xi \in \mathcal{X} .
$$

Then

$$
\|K\|_{\infty}^{-1} A\left\langle K^{*} \xi, K^{*} \xi\right\rangle\left(\|K\|_{\infty}^{-1} A\right)^{*} \leq \sum_{i \in I}\left\langle T_{i} \xi, T_{i} \xi\right\rangle \leq B\langle\xi, \xi\rangle B^{*}, \forall \xi \in \mathcal{X} .
$$

So $\left\{T_{i}\right\}_{i \in I}$ is $*-K$-operator frame for \mathcal{X} with bounds $\|K\|_{\infty}^{-1} A$ and B, respectively.
In what follows, we introduce the analysis, the synthesis and the frame operator. We also establish some properties.

Let $\left\{T_{i}\right\}_{i \in I}$ be an $*-K$-operator frame for $\operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X})$. Define an operator $R: \mathcal{X} \rightarrow I^{2}(\mathcal{X})$ by $R \xi=\left\{T_{i} \xi\right\}_{i \in I}, \forall \xi \in \mathcal{X}$, then R is called the analysis operator. The adjoint of the analysis operator $R, R^{*}: I^{2}(\mathcal{X}) \rightarrow \mathcal{X}$ is given by $R^{*}\left(\left\{\xi_{i}\right\}_{i}\right)=\sum_{i \in I} T_{i}^{*} \xi_{i}, \forall\left\{\xi_{i}\right\}_{i} \in I^{2}(\mathcal{X})$. The operator R^{*} is called the synthesis operator. By composing R and R^{*}, the frame operator $S: \mathcal{X} \rightarrow \mathcal{X}$ is given by $S \xi=R^{*} R \xi=\sum_{i \in I} T_{i}^{*} T_{i} \xi$.

Note that S need not be invertible in general. But under some condition S will be invertible.
Theorem 3.6. Let K be a surjective operators in $\operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X})$. If $\left\{T_{i}\right\}_{i \in I}$ is an $*-K$-operator frame for $\operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X})$, then the frame operator S is positive, invertible and adjointable. In addition we have the reconstruction formula, $\xi=\sum_{i \in I} T_{i}^{*} T_{i} S^{-1} \xi, \forall \xi \in \mathcal{X}$.

Proof. We start by showing that, S is a self-adjoint operator. By definition we have $\forall \xi, \eta \in \mathcal{H}$

$$
\begin{aligned}
\langle S \xi, \eta\rangle & =\left\langle\sum_{i \in 1} T_{i}^{*} T_{i} \xi, \eta\right\rangle \\
& =\sum_{i \in 1}\left\langle T_{i}^{*} T_{i} \xi, \eta\right\rangle \\
& =\sum_{i \in 1}\left\langle\xi, T_{i}^{*} T_{i} \eta\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =\left\langle\xi, \sum_{i \in 1} T_{i}^{*} T_{i} \eta\right\rangle \\
& =\langle\xi, S \eta\rangle .
\end{aligned}
$$

Then S is a selfadjoint.
The operator S is clearly positive.
By (2) in Remark $3.4\left\{T_{i}\right\}_{i \in I}$ is an $*$-operator frame for $\operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X})$.
The definition of an $*$-operator gives

$$
A_{1}\langle\xi, \xi\rangle A_{1}^{*} \leq \sum_{i \in I}\left\langle T_{i} \xi, T_{i} \xi\right\rangle \leq B\langle\xi, \xi\rangle B^{*} .
$$

Thus by the definition of norm in $I^{2}(\mathcal{X})$

$$
\begin{equation*}
\bar{p}_{\mathcal{X}}(R \xi)^{2}=\bar{p}_{\mathcal{X}}\left(\sum_{i \in I}\left\langle T_{i} \xi, T_{i} \xi\right\rangle\right) \leq \bar{p}_{\mathcal{X}}(B)^{2} p(\langle\xi, \xi\rangle), \forall \xi \in \mathcal{X} . \tag{3.3}
\end{equation*}
$$

