*-K-Operator Frame for $Hom^*_{\mathcal{A}}(\mathcal{X})$

Mohamed Rossafi^{1,*}, Roumaissae El Jazzar² and Ali Kacha²

¹LaSMA Laboratory Department of Mathematics, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, B. P. 1796 Fes Atlas, Morocco mohamed.rossafi@usmba.ac.ma

²Laboratory of Partial Differential Equations, Spectral Algebra and Geometry Department of Mathematics, Faculty of Sciences, University Ibn Tofail, Kenitra, Morocco roumaissae.eljazzar@uit.ac.ma, ali.kacha@yahoo.fr

*Correspondence: rossafimohamed@gmail.com

ABSTRACT. In this work, we introduce the concept of *-K-operator frames in Hilbert pro- C^* -modules, which is a generalization of K-operator frame. We present the analysis operator, the synthesis operator and the frame operator. We also give some properties and we study the tensor product of *-K-operator frame for Hilbert pro- C^* -modules.

1. INTRODUCTION

Duffin and Schaeffer introduced the notion of frame in nonharmonic Fourier analysis in 1952 [3]. In 1986 the work of Duffin and Schaeffer were reintroduced and developed by Grossman and Meyer [7]. The concept of frame on Hilbert space has already been successfully extended to pro- C^* -algebras and Hilbert modules. Many properties of frames in Hilbert C^* -modules are valid for frames of multipliers in Hilbert modules over pro- C^* -algebras [9].

Operator frames for $B(\mathcal{H})$ is a new notion of frames that Li and Cio introduced in [11] and generalized by Rossafi in [16]. In this work we introduce the notion of *-K-operator frame for the space $Hom_{A}^{*}(\mathcal{X})$ of all adjointable operators on a Hilbert pro- C^{*} -module for \mathcal{X} .

This paper is divided into three sections. In section 2 we recall some fundamental definitions and notations of Hilbert pro- C^* -modules. In section 3 we introduce the *-K-operator Frame and we give some of its properties. Lastly we investigate tensor product of Hilbert pro- C^* -modules, we show that tensor product of *-K-operator frames for Hilbert pro- C^* -modules \mathcal{X} and \mathcal{Y} , present an *-K-operator frames for $\mathcal{X} \otimes \mathcal{Y}$, and tensor product of their frame operators is the frame operator of their tensor product of *-K-operator frames.

Received: 18 Nov 2021.

Key words and phrases. frame; *-K-operator frame; K-operator frame pro-*C**-algebra; Hilbert pro-*C**-modules; tensor product.

2. Preliminaries

The basic information about pro- C^* -algebras can be found in the works [4–6, 8, 12, 14, 15].

 C^* -algebra whose topology is induced by a family of continuous C^* -seminorms instead of a C^* -norm is called pro- C^* -algebra. Hilbert pro- C^* -modules are generalizations of Hilbert spaces by allowing the inner product to take values in a pro- C^* -algebra rather than in the field of complex numbers.

Pro- C^* -algebra is defined as a complete Hausdorff complex topological *-algebra \mathcal{A} whose topology is determined by its continuous C^* -seminorms in the sens that a net $\{a_{\alpha}\}$ converges to 0 if and only if $p(a_{\alpha})$ converges to 0 for all continuous C^* -seminorm p on \mathcal{A} [8,10,15], and we have:

1) $p(ab) \leq p(a)p(b)$

2)
$$p(a^*a) = p(a)^2$$

for all $a, b \in \mathcal{A}$

If the topology of pro- C^* -algebra is determined by only countably many C^* -seminorms, then it is called a σ - C^* -algebra.

We denote by sp(a) the spectrum of a such that: $sp(a) = \{\lambda \in \mathbb{C} : \lambda 1_{\mathcal{A}} - a \text{ is not invertible }\}$ for all $a \in \mathcal{A}$. Where \mathcal{A} is unital pro- C^* -algebra with unite $1_{\mathcal{A}}$.

The set of all continuous C^* -seminorms on \mathcal{A} is denoted by $S(\mathcal{A})$. If \mathcal{A}^+ denotes the set of all positive elements of \mathcal{A} , then \mathcal{A}^+ is a closed convex C^* -seminorms on \mathcal{A} .

Example 2.1. Every *C**-algebra is a pro-*C**-algebra.

Proposition 2.2. [8] Let A be a unital pro- C^* -algebra with an identity 1_A . Then for any $p \in S(A)$, we have:

- (1) $p(a) = p(a^*)$ for all $a \in A$
- (2) $p(1_{\mathcal{A}}) = 1$
- (3) If $a, b \in A^+$ and $a \leq b$, then $p(a) \leq p(b)$
- (4) If $1_{\mathcal{A}} \leq b$, then b is invertible and $b^{-1} \leq 1_{\mathcal{A}}$
- (5) If $a, b \in A^+$ are invertible and $0 \le a \le b$, then $0 \le b^{-1} \le a^{-1}$
- (6) If $a, b, c \in A$ and $a \leq b$ then $c^*ac \leq c^*bc$
- (7) If $a, b \in A^+$ and $a^2 \leq b^2$, then $0 \leq a \leq b$

