On Geometric Constants for Discrete Morrey Spaces

Adam Adam, Hendra Gunawan*

Analysis and Geometry Group, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung 40132, Indonesia adam_adam@students.itb.ac.id, hgunawan@math.itb.ac.id *Correspondence: hgunawan@math.itb.ac.id

ABSTRACT. In this paper we prove that the *n*-th Von Neumann-Jordan constant and the *n*-th James constant for discrete Morrey spaces ℓ_q^p where $1 \le p < q < \infty$ are both equal to *n*. This result tells us that the discrete Morrey spaces are not uniformly non- ℓ^1 , and hence they are not uniformly *n*-convex.

1. INTRODUCTION

Let $n \ge 2$ be a non-negative integer and $(X, \|\cdot\|)$ be a Banach space. The *n*-th Von Neumann-Jordan constant for X [6] is defined by

$$C_{NJ}^{(n)}(X) := \sup\left\{\frac{\sum_{\pm} \|u_1 \pm u_2 \pm \dots \pm u_n\|_X^2}{2^{n-1}\sum_{i=1}^n \|u_i\|_X} : u_i \neq 0, i = 1, 2, \dots, n\right\}$$

and the *n*-th *James constant* for X [7] is defined by

$$C_J^{(n)}(X) := \sup\{\min \|u_1 \pm u_2 \pm \cdots \pm u_n\| : u_i \in S_X, i = 1, 2, \dots, n\}.$$

Note that in the definition of $C_{NJ}^{(n)}(X)$, the sum \sum_{\pm} is taken over all possible combinations of \pm signs. Similarly, in the definition of $C_J^{(n)}(X)$, the minimum is taken over all possible combinations of \pm signs, while the supremum is taken over all u_i 's in the unit sphere $S_X := \{u \in X : ||u|| = 1\}$. These constants measure some sort of convexity of a Banach space.

We say that X is uniformly *n*-convex [2] if for every $\varepsilon \in (0, n]$ there exists a $\delta \in (0, 1)$ such that for every $u_1, u_2, \ldots, u_n \in S_X$ with $||u_1 \pm u_2 \pm \cdots \pm u_n|| \ge \varepsilon$ for all combinations of \pm signs except for $||u_1 + u_2 + \cdots + u_n||$, we have

$$||u_1 + u_2 + \dots + u_n|| \le n(1 - \delta).$$

Received: 31 Aug 2021.

Key words and phrases. *n*-th Von Neumann-Jordan constant; *n*-th James constant; discrete Morrey spaces; uniformly non- ℓ^1 spaces; uniformly *n*-convex spaces.

Meanwhile, we say that X is uniformly non- ℓ_n^1 [1,5,8] if there exists a $\delta \in (0, 1)$ such that for every $u_1, u_2, \ldots, u_n \in S_X$ we have

$$\min \|u_1 \pm u_2 \pm \cdots \pm u_n\| \leq n(1-\delta).$$

Note that for n = 2, uniformly non- ℓ_n^1 spaces are known as uniformly nonsquare spaces, while for n = 3 they are known as uniformly non-octahedral spaces. One may verify that if X is uniformly *n*-convex, then X is uniformly non- ℓ_n^1 [2].

Now a few remarks about the two constants, and their associations with the uniformly non- ℓ_n^1 and uniformly *n*-convex properties.

- $1 \le C_{NJ}^{(n)}(X) \le n$ and $C_{NJ}^{(n)}(X) = 1$ if and only if X is a Hilbert space [6]. $1 \le C_J^{(n)}(X) \le n$. If dim $(X) = \infty$, then $\sqrt{n} \le C_J^{(n)}(X) \le n$. Moreover, if X is a Hilbert space, then $C_{I}^{(n)}(X) = \sqrt{n} [7]$.
- X is uniformly non- ℓ_n^1 if and only if $C_{N,l}^{(n)}(X) < n$ [6].
- X is uniformly non- ℓ_n^1 if and only if $C_1^{(n)}(X) < n$ [7].

The last two statements tell us that if $C_{NJ}^{(n)}(X) = n$ or $C_J^{(n)}(X) = n$, then X is not uniformly non- ℓ_n^1 and hence not uniformly *n*-convex.