Therefore R is well defined and $\bar{p}_{\mathcal{X}}(R) \leq \bar{p}_{\mathcal{X}}(B)$. It's clear that R is a linear \mathcal{A}-module map. We will then show that the range of R is closed. Let $\left\{R \xi_{n}\right\}_{n \in \mathbb{N}}$ be a sequence in the range of R such that $\lim _{n \rightarrow \infty} R \xi_{n}=\eta$. For $n, m \in \mathbb{N}$, we have

$$
p\left(A\left\langle\xi_{n}-\xi_{m}, \xi_{n}-\xi_{m}\right\rangle A^{*}\right) \leq p\left(\left\langle R\left(\xi_{n}-\xi_{m}\right), R\left(\xi_{n}-\xi_{m}\right)\right\rangle\right)=\bar{p} \mathcal{X}\left(R\left(\xi_{n}-\xi_{m}\right)\right)^{2}
$$

Seeing that $\left\{R \xi_{n}\right\}_{n \in \mathbb{N}}$ is Cauchy sequence in \mathcal{X}, then

$$
p\left(A\left\langle\xi_{n}-\xi_{m}, \xi_{n}-\xi_{m}\right\rangle A^{*}\right) \rightarrow 0, \text { as } n, m \rightarrow \infty .
$$

Note that for $n, m \in \mathbb{N}$,

$$
\begin{aligned}
p\left(\left\langle\xi_{n}-\xi_{m}, \xi_{n}-\xi_{m}\right\rangle\right) & =p\left(A^{-1} A\left\langle\xi_{n}-\xi_{m}, \xi_{n}-\xi_{m}\right\rangle A^{*}\left(A^{*}\right)^{-1}\right) \\
& \leq p\left(A^{-1}\right)^{2} p\left(A\left\langle\xi_{n}-\xi_{m}, \xi_{n}-\xi_{m}\right\rangle A^{*}\right) .
\end{aligned}
$$

Thus the sequence $\left\{\xi_{n}\right\}_{n \in \mathbb{N}}$ is Cauchy and hence there exists $\xi \in \mathcal{X}$ such that $\xi_{n} \rightarrow \xi$ as $n \rightarrow \infty$. Again by (3.3), we have

$$
\bar{p}_{\mathcal{X}}\left(R\left(\xi_{n}-\xi_{m}\right)\right)^{2} \leq \bar{p}_{\mathcal{X}}(B)^{2} p\left(\left\langle\xi_{n}-\xi, \xi_{n}-\xi\right\rangle\right)
$$

Thus $p\left(R \xi_{n}-R \xi\right) \rightarrow 0$ as $n \rightarrow \infty$ implies that $R \xi=\eta$. It is therefore concluded that the range of R is closed. We now show that R is injective. Let $\xi \in \mathcal{X}$ and $R \xi=0$. Note that $A\langle\xi, \xi\rangle A^{*} \leq\langle R \xi, R \xi\rangle$ then $\langle\xi, \xi\rangle=0$ so $\xi=0$ i.e. R is injective.

For $\xi \in \mathcal{X}$ and $\left\{\xi_{i}\right\}_{i \in I} \in I^{2}(\mathcal{X})$ we have

$$
\left\langle R \xi,\left\{\xi_{i}\right\}_{i \in 1}\right\rangle=\left\langle\left\{T_{i} \xi\right\}_{i \in 1},\left\{\xi_{i}\right\}_{i \in 1}\right\rangle=\sum_{i \in 1}\left\langle T_{i} \xi_{,} \xi_{i}\right\rangle=\sum_{i \in 1}\left\langle\xi, T_{i}^{*} \xi_{i}\right\rangle=\left\langle\xi, \sum_{i \in 1} T_{i}^{*} \xi_{i}\right\rangle .
$$

Then $R^{*}\left(\left\{\xi_{i}\right\}_{i \in I}\right)=\sum_{i \in I} T_{i}^{*} \xi_{i}$. Since R is injective, then the operator R^{*} has closed range and $\mathcal{X}=\operatorname{range}\left(R^{*}\right)$, therefore $S=R^{*} R$ is invertible

Let $K \in \operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X})$, in the following theorem we constructed an $*-K$-operator frame by using an *-operator frame.