Definition 2.3. [15] A pre-Hilbert module over pro- C^* -algebra \mathcal{A} , is a complex vector space E which is also a left \mathcal{A} -module compatible with the complex algebra structure, equipped with an \mathcal{A} -valued inner product $\langle ., . \rangle E \times E \to \mathcal{A}$ which is \mathbb{C} -and \mathcal{A} -linear in its first variable and satisfies the following conditions:

- 1) $\langle \xi, \eta \rangle^* = \langle \eta, \xi \rangle$ for every $\xi, \eta \in E$
- 2) $\langle \xi, \xi \rangle \ge 0$ for every $\xi \in E$

3) $\langle \xi, \xi \rangle = 0$ if and only if $\xi = 0$

for every $\xi, \eta \in E$. We say E is a Hilbert A-module (or Hilbert pro- C^* -module over A). If E is complete with respect to the topology determined by the family of seminorms

$$ar{p}_E(\xi) = \sqrt{p(\langle \xi, \xi \rangle)} \quad \xi \in E, p \in S(\mathcal{A})$$

Let \mathcal{A} be a pro- \mathcal{C}^* -algebra and let \mathcal{X} and \mathcal{Y} be Hilbert \mathcal{A} -modules and assume that I and J be countable index sets. A bounded \mathcal{A} -module map from \mathcal{X} to \mathcal{Y} is called an operators from \mathcal{X} to \mathcal{Y} . We denote the set of all operator from \mathcal{X} to \mathcal{Y} by $Hom_{\mathcal{A}}(\mathcal{X}, \mathcal{Y})$.

Definition 2.4. [1] An \mathcal{A} -module map $\mathcal{T} : \mathcal{X} \longrightarrow \mathcal{Y}$ is adjointable if there is a map $\mathcal{T}^* : \mathcal{Y} \longrightarrow \mathcal{X}$ such that $\langle T\xi, \eta \rangle = \langle \xi, T^*\eta \rangle$ for all $\xi \in \mathcal{X}, \eta \in \mathcal{Y}$, and is called bounded if for all $p \in S(\mathcal{A})$, there is $M_p > 0$ such that $\bar{p}_{\mathcal{Y}}(T\xi) \leq M_p \bar{p}_{\mathcal{X}}(\xi)$ for all $\xi \in \mathcal{X}$.

We denote by $Hom^*_{\mathcal{A}}(\mathcal{X}, \mathcal{Y})$, the set of all adjointable operator from \mathcal{X} to \mathcal{Y} and $Hom^*_{\mathcal{A}}(\mathcal{X}) = Hom^*_{\mathcal{A}}(\mathcal{X}, \mathcal{X})$

Definition 2.5. [1] Let \mathcal{A} be a pro- C^* -algebra and \mathcal{X}, \mathcal{Y} be two Hilbert \mathcal{A} -modules. The operator $\mathcal{T} : \mathcal{X} \to \mathcal{Y}$ is called uniformly bounded below, if there exists C > 0 such that for each $p \in S(\mathcal{A})$,

$$\bar{p}_{\mathcal{Y}}(\mathcal{T}\xi) \leqslant C\bar{p}_{\mathcal{X}}(\xi), \quad \text{ for all } \xi \in \mathcal{X}$$

and is called uniformly bounded above if there exists C' > 0 such that for each $p \in S(\mathcal{A})$,

$$\bar{p}_{\mathcal{Y}}(\mathcal{T}\xi) \ge C'\bar{p}_{\mathcal{X}}(\xi), \quad \text{for all } \xi \in \mathcal{X}$$
$$\|\mathcal{T}\|_{\infty} = \inf\{M : M \text{ is an upper bound for } \mathcal{T}\}$$
$$\hat{p}_{\mathcal{Y}}(\mathcal{T}) = \sup\{\bar{p}_{\mathcal{Y}}(\mathcal{T}(x)) : \xi \in \mathcal{X}, \quad \bar{p}_{\mathcal{X}}(\xi) \le 1\}$$

It's clear to see that, $\hat{p}(T) \leq ||T||_{\infty}$ for all $p \in S(\mathcal{A})$.

Proposition 2.6. [2]. Let \mathcal{X} be a Hilbert module over pro- C^* -algebra \mathcal{A} and \mathcal{T} be an invertible element in $Hom^*_{\mathcal{A}}(\mathcal{X})$ such that both are uniformly bounded. Then for each $\xi \in \mathcal{X}$,

$$\|T^{-1}\|_{\infty}^{-2} \langle \xi, \xi \rangle \leq \langle T\xi, T\xi \rangle \leq \|T\|_{\infty}^{2} \langle \xi, \xi \rangle.$$

3. *-K-operator frame for $Hom_{\mathcal{A}}^{*}(\mathcal{X})$

We begin this section with the definition of a K-operator frame.

Definition 3.1. Let $\{T_i\}_{i \in I}$ be a family of adjointable operators on a Hilbert \mathcal{A} -module \mathcal{X} over a unital pro- C^* -algebra, and let $K \in Hom^*_{\mathcal{A}}(\mathcal{X})$. $\{T_i\}_{i \in I}$ is called a K-operator frame for $Hom^*_{\mathcal{A}}(\mathcal{X})$, if there exist two positive constants A, B > 0 such that

$$A\langle \mathcal{K}^*\xi, \mathcal{K}^*\xi \rangle \leq \sum_{i \in I} \langle \mathcal{T}_i\xi, \mathcal{T}_i\xi \rangle \leq B\langle \xi, \xi \rangle, \forall \xi \in \mathcal{X}.$$
(3.1)

The numbers A and B are called lower and upper bound of the K-operator frame, respectively. If

$$A\langle K^*\xi, K^*\xi\rangle = \sum_{i\in I} \langle T_i\xi, T_i\xi\rangle$$

the *K*-operator frame is an *A*-tight. If A = 1, it is called a normalized tight *K*-operator frame or a Parseval *K*-operator frame.