In this paper, we shall compute the value of the two constants for discrete Morrey spaces. Let $\omega := \mathbb{N} \cup \{0\}$ and $m = (m_1, m_2, \dots, m_d) \in \mathbb{Z}^d$. Define

$$S_{m,N} := \{k \in \mathbb{Z}^d : ||k - m||_{\infty} \le N\}$$

where $N \in \omega$ and $||m||_{\infty} = \max\{|m_i| : 1 \le i \le d\}$. Denote by $|S_{m,N}|$ the cardinality of $S_{m,N}$ for $m \in \mathbb{Z}^d$ and $N \in \omega$. Then we have $|S_{m,N}| = (2N+1)^d$.

Now let $1 \le p \le q < \infty$. Define $\ell_q^p = \ell_q^p(\mathbb{Z}^d)$ to be the discrete Morrey space as introduced in [3], which consists of all sequences $x : \mathbb{Z}^d \to \mathbb{R}$ with

$$\|x\|_{\ell^{p}_{q}} := \sup_{m \in \mathbb{Z}^{d}, N \in \omega} |S_{m,N}|^{\frac{1}{q} - \frac{1}{p}} \left(\sum_{k \in S_{m,N}} |x_{k}|^{p}\right)^{\frac{1}{p}} < \infty$$

where $x := (x_k)$ with $k \in \mathbb{Z}^d$. One may observe that these discrete Morrey spaces are Banach spaces [3]. Note, in particular, that for p = q, we have $\ell_q^p = \ell^q$.

From [4] we already know that $C_{NJ}(\ell_q^p) = C_J(\ell_q^p) = 2$ for $1 \le p < q < \infty$, which implies that ℓ_q^p are not uniformly nonsquares for those p's and q's. In this paper, we shall show that $C_{N,l}^{(n)}(\ell_q^p) = C_{J}^{(n)}(\ell_q^p) = n$ for $1 \le p < q < \infty$, which leads us to the conclusion that ℓ_q^p are not uniformly non- ℓ_n^1 for those p's and q's, which is sharper than the existing result. (If X is not uniformly non- ℓ_n^1 , then X is not uniformly non- ℓ_{n-1}^1 , provided that $n \ge 3$.)

2. MAIN RESULTS

The value of the *n*-th Von Neumann-Jordan constant and the *n*-th James constant for discrete Morrey spaces are stated in the following theorems. To understand the idea of the proof, we first present the result for n = 3.

Theorem 2.1. For $1 \le p < q < \infty$, we have $C_{NJ}^{(3)}(\ell_q^p(\mathbb{Z}^d)) = C_J^{(3)}(\ell_q^p(\mathbb{Z}^d)) = 3$.

Proof. To prove the theorem, it suffices for us to find $x^{(1)}$, $x^{(2)}$, $x^{(3)} \in \ell_q^p$ such that

$$\frac{\sum_{\pm} \|x^{(1)} \pm x^{(2)} \pm x^{(3)}\|_{\ell_q^p}^2}{2^2 \sum_{i=1}^3 \|x^{(i)}\|_{\ell_q^p}} = 3$$

for the Von Neumann-Jordan constant, and

$$\min \|x^{(1)} \pm x^{(2)} \pm x^{(3)}\|_{\ell^p_a} = 3$$

for the James constant.

Case 1: d = 1. Let $j \in \mathbb{Z}$ be a nonnegative, even integer such that $j > 4^{\frac{q}{q-p}} - 1$, or equivalently

$$(j+1)^{\frac{1}{q}-\frac{1}{p}} < 4^{-\frac{1}{p}}.$$

Construct $x^{(1)}, x^{(2)}, x^{(3)} \in \ell_q^p(\mathbb{Z})$ as follows:

• $x^{(1)} = (x^{(1)}_k)_{k \in \mathbb{Z}}$ is defined by

$$x_k^{(1)} = \begin{cases} 1, & k = 0, j, 2j, 3j, \\ 0, & \text{otherwise}; \end{cases}$$

• $x^{(2)} = (x_k^{(2)})_{k \in \mathbb{Z}}$ is defined by

$$x_{k}^{(2)} = \begin{cases} 1, & k = 0, j, \\ -1, & k = 2j, 3j, \\ 0, & \text{otherwise}; \end{cases}$$

• $x^{(3)} = (x_k^{(3)})_{k \in \mathbb{Z}}$ is defined by

$$x_{k}^{(3)} = \begin{cases} 1, & k = 0, 2j, \\ -1, & k = j, 3j, \\ 0, & \text{otherwise.} \end{cases}$$