Theorem 3.7. Let $\left\{T_{i}\right\}_{i \in I}$ be an $*-K$-operator frame in \mathcal{X} with bounds A, B and $K \in H_{\mathcal{A}}^{*}(\mathcal{X})$ be an invertible element such that both are uniformly bounded. Then $\left\{T_{i} K\right\}_{i \in I}$ is an *-K*-operator frame in \mathcal{X} with bounds $A,\|K\|_{\infty} B$. The frame operator of $\left\{T_{i} K\right\}_{i \in I}$ is $S^{\prime}=K^{*} S K$, where S is the frame operator of $\left\{T_{i}\right\}_{i \in 1}$.

Proof. From

$$
A\langle\xi, \xi\rangle A^{*} \leq \sum_{i \in l}\left\langle T_{i} \xi, T_{i} \xi\right\rangle \leq B\langle\xi, \xi\rangle B^{*}, \forall \xi \in \mathcal{X}
$$

We get for all $\xi \in \mathcal{X}$,

$$
A\langle K \xi, K \xi\rangle A^{*} \leq \sum_{i \in I}\left\langle T_{i} K \xi, T_{i} K \xi\right\rangle \leq B\langle K \xi, K \xi\rangle B^{*} \leq\|K\|_{\infty} B\langle\xi, \xi\rangle\left(\|K\|_{\infty} B\right)^{*}
$$

Then $\left\{T_{i} K\right\}_{i \in I}$ is an $*-K^{*}$-operator frame in \mathcal{X} with bounds $A,\|K\|_{\infty} B$.
By definition of S, we have $S K \xi=\sum_{i \in I} T_{i}^{*} T_{i} K \xi$. Then

$$
K^{*} S K=K^{*} \sum_{i \in l} T_{i}^{*} T_{i} K \xi=\sum_{i \in l} K^{*} T_{i}^{*} T_{i} K \xi
$$

Hence $S^{\prime}=K^{*} S K$.

Corollary 3.8. Let $K \in \operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X})$ and $\left\{T_{i}\right\}_{i \in I}$ be an $*$-operator frame. Then $\left\{T_{i} S^{-1} K\right\}_{i \in I}$ is an *-K* -operator frame, where S is the frame operator of $\left\{T_{i}\right\}_{i \in I}$.

Proof. Result of the Theorem 3.7 for the $*$-operator frame $\left\{T_{i} S^{-1}\right\}_{i \in I \text {. }}$

4. Tensor Product

We denote by $\mathcal{A} \otimes \mathcal{B}$, the minimal or injective tensor product of the pro- C^{*}-algebras \mathcal{A} and \mathcal{B}, it is the completion of the algebraic tensor product $\mathcal{A} \otimes_{\text {alg }} \mathcal{B}$ with respect to the topology determined by a family of C^{*}-seminorms. Suppose that \mathcal{X} is a Hilbert module over a pro- C^{*}-algebra \mathcal{A} and \mathcal{Y} is a Hilbert module over a pro- C^{*}-algebra \mathcal{B}. The algebraic tensor product $\mathcal{X} \otimes_{\text {alg }} \mathcal{Y}$ of \mathcal{X} and \mathcal{Y} is a pre-Hilbert $\mathcal{A} \otimes \mathcal{B}$-module with the action of $\mathcal{A} \otimes \mathcal{B}$ on $\mathcal{X} \otimes_{\text {alg }} \mathcal{Y}$ defined by

$$
(\xi \otimes \eta)(a \otimes b)=\xi a \otimes \eta b \text { for all } \xi \in \mathcal{X}, \eta \in \mathcal{Y}, a \in \mathcal{A} \text { and } b \in \mathcal{B}
$$

and the inner product

$$
\begin{gathered}
\langle\cdot, \cdot\rangle:\left(\mathcal{X} \otimes_{\mathrm{alg}} \mathcal{Y}\right) \times\left(\mathcal{X} \otimes_{\mathrm{alg}} \mathcal{Y}\right) \rightarrow \mathcal{A} \otimes_{\mathrm{alg}} \mathcal{B} . \text { defined by } \\
\left\langle\xi_{1} \otimes \eta_{1}, \xi_{2} \otimes \eta_{2}\right\rangle=\left\langle\xi_{1}, \xi_{2}\right\rangle \otimes\left\langle\eta_{1}, \eta_{2}\right\rangle
\end{gathered}
$$