We will now move to define the *-K-operator frame for $Hom^*_{\mathcal{A}}(\mathcal{X})$.

Definition 3.2. Let $\{T_i\}_{i \in I}$ be a family of adjointable operators on a Hilbert \mathcal{A} -module \mathcal{X} over a unital pro- C^* -algebra, and let $K \in Hom^*_{\mathcal{A}}(\mathcal{X})$. $\{T_i\}_{i \in I}$ is called a *-K-operator frame for $Hom^*_{\mathcal{A}}(\mathcal{H})$, if there exists two nonzero elements \mathcal{A} and \mathcal{B} in \mathcal{A} such that

$$A\langle \mathcal{K}^*\xi, \mathcal{K}^*\xi \rangle A^* \leq \sum_{i \in I} \langle T_i\xi, T_i\xi \rangle \leq B\langle \xi, \xi \rangle B^*, \forall \xi \in \mathcal{X}.$$
(3.2)

The elements A and B are called lower and upper bounds of the *-K-operator frame, respectively. If

$$A\langle K^*\xi, K^*\xi \rangle^* = \sum_{i \in I} \langle T_i\xi, T_i\xi \rangle,$$

the *-*K*-operator frame is an *A*-tight. If A = 1, it is called a normalized tight *-*K*-operator frame or a Parseval *-*K*-operator frame.

Example 3.3. Let l^{∞} be the set of all bounded complex-valued sequences. For any $u = \{u_j\}_{j \in \mathbb{N}}, v = \{v_j\}_{j \in \mathbb{N}} \in l^{\infty}$, we define

$$uv = \{u_j v_j\}_{j \in \mathbb{N}}, u^* = \{\overline{u}_j\}_{j \in \mathbb{N}}, \|u\| = \sup_{j \in \mathbb{N}} |u_j|.$$

Then $\mathcal{A} = \{ I^{\infty}, \|.\| \}$ is a \mathbb{C}^* -algebra. Then \mathcal{A} is pro- \mathbb{C}^* -algebra.

Let $\mathcal{X} = C_0$ be the set of all null sequences. For any $u, v \in \mathcal{X}$ we define

$$\langle u, v \rangle = uv^* = \{u_i \overline{u}_i\}_{i \in \mathbb{N}}.$$

Therefore \mathcal{X} is a Hilbert \mathcal{A} -module.

Define $f_j = \{f_i^j\}_{i \in \mathbb{N}^*}$ by $f_i^j = \frac{1}{2} + \frac{1}{i}$ if i = j and $f_i^j = 0$ if $i \neq j \ \forall j \in \mathbb{N}^*$. Now define the adjointable operator $T_j : \mathcal{X} \to \mathcal{X}, \ T_j\{(\xi_i)_i\} = (\xi_i f_i^j)_i$. Then for every $x \in \mathcal{X}$ we have

$$\sum_{j\in\mathbb{N}} \langle \mathcal{T}_j\xi, \mathcal{T}_j\xi \rangle = \{\frac{1}{2} + \frac{1}{i}\}_{i\in\mathbb{N}^*} \langle \xi, \xi \rangle \{\frac{1}{2} + \frac{1}{i}\}_{i\in\mathbb{N}^*}.$$

So $\{T_j\}_j$ is a $\{\frac{1}{2} + \frac{1}{i}\}_{i \in \mathbb{N}^*}$ -tight *-operator frame. Let $\mathcal{K} : \mathcal{H} \to \mathcal{H}$ defined by $\mathcal{K}\xi = \{\frac{\xi_i}{i}\}_{i \in \mathbb{N}^*}$.

Let $K : \mathcal{H} \to \mathcal{H}$ defined by $K\zeta = \{\frac{1}{i}\}_{i=1}^{N}$

Then for every $\xi \in \mathcal{X}$ we have

$$\langle \mathcal{K}^*\xi, \mathcal{K}^*\xi \rangle \leq \sum_{j \in \mathbb{N}} \langle T_j\xi, T_j\xi \rangle = \{\frac{1}{2} + \frac{1}{i}\}_{i \in \mathbb{N}^*} \langle \xi, \xi \rangle \{\frac{1}{2} + \frac{1}{i}\}_{i \in \mathbb{N}^*}.$$

This shows that $\{T_j\}_{j \in \mathbb{N}}$ is an *-*K*-operator frame with bounds 1, $\{\frac{1}{2} + \frac{1}{i}\}_{i \in \mathbb{N}^*}$.

- **Remark 3.4.** (1) Every *-operator frame for $Hom^*_{\mathcal{A}}(\mathcal{X})$ is an *-K-operator frame, for any $K \in Hom^*_{\mathcal{A}}(\mathcal{X})$: $K \neq 0$.
 - (2) If $K \in Hom^*_{\mathcal{A}}(\mathcal{X})$ is a surjective operator, then every *-K-operator frame for $Hom^*_{\mathcal{A}}(\mathcal{X})$ is an *-operator frame.