The three sequences are in the unit sphere of $\ell^p_q(\mathbb{Z})$. Indeed, for the first sequence, we have

$$\begin{aligned} \|x^{(1)}\|_{\ell_{q}^{p}} &= \sup_{m \in \mathbb{Z}, N \in \omega} |S_{m,N}|^{\frac{1}{q} - \frac{1}{p}} \left(\sum_{k \in S_{m,N}} |x_{k}^{(1)}|^{p} \right)^{\frac{1}{p}} \\ &= \sup_{m \in \mathbb{Z} \cap [0,3j], N \in \mathbb{Z} \cap [0,3j/2]} |S_{m,N}|^{\frac{1}{q} - \frac{1}{p}} \left(\sum_{k \in S_{m,N}} |x_{k}^{(1)}|^{p} \right)^{\frac{1}{p}} \\ &= \max\{1, (j+1)^{\frac{1}{q} - \frac{1}{p}} 2^{\frac{1}{p}}, (2j+1)^{\frac{1}{q} - \frac{1}{p}} 3^{\frac{1}{p}}, (3j+1)^{\frac{1}{q} - \frac{1}{p}} 4^{\frac{1}{p}} \} \end{aligned}$$

Since $(3j+1)^{\frac{1}{q}-\frac{1}{p}} < (2j+1)^{\frac{1}{q}-\frac{1}{p}} < (j+1)^{\frac{1}{q}-\frac{1}{p}} < 4^{-\frac{1}{p}}$, we get $\|x^{(1)}\|_{\ell_q^p} = 1$. Similarly, one may observe that $\|x^{(2)}\|_{\ell_q^p} = \|x^{(3)}\|_{\ell_q^p} = 1$.

Next, we observe that

$$x_{k}^{(1)} + x_{k}^{(2)} + x_{k}^{(3)} = \begin{cases} 3, & k = 0, \\ 1, & k = j, 2j, \\ -1, & k = 3j, \\ 0, & \text{otherwise}; \end{cases}$$
$$x_{k}^{(1)} + x_{k}^{(2)} - x_{k}^{(3)} = \begin{cases} 3, & k = j, \\ 1, & k = 0, 3j, \\ -1, & k = 2j, \\ 0, & \text{otherwise}; \end{cases}$$
$$x_{k}^{(1)} - x_{k}^{(2)} + x_{k}^{(3)} = \begin{cases} 3, & k = 2j, \\ 1, & k = 0, 3j, \\ -1, & k = j, \\ 0, & \text{otherwise}; \end{cases}$$
$$x_{k}^{(1)} - x_{k}^{(2)} - x_{k}^{(3)} = \begin{cases} 3, & k = 3j, \\ 1, & k = j, 2j, \\ -1, & k = 0, \\ 0, & \text{otherwise}. \end{cases}$$

We first compute that

 $\|x^{(1)} + x^{(2)} + x^{(3)}\|_{\ell_q^p} = \max\{3, (j+1)^{\frac{1}{q} - \frac{1}{p}}(3^p + 1)^{\frac{1}{p}}, (2j+1)^{\frac{1}{q} - \frac{1}{p}}(3^p + 2)^{\frac{1}{p}}, (3j+1)^{\frac{1}{q} - \frac{1}{p}}(3^p + 3)^{\frac{1}{p}}\}.$

Notice that

•
$$(j+1)^{\frac{1}{q}-\frac{1}{p}}(3^{p}+1)^{\frac{1}{p}} < \left(\frac{3^{p}+1^{p}}{4}\right)^{\frac{1}{p}} < (3^{p})^{\frac{1}{p}} = 3.$$

• $(2j+1)^{\frac{1}{q}-\frac{1}{p}}(3^{p}+2)^{\frac{1}{p}} < (j+1)^{\frac{1}{q}-\frac{1}{p}}(3^{p}+2)^{\frac{1}{p}} < \left(\frac{3^{p}+2}{4}\right)^{\frac{1}{p}} < 3.$

•
$$(3j+1)^{\frac{1}{q}-\frac{1}{p}}(3^{p}+3)^{\frac{1}{p}} < (j+1)^{\frac{1}{q}-\frac{1}{p}}(3^{p}+3)^{\frac{1}{p}} < \left(\frac{3^{p}+3}{4}\right)^{\frac{1}{p}} < 3$$