And we know that for $z=\sum_{i=1}^{n} \xi_{i} \otimes \eta_{i}$ in $\mathcal{X} \otimes_{a l g} \mathcal{Y}$ we have $\langle z, z\rangle_{\mathcal{A} \otimes \mathcal{B}}=\sum_{i, j}\left\langle\xi_{i}, \xi_{j}\right\rangle_{\mathcal{A}} \otimes\left\langle\eta_{i}, \eta_{j}\right\rangle_{\mathcal{B}} \geq 0$ and $\langle z, z\rangle_{\mathcal{A} \otimes \mathcal{B}}=0$ iff $z=0$.

The external tensor product of \mathcal{X} and \mathcal{Y} is the Hilbert module $\mathcal{X} \otimes \mathcal{Y}$ over $\mathcal{A} \otimes \mathcal{B}$ obtained by the completion of the pre-Hilbert $\mathcal{A} \otimes \mathcal{B}$-module $\mathcal{X} \otimes_{\text {alg }} \mathcal{Y}$.

If $P \in M(\mathcal{X})$ and $Q \in M(\mathcal{Y})$ then there is a unique adjointable module morphism $P \otimes Q$: $\mathcal{A} \otimes \mathcal{B} \rightarrow \mathcal{X} \otimes \mathcal{Y}$ such that $(P \otimes Q)(a \otimes b)=P(a) \otimes Q(b)$ and $(P \otimes Q)^{*}(a \otimes b)=P^{*}(a) \otimes Q^{*}(b)$ for all $a \in A$ and for all $b \in B$ (see, for example, cite The minimal or injective tensor product of the pro- C^{*}-algebras \mathcal{A} and \mathcal{B}, denoted by $\mathcal{A} \otimes \mathcal{B}$, is the completion of the algebraic tensor product $\mathcal{A} \otimes_{\text {alg }} \mathcal{B}$ with respect to the topology determined by a family of C^{*}-seminorms. Suppose that \mathcal{X} is a Hilbert module over a pro- C^{*}-algebra \mathcal{A} and \mathcal{Y} is a Hilbert module over a pro- C^{*}-algebra \mathcal{B}. The algebraic tensor product $\mathcal{X} \otimes_{\mathrm{alg}} \mathcal{Y}$ of \mathcal{X} and \mathcal{Y} is a pre-Hilbert $\mathcal{A} \otimes \mathcal{B}$-module with the action of $\mathcal{A} \otimes \mathcal{B}$ on $\mathcal{X} \otimes_{\text {alg }} \mathcal{Y}$ defined by

$$
(\xi \otimes \eta)(a \otimes b)=\xi a \otimes \eta b \text { for all } \xi \in \mathcal{X}, \eta \in \mathcal{Y}, a \in \mathcal{A} \text { and } b \in \mathcal{B}
$$

and the inner product

$$
\begin{gathered}
\langle\cdot \cdot \cdot\rangle:\left(\mathcal{X} \otimes_{\mathrm{alg}} \mathcal{Y}\right) \times\left(\mathcal{X} \otimes_{\mathrm{alg}} \mathcal{Y}\right) \rightarrow \mathcal{A} \otimes_{\mathrm{alg}} \mathcal{B} . \text { defined by } \\
\left\langle\xi_{1} \otimes \eta_{1}, \xi_{2} \otimes \eta_{2}\right\rangle=\left\langle\xi_{1}, \xi_{2}\right\rangle \otimes\left\langle\eta_{1}, \eta_{2}\right\rangle
\end{gathered}
$$