Example 3.5. Let \mathcal{X} be a finitely or countably generated Hilbert \mathcal{A} -module. $Hom_{\mathcal{A}}^*(\mathcal{X})$. Let $\mathcal{K} \in Hom_{\mathcal{A}}^*(\mathcal{X})$ an invertible element such that both are uniformly bounded and $\mathcal{K} \neq 0$. Let $\{T_i\}_{i \in I}$ be an *-operator frame for \mathcal{X} with bounds \mathcal{A} and \mathcal{B} , respectively. We have

$$A\langle \xi,\xi\rangle A^* \leq \sum_{i\in I} \langle T_i\xi,T_i\xi\rangle \leq B\langle \xi,\xi\rangle B^*, \forall \xi\in \mathcal{X}.$$

Or

$$\langle \mathcal{K}^* \xi, \mathcal{K}^* \xi
angle \leq \|\mathcal{K}\|_\infty^2 \langle \xi, \xi
angle, orall \xi \in \mathcal{X}.$$

Then

$$\|K\|_{\infty}^{-1}A\langle K^{*}\xi, K^{*}\xi\rangle(\|K\|_{\infty}^{-1}A)^{*} \leq \sum_{i\in I} \langle T_{i}\xi, T_{i}\xi\rangle \leq B\langle \xi, \xi\rangle B^{*}, \forall \xi \in \mathcal{X}$$

So $\{T_i\}_{i \in I}$ is *-K-operator frame for \mathcal{X} with bounds $\|K\|_{\infty}^{-1}A$ and B, respectively.

In what follows, we introduce the analysis, the synthesis and the frame operator. We also establish some properties.

Let $\{T_i\}_{i\in I}$ be an *-K-operator frame for $Hom_{\mathcal{A}}^*(\mathcal{X})$. Define an operator $R : \mathcal{X} \to l^2(\mathcal{X})$ by $R\xi = \{T_i\xi\}_{i\in I}, \forall \xi \in \mathcal{X}$, then R is called the analysis operator. The adjoint of the analysis operator $R, R^* : l^2(\mathcal{X}) \to \mathcal{X}$ is given by $R^*(\{\xi_i\}_i) = \sum_{i\in I} T_i^*\xi_i, \forall \{\xi_i\}_i \in l^2(\mathcal{X})$. The operator R^* is called the synthesis operator. By composing R and R^* , the frame operator $S : \mathcal{X} \to \mathcal{X}$ is given by $S\xi = R^*R\xi = \sum_{i\in I} T_i^*T_i\xi$.

Note that *S* need not be invertible in general. But under some condition *S* will be invertible.

Theorem 3.6. Let K be a surjective operators in $Hom^*_{\mathcal{A}}(\mathcal{X})$. If $\{\mathcal{T}_i\}_{i \in I}$ is an *-K-operator frame for $Hom^*_{\mathcal{A}}(\mathcal{X})$, then the frame operator S is positive, invertible and adjointable. In addition we have the reconstruction formula, $\xi = \sum_{i \in I} \mathcal{T}_i^* \mathcal{T}_i S^{-1} \xi$, $\forall \xi \in \mathcal{X}$.

Proof. We start by showing that, S is a self-adjoint operator. By definition we have $\forall \xi, \eta \in \mathcal{H}$

$$\langle S\xi, \eta \rangle = \left\langle \sum_{i \in I} T_i^* T_i \xi, \eta \right\rangle$$

= $\sum_{i \in I} \langle T_i^* T_i \xi, \eta \rangle$
= $\sum_{i \in I} \langle \xi, T_i^* T_i \eta \rangle$

$$= \left\langle \xi, \sum_{i \in I} T_i^* T_i \eta \right\rangle$$
$$= \langle \xi, S \eta \rangle.$$

Then *S* is a selfadjoint.

The operator *S* is clearly positive.

By (2) in Remark 3.4 $\{T_i\}_{i \in I}$ is an *-operator frame for $Hom_{\mathcal{A}}^*(\mathcal{X})$.

The definition of an *-operator gives

$$A_1\langle\xi,\xi\rangle A_1^* \leq \sum_{i\in I} \langle T_i\xi,T_i\xi\rangle \leq B\langle\xi,\xi\rangle B^*.$$

Thus by the definition of norm in $l^2(\mathcal{X})$

$$\bar{p}_{\mathcal{X}}(R\xi)^2 = \bar{p}_{\mathcal{X}}(\sum_{i \in I} \langle T_i \xi, T_i \xi \rangle) \le \bar{p}_{\mathcal{X}}(B)^2 p(\langle \xi, \xi \rangle), \forall \xi \in \mathcal{X}.$$
(3.3)

Therefore *R* is well defined and $\bar{p}_{\mathcal{X}}(R) \leq \bar{p}_{\mathcal{X}}(B)$. It's clear that *R* is a linear *A*-module map. We will then show that the range of *R* is closed. Let $\{R\xi_n\}_{n\in\mathbb{N}}$ be a sequence in the range of *R* such that $\lim_{n\to\infty} R\xi_n = \eta$. For $n, m \in \mathbb{N}$, we have

$$p(A\langle\xi_n-\xi_m,\xi_n-\xi_m\rangle A^*) \leq p(\langle R(\xi_n-\xi_m),R(\xi_n-\xi_m)\rangle) = \bar{p}_{\mathcal{X}}(R(\xi_n-\xi_m))^2.$$