Hence, we obtain $||x^{(1)} + x^{(2)} + x^{(3)}||_{\ell_q^p} = 3.$

Similarly, we have

$$\|x^{(1)} \pm x^{(2)} \pm x^{(3)}\|_{\ell^p_q} = \sup_{m \in \mathbb{Z} \cap [0,3j], N \in \mathbb{Z} \cap [0,3j/2]} |S_{m,N}|^{\frac{1}{q} - \frac{1}{p}} \left(\sum_{k \in S_{m,N}} |x^{(1)}_k \pm x^{(2)}_k \pm x^{(3)}_k|^p\right)^{\frac{1}{p}} = 3$$

for every combination of \pm signs. Consequently, $\frac{\sum_{\pm} \|x^{(1)} \pm x^{(2)} \pm x^{(3)}\|_{\ell_q^p}^2}{2^2 \sum_{i=1}^3 \|x^{(i)}\|_{\ell_q^p}} = 3$ and min $\|x^{(1)} \pm x^{(2)} \pm x^{(3)}\|_{\ell_q^p} = 3$, so we come to the conclusion that

$$C_{NJ}^{(3)}(\ell_q^p(\mathbb{Z})) = C_J^{(3)}(\ell_q^p(\mathbb{Z})) = 3.$$

Case 2: d > 1. Let $j \in \mathbb{Z}$ be a nonnegative, even integer such that $j > 4^{\frac{q}{d(q-p)}} - 1$, which is equivalent to

$$(j+1)^{d(\frac{1}{q}-\frac{1}{p})} < 4^{-\frac{1}{p}}$$

We then construct $x^{(1)}$, $x^{(2)}$, $x^{(3)} \in \ell^p_q(\mathbb{Z}^d)$ as follows:

• $x^{(1)} = (x^{(1)}_k)_{k \in \mathbb{Z}^d}$ is defined by

$$x_{k}^{(1)} = \begin{cases} 1, & k = (0, 0, \dots, 0), (j, 0, \dots, 0), (2j, 0, \dots, 0), (3j, 0, \dots, 0), \\ 0, & \text{otherwise}; \end{cases}$$

• $x^{(2)} = (x_k^{(2)})_{k \in \mathbb{Z}^d}$ is defined by

$$x_{k}^{(2)} = \begin{cases} 1, & k = (0, 0, \dots, 0), (j, 0, \dots, 0), \\ -1, & k = (2j, 0, \dots, 0), (3j, 0, \dots, 0), \\ 0, & \text{otherwise}; \end{cases}$$

• $x^{(3)} = (x_k^{(3)})_{k \in \mathbb{Z}^d}$ is defined by

$$x_{k}^{(3)} = \begin{cases} 1, & k = (0, 0, \dots, 0), (2j, 0, \dots, 0), \\ -1, & k = (j, 0, \dots, 0), (3j, 0, \dots, 0), \\ 0, & \text{otherwise.} \end{cases}$$

As in the case where d = 1, one may observe that

$$\begin{aligned} \|x^{(1)}\|_{\ell_{q}^{p}} &= \sup_{m \in \mathbb{Z}^{d}, N \in \omega} |S_{m,N}|^{\frac{1}{q} - \frac{1}{p}} \left(\sum_{k \in S_{m,N}} |x_{k}^{(1)}|^{p} \right)^{\frac{1}{p}} \\ &= \max\{1, (j+1)^{d(\frac{1}{q} - \frac{1}{p})} 2^{\frac{1}{p}}, (2j+1)^{d(\frac{1}{q} - \frac{1}{p})} 3^{\frac{1}{p}}, (3j+1)^{d(\frac{1}{q} - \frac{1}{p})} 4^{\frac{1}{p}} \} \\ &= 1. \end{aligned}$$

We also get $||x^{(2)}||_{\ell_q^p} = ||x^{(3)}||_{\ell_q^p} = 1$. Moreover, through similar observation as in the 1-dimensional case, we have

$$||x^{(1)} \pm x^{(2)} \pm x^{(3)}||_{\ell^p_a} = 3$$

for every possible combinations of \pm signs. It thus follows that

$$C_J^{(3)}(\ell_q^p(\mathbb{Z}^d)) = \sup\{\min \|x_1 \pm x_2 \pm x_3\|_{\ell_q^p} : x_1, x_2, x_3 \in S_{\ell_q^p}\} = 3$$

and

$$C_{NJ}^{(3)}(\ell_q^p(\mathbb{Z}^d)) = \sup\left\{\frac{\sum_{\pm} \|x_1 \pm x_2 \pm x_3\|_{\ell_q^p}^2}{2^2 \sum_{i=1}^3 \|x_i\|_{\ell_q^p}} : x_i \neq 0, i = 1, 2, 3\right\} = 3.$$

We now state the general result for $n \ge 3$. (The proof is also valid for n = 2, which amounts to the work of [3].)