We also know that for $z=\sum_{i=1}^{n} \xi_{i} \otimes \eta_{i}$ in $\mathcal{X} \otimes_{a l g} \mathcal{Y}$ we have $\langle z, z\rangle_{\mathcal{A} \otimes \mathcal{B}}=\sum_{i, j}\left\langle\xi_{i}, \xi_{j}\right\rangle_{\mathcal{A}} \otimes\left\langle\eta_{i}, \eta_{j}\right\rangle_{\mathcal{B}} \geq 0$ and $\langle z, z\rangle_{\mathcal{A} \otimes \mathcal{B}}=0$ iff $z=0$.
The external tensor product of \mathcal{X} and \mathcal{Y} is the Hilbert module $\mathcal{X} \otimes \mathcal{Y}$ over $\mathcal{A} \otimes \mathcal{B}$ obtained by the completion of the pre-Hilbert $\mathcal{A} \otimes \mathcal{B}$-module $\mathcal{X} \otimes_{\text {alg }} \mathcal{Y}$.

If $P \in M(\mathcal{X})$ and $Q \in M(\mathcal{Y})$ then there is a unique adjointable module morphism $P \otimes Q$: $\mathcal{A} \otimes \mathcal{B} \rightarrow \mathcal{X} \otimes \mathcal{Y}$ such that $(P \otimes Q)(a \otimes b)=P(a) \otimes Q(b)$ and $(P \otimes Q)^{*}(a \otimes b)=P^{*}(a) \otimes Q^{*}(b)$ for all $a \in A$ and for all $b \in B$ (see, for example, [9])

Let I and J be countable index sets.
Theorem 4.1. Let \mathcal{X} and \mathcal{Y} be two Hilbert pro-C*-modules over unitary pro-C*-algebras \mathcal{A} and \mathcal{B}, respectively. Let $\left\{T_{i}\right\}_{i \in I} \subset \operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X})$ be an $*-K$-operator frame for \mathcal{X} with bounds A and B and frame operators S_{T} and $\left\{P_{j}\right\}_{j \in J} \subset \operatorname{Hom}_{\mathcal{B}}^{*}(\mathcal{Y})$ be an $*$-L-operator frame for \mathcal{K} with bounds C and D and frame operators S_{L}. Then $\left\{T_{i} \otimes L_{j}\right\}_{i \in 1, j \in J}$ is an $*-K \otimes L$-operator frame for Hibert $\mathcal{A} \otimes \mathcal{B}$-module $\mathcal{X} \otimes \mathcal{Y}$ with frame operator $S_{T} \otimes S_{P}$ and bounds $A \otimes C$ and $B \otimes D$.

Proof. The defintion of $*-K$-operator frame $\left\{T_{i}\right\}_{i \in I}$ and $*-L-o p e r a t o r ~ f r a m e ~\left\{P_{j}\right\}_{j \in J}$ gives

$$
\begin{aligned}
& A\left\langle K^{*} \xi, K^{*} \xi\right\rangle_{\mathcal{A}} A^{*} \leq \sum_{i \in I}\left\langle T_{i} \xi, T_{i} \xi\right\rangle_{\mathcal{A}} \leq B\langle\xi, \xi\rangle_{\mathcal{A}} B^{*}, \forall \xi \in \mathcal{X} . \\
& C\left\langle L^{*} \eta, L^{*} \eta\right\rangle_{\mathcal{B}} C^{*} \leq \sum_{j \in J}\left\langle P_{j} \eta, P_{j} \eta\right\rangle_{\mathcal{B}} \leq D\langle\eta, \eta\rangle_{\mathcal{B}} D^{*}, \forall \eta \in \mathcal{Y} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \left(A\left\langle K^{*} \xi, K^{*} \xi\right\rangle_{\mathcal{A}} A^{*}\right) \otimes\left(C\left\langle L^{*} \eta, L^{*} \eta\right\rangle_{\mathcal{B}} C^{*}\right) \\
& \leq \sum_{i \in I}\left\langle T_{i} \xi, T_{i} \xi\right\rangle_{\mathcal{A}} \otimes \sum_{j \in J}\left\langle P_{j} \eta, P_{j} \eta\right\rangle_{\mathcal{B}} \\
& \leq\left(B\langle\xi, \xi\rangle_{\mathcal{A}} B^{*}\right) \otimes\left(D\langle\eta, \eta\rangle_{\mathcal{B}} D^{*}\right), \forall \xi \in \mathcal{X}, \forall \eta \in \mathcal{Y} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& (A \otimes C)\left(\left\langle K^{*} \xi, K^{*} \xi\right\rangle_{\mathcal{A}} \otimes\left\langle L^{*} \eta, L^{*} \eta\right\rangle_{\mathcal{B}}\right)\left(A^{*} \otimes C^{*}\right) \\
& \leq \sum_{i \in I, j \in J}\left\langle T_{i} \xi, T_{i} \xi\right\rangle_{\mathcal{A}} \otimes\left\langle P_{j} \eta, P_{j} \eta\right\rangle_{\mathcal{B}} \\
& \leq(B \otimes D)\left(\langle\xi, \xi\rangle_{\mathcal{A}} \otimes\langle\eta, \eta\rangle_{\mathcal{B}}\right)\left(B^{*} \otimes D^{*}\right), \forall \xi \in \mathcal{X}, \forall \eta \in \mathcal{Y} .
\end{aligned}
$$