Seeing that $\{R\xi_n\}_{n\in\mathbb{N}}$ is Cauchy sequence in \mathcal{X} , then

 $p(A\langle \xi_n - \xi_m, \xi_n - \xi_m \rangle A^*) \to 0$, as $n, m \to \infty$. Note that for $n, m \in \mathbb{N}$,

$$p(\langle \xi_n - \xi_m, \xi_n - \xi_m \rangle) = p(A^{-1}A\langle \xi_n - \xi_m, \xi_n - \xi_m \rangle A^*(A^*)^{-1})$$
$$\leq p(A^{-1})^2 p(A\langle \xi_n - \xi_m, \xi_n - \xi_m \rangle A^*).$$

Thus the sequence $\{\xi_n\}_{n\in\mathbb{N}}$ is Cauchy and hence there exists $\xi \in \mathcal{X}$ such that $\xi_n \to \xi$ as $n \to \infty$. Again by (3.3), we have

$$\bar{p}_{\mathcal{X}}(R(\xi_n-\xi_m))^2 \leq \bar{p}_{\mathcal{X}}(B)^2 p(\langle \xi_n-\xi,\xi_n-\xi\rangle).$$

Thus $p(R\xi_n - R\xi) \to 0$ as $n \to \infty$ implies that $R\xi = \eta$. It is therefore concluded that the range of R is closed. We now show that R is injective. Let $\xi \in \mathcal{X}$ and $R\xi = 0$. Note that $A\langle \xi, \xi \rangle A^* \leq \langle R\xi, R\xi \rangle$ then $\langle \xi, \xi \rangle = 0$ so $\xi = 0$ i.e. R is injective.

For $\xi \in \mathcal{X}$ and $\{\xi_i\}_{i \in I} \in l^2(\mathcal{X})$ we have

$$\langle R\xi, \{\xi_i\}_{i\in I} \rangle = \langle \{T_i\xi\}_{i\in I}, \{\xi_i\}_{i\in I} \rangle = \sum_{i\in I} \langle T_i\xi, \xi_i \rangle = \sum_{i\in I} \langle \xi, T_i^*\xi_i \rangle = \langle \xi, \sum_{i\in I} T_i^*\xi_i \rangle.$$

Then $R^*(\{\xi_i\}_{i \in I}) = \sum_{i \in I} T_i^* \xi_i$. Since R is injective, then the operator R^* has closed range and $\mathcal{X} = range(R^*)$, therefore $S = R^*R$ is invertible

6

Let $K \in Hom^*_{\mathcal{A}}(\mathcal{X})$, in the following theorem we constructed an *-K-operator frame by using an *-operator frame.

Theorem 3.7. Let $\{T_i\}_{i \in I}$ be an *-K-operator frame in \mathcal{X} with bounds A, B and $K \in Hom^*_{\mathcal{A}}(\mathcal{X})$ be an invertible element such that both are uniformly bounded. Then $\{T_iK\}_{i \in I}$ is an *-K*-operator frame in \mathcal{X} with bounds A, $\|K\|_{\infty}B$. The frame operator of $\{T_iK\}_{i \in I}$ is $S' = K^*SK$, where S is the frame operator of $\{T_i\}_{i \in I}$.

Proof. From

$$A\langle \xi, \xi \rangle A^* \leq \sum_{i \in I} \langle T_i \xi, T_i \xi \rangle \leq B\langle \xi, \xi \rangle B^*, \forall \xi \in \mathcal{X}.$$

We get for all $\xi \in \mathcal{X}$,

$$A\langle K\xi, K\xi\rangle A^* \leq \sum_{i\in I} \langle T_iK\xi, T_iK\xi\rangle \leq B\langle K\xi, K\xi\rangle B^* \leq \|K\|_{\infty} B\langle \xi, \xi\rangle (\|K\|_{\infty}B)^*.$$

Then $\{T_i K\}_{i \in I}$ is an $*-K^*$ -operator frame in \mathcal{X} with bounds A, $\|K\|_{\infty}B$.

By definition of *S*, we have $SK\xi = \sum_{i \in I} T_i^* T_i K\xi$. Then

$$\mathcal{K}^*S\mathcal{K}=\mathcal{K}^*\sum_{i\in I}\mathcal{T}_i^*\mathcal{T}_i\mathcal{K}\xi=\sum_{i\in I}\mathcal{K}^*\mathcal{T}_i^*\mathcal{T}_i\mathcal{K}\xi.$$

Hence $S' = K^*SK$.

Corollary 3.8. Let $K \in Hom^*_{\mathcal{A}}(\mathcal{X})$ and $\{T_i\}_{i \in I}$ be an *-operator frame. Then $\{T_iS^{-1}K\}_{i \in I}$ is an *- K^* -operator frame, where S is the frame operator of $\{T_i\}_{i \in I}$.

Proof. Result of the Theorem 3.7 for the *-operator frame $\{T_iS^{-1}\}_{i \in I}$.