Theorem 2.2. For
$$1 \le p < q < \infty$$
, we have $C_{NJ}^{(n)}(\ell_q^p(\mathbb{Z}^d)) = C_J^{(n)}(\ell_q^p(\mathbb{Z}^d)) = n$.

Proof. As for n = 3, we shall consider the case where d = 1 first, and then the case where d > 1 later.

Case 1: d = 1. Let $j \in \mathbb{Z}$ be a nonnegative, even integer such that $j > 2^{(n-1)(\frac{q}{q-p})} - 1$, which is equivalent to

$$(j+1)^{\frac{1}{q}-\frac{1}{p}} < 2^{-\frac{(n-1)}{p}}.$$

We construct $x^{(i)} \in \ell_q^p \in \mathbb{Z}$ for i = 1, 2, ..., n as follows:

• $x^{(1)} = (x^{(1)}_k)_{k \in \mathbb{Z}}$ is defined by

$$x_k^{(1)} = \begin{cases} 1, & k \in S_1^{(1)}, \\ 0, & \text{otherwise,} \end{cases}$$

where

$$S_1^{(1)} = \{0, j, 2j, 3j, \dots, (2^{n-1} - 1)j\};$$

• $x^{(i)} = (x^{(i)}_k)_{k \in \mathbb{Z}}$ for $2 \le i \le n$ is defined by

$$x_{k}^{(i)} = \begin{cases} 1, & k \in S_{1}^{(i)}, \\ -1, & k \in S_{-1}^{(i)}, \\ 0, & \text{otherwise}, \end{cases}$$

with the following rules: Write $P = \{0, j, 2j, \dots, (2^{n-1}-1)j\}$ as

$$P = P_1^{(i)} \cup P_2^{(i)} \cup \dots \cup P_{2^{i-1}}^{(i)}$$

where $P_1^{(i)}$ consists of the first $\frac{2^{n-1}}{2^{i-1}}$ terms of P, $P_2^{(i)}$ consists of the next $\frac{2^{n-1}}{2^{i-1}}$ terms of P, and so on. Then $S_1^{(i)}$ and $S_{-1}^{(i)}$ are given by

$$S_{1}^{(i)} = P_{1}^{(i)} \cup P_{3}^{(i)} \cup \dots \cup P_{2^{i-1}-1}^{(i)},$$

$$S_{-1}^{(i)} = P_{2}^{(i)} \cup P_{4}^{(i)} \cup \dots \cup P_{2^{i-1}}^{(i)}.$$

For example, for i = 2, $x^{(2)} = (x_k^{(2)})_{k \in \mathbb{Z}}$ is defined by

$$x_k^{(2)} = \begin{cases} 1, & k \in S_1^{(2)}, \\ -1, & k \in S_{-1}^{(2)}, \\ 0, & \text{otherwise}, \end{cases}$$

where

$$S_{1}^{(2)} = \left\{ 0, j, 2j, 3j, \dots, \left(\frac{2^{n-1}}{2} - 1\right)j \right\}$$
$$S_{-1}^{(2)} = \left\{ \left(\frac{2^{n-1}}{2}\right)j, \left(\frac{2^{n-1}}{2} + 1\right)j, \dots, (2^{n-1} - 1)j \right\};$$

Note that the largest absolute value of the terms of $x^{(i)}$ in the above construction will be equal to 1 for each i = 1, ..., n. Next, since the number of possible combinations of \pm signs in $x^{(1)} \pm x^{(2)} \pm \cdots \pm x^{(n)}$ is 2^{n-1} , the above construction will give us $1 + 1 + \cdots + 1 = n$ as the largest absolute value of $x^{(1)} \pm x^{(2)} \pm \cdots \pm x^{(n)}$ for every combination of \pm signs. This means that, if $x^{(1)} \pm x^{(2)} \pm \cdots \pm x^{(n)} = (x_k)_{k \in \mathbb{Z}}$, then $\max_{k \in \mathbb{Z}} |x_k| = n$.