Consequently we have

$$
\begin{aligned}
& (A \otimes C)\left\langle K^{*} \xi \otimes L^{*} \eta, K^{*} \xi \otimes L^{*} \eta\right\rangle_{\mathcal{A} \otimes \mathcal{B}}(A \otimes C)^{*} \\
& \leq \sum_{i \in l, j \in J}\left\langle T_{i} \xi \otimes P_{j} \eta, T_{i} \xi \otimes P_{j} \eta\right\rangle_{\mathcal{A} \otimes \mathcal{B}} \\
& \leq(B \otimes D)\langle\xi \otimes \eta, \xi \otimes \eta\rangle_{\mathcal{A} \otimes \mathcal{B}}(B \otimes D)^{*}, \forall \xi \in \mathcal{X}, \forall \eta \in \mathcal{Y} .
\end{aligned}
$$

Then for all $\xi \otimes \eta$ in $\mathcal{X} \otimes \mathcal{Y}$ we have

$$
\begin{aligned}
& (A \otimes C)\left\langle(K \otimes L)^{*}(\xi \otimes \eta),(K \otimes L)^{*}(\xi \otimes \eta)\right\rangle_{\mathcal{A} \otimes \mathcal{B}}(A \otimes C)^{*} \\
& \leq \sum_{i \in l, j \in J}\left\langle\left(T_{i} \otimes P_{j}\right)(\xi \otimes \eta),\left(T_{i} \otimes P_{j}\right)(\xi \otimes \eta)\right\rangle_{\mathcal{A} \otimes \mathcal{B}} \\
& \leq(B \otimes D)\langle\xi \otimes \eta, \xi \otimes \eta\rangle_{\mathcal{A} \otimes \mathcal{B}}(B \otimes D)^{*} .
\end{aligned}
$$

The last inequality is true for every finite sum of elements in $\mathcal{X} \otimes_{a l g} \mathcal{Y}$ and then it's true for all $z \in \mathcal{X} \otimes \mathcal{K}$. It shows that $\left\{T_{i} \otimes P_{j}\right\}_{i \in I, j \in J}$ is an $*-K \otimes L$-operator frame for Hilbert $\mathcal{A} \otimes \mathcal{B}$-module $\mathcal{X} \otimes \mathcal{Y}$ with lower and upper bounds $A \otimes C$ and $B \otimes D$, respectively.
By the definition of frame operator S_{T} and S_{P} we have