4. **TENSOR PRODUCT**

We denote by $\mathcal{A} \otimes \mathcal{B}$, the minimal or injective tensor product of the pro- C^* -algebras \mathcal{A} and \mathcal{B} , it is the completion of the algebraic tensor product $\mathcal{A} \otimes_{alg} \mathcal{B}$ with respect to the topology determined by a family of C^* -seminorms. Suppose that \mathcal{X} is a Hilbert module over a pro- C^* -algebra \mathcal{A} and \mathcal{Y} is a Hilbert module over a pro- C^* -algebra \mathcal{B} . The algebraic tensor product $\mathcal{X} \otimes_{alg} \mathcal{Y}$ of \mathcal{X} and \mathcal{Y} is a pre-Hilbert $\mathcal{A} \otimes \mathcal{B}$ -module with the action of $\mathcal{A} \otimes \mathcal{B}$ on $\mathcal{X} \otimes_{alg} \mathcal{Y}$ defined by

$$(\xi \otimes \eta)(a \otimes b) = \xi a \otimes \eta b$$
 for all $\xi \in \mathcal{X}, \eta \in \mathcal{Y}, a \in \mathcal{A}$ and $b \in \mathcal{B}$

and the inner product

$$\langle \cdot, \cdot \rangle : (\mathcal{X} \otimes_{\mathsf{alg}} \mathcal{Y}) \times (\mathcal{X} \otimes_{\mathsf{alg}} \mathcal{Y}) \to \mathcal{A} \otimes_{\mathsf{alg}} \mathcal{B}.$$
 defined by
 $\langle \xi_1 \otimes \eta_1, \xi_2 \otimes \eta_2 \rangle = \langle \xi_1, \xi_2 \rangle \otimes \langle \eta_1, \eta_2 \rangle$

And we know that for $z = \sum_{i=1}^{n} \xi_i \otimes \eta_i$ in $\mathcal{X} \otimes_{alg} \mathcal{Y}$ we have $\langle z, z \rangle_{\mathcal{A} \otimes \mathcal{B}} = \sum_{i,j} \langle \xi_i, \xi_j \rangle_{\mathcal{A}} \otimes \langle \eta_i, \eta_j \rangle_{\mathcal{B}} \ge 0$ and $\langle z, z \rangle_{\mathcal{A} \otimes \mathcal{B}} = 0$ iff z = 0.

The external tensor product of \mathcal{X} and \mathcal{Y} is the Hilbert module $\mathcal{X} \otimes \mathcal{Y}$ over $\mathcal{A} \otimes \mathcal{B}$ obtained by the completion of the pre-Hilbert $\mathcal{A} \otimes \mathcal{B}$ -module $\mathcal{X} \otimes_{alg} \mathcal{Y}$.

If $P \in M(\mathcal{X})$ and $Q \in M(\mathcal{Y})$ then there is a unique adjointable module morphism $P \otimes Q$: $\mathcal{A} \otimes \mathcal{B} \to \mathcal{X} \otimes \mathcal{Y}$ such that $(P \otimes Q)(a \otimes b) = P(a) \otimes Q(b)$ and $(P \otimes Q)^*(a \otimes b) = P^*(a) \otimes Q^*(b)$ for all $a \in A$ and for all $b \in B$ (see, for example, cite The minimal or injective tensor product of the pro- C^* -algebras \mathcal{A} and \mathcal{B} , denoted by $\mathcal{A} \otimes \mathcal{B}$, is the completion of the algebraic tensor product $\mathcal{A} \otimes_{alg} \mathcal{B}$ with respect to the topology determined by a family of C^* -seminorms. Suppose that \mathcal{X} is a Hilbert module over a pro- C^* -algebra \mathcal{A} and \mathcal{Y} is a Hilbert module over a pro- C^* -algebra \mathcal{B} . The algebraic tensor product $\mathcal{X} \otimes_{alg} \mathcal{Y}$ of \mathcal{X} and \mathcal{Y} is a pre-Hilbert $\mathcal{A} \otimes \mathcal{B}$ -module with the action of $\mathcal{A} \otimes \mathcal{B}$ on $\mathcal{X} \otimes_{alg} \mathcal{Y}$ defined by

$$(\xi \otimes \eta)(a \otimes b) = \xi a \otimes \eta b$$
 for all $\xi \in \mathcal{X}, \eta \in \mathcal{Y}, a \in \mathcal{A}$ and $b \in \mathcal{B}$

and the inner product

$$\langle \cdot, \cdot \rangle : (\mathcal{X} \otimes_{\mathrm{alg}} \mathcal{Y}) \times (\mathcal{X} \otimes_{\mathrm{alg}} \mathcal{Y}) \to \mathcal{A} \otimes_{\mathrm{alg}} \mathcal{B}.$$
 defined by
 $\langle \xi_1 \otimes \eta_1, \xi_2 \otimes \eta_2 \rangle = \langle \xi_1, \xi_2 \rangle \otimes \langle \eta_1, \eta_2 \rangle$

We also know that for $z = \sum_{i=1}^{n} \xi_i \otimes \eta_i$ in $\mathcal{X} \otimes_{alg} \mathcal{Y}$ we have $\langle z, z \rangle_{\mathcal{A} \otimes \mathcal{B}} = \sum_{i,j} \langle \xi_i, \xi_j \rangle_{\mathcal{A}} \otimes \langle \eta_i, \eta_j \rangle_{\mathcal{B}} \ge 0$ and $\langle z, z \rangle_{\mathcal{A} \otimes \mathcal{B}} = 0$ iff z = 0.

The external tensor product of \mathcal{X} and \mathcal{Y} is the Hilbert module $\mathcal{X} \otimes \mathcal{Y}$ over $\mathcal{A} \otimes \mathcal{B}$ obtained by the completion of the pre-Hilbert $\mathcal{A} \otimes \mathcal{B}$ -module $\mathcal{X} \otimes_{alg} \mathcal{Y}$.

If $P \in M(\mathcal{X})$ and $Q \in M(\mathcal{Y})$ then there is a unique adjointable module morphism $P \otimes Q$: $\mathcal{A} \otimes \mathcal{B} \to \mathcal{X} \otimes \mathcal{Y}$ such that $(P \otimes Q)(a \otimes b) = P(a) \otimes Q(b)$ and $(P \otimes Q)^*(a \otimes b) = P^*(a) \otimes Q^*(b)$ for all $a \in A$ and for all $b \in B$ (see, for example, [9])

Let I and J be countable index sets.

Theorem 4.1. Let \mathcal{X} and \mathcal{Y} be two Hilbert pro- C^* -modules over unitary pro- C^* -algebras \mathcal{A} and \mathcal{B} , respectively. Let $\{T_i\}_{i\in I} \subset Hom^*_{\mathcal{A}}(\mathcal{X})$ be an *-K-operator frame for \mathcal{X} with bounds A and B and frame operators S_T and $\{P_j\}_{j\in J} \subset Hom^*_{\mathcal{B}}(\mathcal{Y})$ be an *-L-operator frame for \mathcal{K} with bounds C and D and frame operators S_L . Then $\{T_i \otimes L_j\}_{i\in I, j\in J}$ is an *- $K \otimes L$ -operator frame for Hibert $\mathcal{A} \otimes \mathcal{B}$ -module $\mathcal{X} \otimes \mathcal{Y}$ with frame operator $S_T \otimes S_P$ and bounds $A \otimes C$ and $B \otimes D$.

Proof. The definition of *-K-operator frame $\{T_i\}_{i \in I}$ and *-L-operator frame $\{P_i\}_{i \in J}$ gives

$$\begin{aligned} A\langle K^*\xi, K^*\xi \rangle_{\mathcal{A}} A^* &\leq \sum_{i \in I} \langle T_i\xi, T_i\xi \rangle_{\mathcal{A}} \leq B\langle \xi, \xi \rangle_{\mathcal{A}} B^*, \forall \xi \in \mathcal{X}. \\ C\langle L^*\eta, L^*\eta \rangle_{\mathcal{B}} C^* &\leq \sum_{j \in J} \langle P_j\eta, P_j\eta \rangle_{\mathcal{B}} \leq D\langle \eta, \eta \rangle_{\mathcal{B}} D^*, \forall \eta \in \mathcal{Y}. \end{aligned}$$

Therefore

$$(A\langle K^*\xi, K^*\xi\rangle_{\mathcal{A}}A^*) \otimes (C\langle L^*\eta, L^*\eta\rangle_{\mathcal{B}}C^*)$$

$$\leq \sum_{i\in I} \langle T_i\xi, T_i\xi\rangle_{\mathcal{A}} \otimes \sum_{j\in J} \langle P_j\eta, P_j\eta\rangle_{\mathcal{B}}$$

$$\leq (B\langle \xi, \xi\rangle_{\mathcal{A}}B^*) \otimes (D\langle \eta, \eta\rangle_{\mathcal{B}}D^*), \forall \xi \in \mathcal{X}, \forall \eta \in \mathcal{Y}.$$

Then

$$(A \otimes C)(\langle K^*\xi, K^*\xi \rangle_{\mathcal{A}} \otimes \langle L^*\eta, L^*\eta \rangle_{\mathcal{B}})(A^* \otimes C^*)$$

$$\leq \sum_{i \in I, j \in J} \langle T_i\xi, T_i\xi \rangle_{\mathcal{A}} \otimes \langle P_j\eta, P_j\eta \rangle_{\mathcal{B}}$$

$$\leq (B \otimes D)(\langle \xi, \xi \rangle_{\mathcal{A}} \otimes \langle \eta, \eta \rangle_{\mathcal{B}})(B^* \otimes D^*), \forall \xi \in \mathcal{X}, \forall \eta \in \mathcal{Y}.$$

Consequently we have

$$(A \otimes C) \langle K^* \xi \otimes L^* \eta, K^* \xi \otimes L^* \eta \rangle_{\mathcal{A} \otimes \mathcal{B}} (A \otimes C)^*$$

$$\leq \sum_{i \in I, j \in J} \langle T_i \xi \otimes P_j \eta, T_i \xi \otimes P_j \eta \rangle_{\mathcal{A} \otimes \mathcal{B}}$$

$$\leq (B \otimes D) \langle \xi \otimes \eta, \xi \otimes \eta \rangle_{\mathcal{A} \otimes \mathcal{B}} (B \otimes D)^*, \forall \xi \in \mathcal{X}, \forall \eta \in \mathcal{Y}.$$