$$
\begin{aligned}
& S_{T} \xi=\sum_{i \in I} T_{i}^{*} T_{i} \xi, \forall \xi \in \mathcal{X} . \\
& S_{P} \eta=\sum_{j \in J} P_{j}^{*} P_{j} \eta, \forall \eta \in \mathcal{Y} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\left(S_{T} \otimes S_{P}\right)(\xi \otimes \eta) & =S_{T} \xi \otimes S_{P} \eta \\
& =\sum_{i \in 1} T_{i}^{*} T_{i} \xi \otimes \sum_{j \in J} P_{j}^{*} P_{j} \eta \\
& =\sum_{i \in I, j \in J} T_{i}^{*} T_{i} \xi \otimes P_{j}^{*} P_{j} \eta \\
& =\sum_{i \in I, j \in J}\left(T_{i}^{*} \otimes P_{j}^{*}\right)\left(T_{i} \xi \otimes P_{j} \eta\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i \in l, j \in J}\left(T_{i}^{*} \otimes P_{j}^{*}\right)\left(T_{i} \otimes P_{j}\right)(\xi \otimes \eta) \\
& =\sum_{i \in l, j \in J}\left(T_{i} \otimes P_{j}\right)^{*}\left(T_{i} \otimes P_{j}\right)(\xi \otimes \eta) .
\end{aligned}
$$

Then by the uniqueness of frame operator, the last expression is equal to $S_{T \otimes P}(\xi \otimes \eta)$. Consequently we have $\left(S_{T} \otimes S_{P}\right)(\xi \otimes \eta)=S_{T \otimes P}(\xi \otimes \eta)$. The last equality is true for every finite sum of elements in $\mathcal{X} \otimes_{a l g} \mathcal{Y}$ and then it's true for all $z \in \mathcal{X} \otimes \mathcal{Y}$. It follows that $\left(S_{T} \otimes S_{P}\right)(z)=S_{T \otimes P}(z)$. Thus $S_{T \otimes P}=S_{T} \otimes S_{P}$.

References

[1] N. Haddadzadeh, G-frames in Hilbert modules over pro-C*-algebras, Int. J. Ind. Math. 9(4) (2017) 259-267.
[2] M. Azhini and N. Haddadzadeh, Fusion frames in Hilbert modules over pro-C*-algebras, Int. J. Ind. Math. 5(2) (2013) Article ID IJIM-00211.
[3] R. J. Duffin and A. C. Schaeffer, A class of nonharmonic fourier series, Trans. Amer. Math. Soc. 72 (1952) 341-366.
[4] M. Fragoulopoulou, An introduction to the representation theory of topological *-algebras, Schriftenreihe, Univ. Münster, 48 (1988) 1-81.
[5] M. Fragoulopoulou, Tensor products of enveloping locally C^{*}-algebras, Schriftenreihe, Univ. Münster (1997) 1-81.
[6] M. Fragoulopoulou, Topological algebras with involution, North Holland, Amsterdam, 2005.
[7] A. Grossman, and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 27 (1986) 1271-1283.
[8] A. Inoue, Locally C*-algebra, Mem. Fac. Sci. Kyushu Univ. Ser. A, Math. 25(2) (1972) 197-235.
[9] M. Joita, On frames in Hilbert modules over pro-C*-algebras, Topol. Appl. 156 (2008) 83-92.
[10] E. C. Lance, Hilbert C^{*}-modules, A toolkit for operator algebraists, London Math. Soc. Lecture Note Series 210. Cambridge Univ. Press, Cambridge, 1995.
[11] C. Y. Li and H. X. Cao, Operator Frames for $B(\mathcal{H})$, Wavelet Analysis and Applications. Birkhäuser Basel, 2006. 67-82.
[12] A. Mallios, Topological algebras: Selected Topics, North Holland, Amsterdam, 1986.
[13] M. Naroei and A. Nazari, Some properties of -frames in Hilbert modules over pro-C ${ }^{*}$-algebras, Sahand Commun. Math. Anal. 16 (2019) 105-117.
[14] N. C. Phillips, Inverse limits of C*-algebras, J. Oper. Theory. 19 (1988) 159-195.
[15] N. C. Phillips, Representable K-theory for $\sigma-C^{*}$-algebras, K-Theory, 3 (1989) 441-478.
[16] M. Rossafi and S. Kabbaj, Operator frame for $E n d_{\mathcal{A}}^{*}(\mathcal{H})$, J. Linear Topol. Algebra. 8 (2019) 85-95.