Then for all $\xi \otimes \eta$ in $\mathcal{X} \otimes \mathcal{Y}$ we have

$$(A \otimes C) \langle (K \otimes L)^* (\xi \otimes \eta), (K \otimes L)^* (\xi \otimes \eta) \rangle_{\mathcal{A} \otimes \mathcal{B}} (A \otimes C)^*$$

$$\leq \sum_{i \in I, j \in J} \langle (T_i \otimes P_j) (\xi \otimes \eta), (T_i \otimes P_j) (\xi \otimes \eta) \rangle_{\mathcal{A} \otimes \mathcal{B}}$$

$$\leq (B \otimes D) \langle \xi \otimes \eta, \xi \otimes \eta \rangle_{\mathcal{A} \otimes \mathcal{B}} (B \otimes D)^*.$$

The last inequality is true for every finite sum of elements in $\mathcal{X} \otimes_{alg} \mathcal{Y}$ and then it's true for all $z \in \mathcal{X} \otimes \mathcal{K}$. It shows that $\{T_i \otimes P_j\}_{i \in I, j \in J}$ is an $*-\mathcal{K} \otimes L$ -operator frame for Hilbert $\mathcal{A} \otimes \mathcal{B}$ -module $\mathcal{X} \otimes \mathcal{Y}$ with lower and upper bounds $A \otimes C$ and $B \otimes D$, respectively.

By the definition of frame operator S_T and S_P we have

$$S_T \xi = \sum_{i \in I} T_i^* T_i \xi, \forall \xi \in \mathcal{X}.$$
$$S_P \eta = \sum_{j \in J} P_j^* P_j \eta, \forall \eta \in \mathcal{Y}.$$

Therefore

$$(S_T \otimes S_P)(\xi \otimes \eta) = S_T \xi \otimes S_P \eta$$

= $\sum_{i \in I} T_i^* T_i \xi \otimes \sum_{j \in J} P_j^* P_j \eta$
= $\sum_{i \in I, j \in J} T_i^* T_i \xi \otimes P_j^* P_j \eta$
= $\sum_{i \in I, j \in J} (T_i^* \otimes P_j^*)(T_i \xi \otimes P_j \eta)$

$$= \sum_{i \in I, j \in J} (T_i^* \otimes P_j^*) (T_i \otimes P_j) (\xi \otimes \eta)$$
$$= \sum_{i \in I, j \in J} (T_i \otimes P_j)^* (T_i \otimes P_j) (\xi \otimes \eta).$$

Then by the uniqueness of frame operator, the last expression is equal to $S_{T\otimes P}(\xi \otimes \eta)$. Consequently we have $(S_T \otimes S_P)(\xi \otimes \eta) = S_{T\otimes P}(\xi \otimes \eta)$. The last equality is true for every finite sum of elements in $\mathcal{X} \otimes_{alg} \mathcal{Y}$ and then it's true for all $z \in \mathcal{X} \otimes \mathcal{Y}$. It follows that $(S_T \otimes S_P)(z) = S_{T\otimes P}(z)$. Thus $S_{T\otimes P} = S_T \otimes S_P$.

References

- [1] N. Haddadzadeh, G-frames in Hilbert modules over pro-C*-algebras, Int. J. Ind. Math. 9(4) (2017) 259-267.
- M. Azhini and N. Haddadzadeh, Fusion frames in Hilbert modules over pro-C*-algebras, Int. J. Ind. Math. 5(2) (2013) Article ID IJIM-00211.
- [3] R. J. Duffin and A. C. Schaeffer, A class of nonharmonic fourier series, Trans. Amer. Math. Soc. 72 (1952) 341-366.
- [4] M. Fragoulopoulou, An introduction to the representation theory of topological *-algebras, Schriftenreihe, Univ. Münster, 48 (1988) 1–81.
- [5] M. Fragoulopoulou, Tensor products of enveloping locally C*-algebras, Schriftenreihe, Univ. Münster (1997) 1-81.
- [6] M. Fraqoulopoulou, Topological algebras with involution, North Holland, Amsterdam, 2005.
- [7] A. Grossman, and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 27 (1986) 1271-1283.
- [8] A. Inoue, Locally C*-algebra, Mem. Fac. Sci. Kyushu Univ. Ser. A, Math. 25(2) (1972) 197-235.
- [9] M. Joita, On frames in Hilbert modules over $pro-C^*$ -algebras, Topol. Appl. 156 (2008) 83–92.
- [10] E. C. Lance, Hilbert C*-modules, A toolkit for operator algebraists, London Math. Soc. Lecture Note Series 210. Cambridge Univ. Press, Cambridge, 1995.
- [11] C. Y. Li and H. X. Cao, Operator Frames for B(H), Wavelet Analysis and Applications. Birkhäuser Basel, 2006. 67-82.
- [12] A. Mallios, Topological algebras: Selected Topics, North Holland, Amsterdam, 1986.
- [13] M. Naroei and A. Nazari, Some properties of –frames in Hilbert modules over pro-C*-algebras, Sahand Commun. Math. Anal. 16 (2019) 105–117.
- [14] N. C. Phillips, Inverse limits of C*-algebras, J. Oper. Theory. 19 (1988) 159-195.
- [15] N. C. Phillips, Representable K-theory for σ -C*-algebras, K-Theory, 3 (1989) 441-478.
- [16] M. Rossafi and S. Kabbaj, Operator frame for $End^*_{\mathcal{A}}(\mathcal{H})$, J. Linear Topol. Algebra. 8 (2019) 85-95.