Let us now compute the norms. For $x^{(1)}$, we have

$$\begin{aligned} \|x^{(1)}\|_{\ell_{q}^{p}} &= \sup_{m \in \mathbb{Z}, N \in \omega} |S_{m,N}|^{\frac{1}{q} - \frac{1}{p}} \left(\sum_{k \in S_{m,N}} |x_{k}^{(1)}|^{p} \right)^{\frac{1}{p}} \\ &= \sup_{m \in \mathbb{Z} \cap [0, (2^{n-1} - 1)j], N \in \mathbb{Z} \cap [0, (2^{n-1} - 1)j/2]} |S_{m,N}|^{\frac{1}{q} - \frac{1}{p}} \left(\sum_{k \in S_{m,N}} |x_{k}^{(1)}|^{p} \right)^{\frac{1}{p}} \\ &= \max\{1, (j+1)^{\frac{1}{q} - \frac{1}{p}} 2^{\frac{1}{p}}, (2j+1)^{\frac{1}{q} - \frac{1}{p}} 3^{\frac{1}{p}}, \dots, ((2^{n-1} - 1)j+1)^{\frac{1}{q} - \frac{1}{p}} 2^{\frac{n-1}{p}} \}. \end{aligned}$$

For each $r = 1, 2, ..., 2^{n-1} - 1$, we have $(rj+1)^{\frac{1}{q}-\frac{1}{p}} \leq (j+1)^{\frac{1}{q}-\frac{1}{p}}$ and $(r+1)^{\frac{1}{p}} \leq 2^{\frac{n-1}{p}}$, so that

$$(rj+1)^{\frac{1}{q}-\frac{1}{p}}(r+1)^{\frac{1}{p}} \le (j+1)^{\frac{1}{q}-\frac{1}{p}}2^{\frac{n-1}{p}} < 2^{-\frac{n-1}{p}}2^{\frac{n-1}{p}} = 1.$$

Hence we obtain $||x^{(1)}||_{\ell_q^{\rho}} = 1$. Similarly, one may verify that

$$\|x^{(2)}\|_{\ell^p_q} = \|x^{(3)}\|_{\ell^p_q} = \dots = \|x^{(n)}\|_{\ell^p_q} = 1$$

Next, we shall compute the norms of $x^{(1)} \pm x^{(2)} \pm \cdots \pm x^{(n)}$. Write $x^{(1)} + x^{(2)} + \cdots + x^{(n)} = (x_k)_{k \in \mathbb{Z}}$ where

$$x_k := \begin{cases} a_1, & k = 0, \\ a_2, & k = j, \\ a_3, & k = 2j, \\ \vdots & & \\ a_{2^{n-1}}, & k = (2^{n-1} - 1)j, \\ 0, & \text{otherwise}, \end{cases}$$

with $a_1 = n$ and $|a_i| < n$ for $i = 2, 3, ..., (2^{n-1})j$. Accordingly, we have

$$\begin{aligned} \|x^{(1)} + x^{(2)} + \dots + x^{(n)}\|_{\ell_{q}^{p}} &= \sup_{m \in \mathbb{Z}, N \in \omega} |S_{m,N}|^{\frac{1}{q} - \frac{1}{p}} \left(\sum_{k \in S_{m,N}} |x_{k}|^{p}\right)^{\frac{1}{p}} \\ &= \sup_{m \in \mathbb{Z} \cap [0, (2^{n-1} - 1)j], N \in \mathbb{Z} \cap [0, (2^{n-1} - 1)j/2]} |S_{m,N}|^{\frac{1}{q} - \frac{1}{p}} \left(\sum_{k \in S_{m,N}} |x_{k}|^{p}\right)^{\frac{1}{p}} \\ &= \max \left\{n, (j+1)^{\frac{1}{q} - \frac{1}{p}} (n^{p} + a_{2}^{p})^{\frac{1}{p}}, (2j+1)^{\frac{1}{q} - \frac{1}{p}} (n^{p} + a_{2}^{p} + a_{3}^{p})^{\frac{1}{p}}, \\ &\dots, ((2^{n-1} - 1)j + 1)^{\frac{1}{q} - \frac{1}{p}} (n^{p} + \sum_{i=2}^{2^{n-1}} a_{i}^{p})^{\frac{1}{p}}\right\}. \end{aligned}$$

Since $(rj+1)^{\frac{1}{q}-\frac{1}{p}} \leq (j+1)^{\frac{1}{q}-\frac{1}{p}}$ for each $r = 1, 2, ..., 2^{n-1}-1$, we obtain

$$(rj+1)^{\frac{1}{q}-\frac{1}{p}} \left(n^{p} + \sum_{i=2}^{r+1} a_{i}^{p} \right)^{\frac{1}{p}} \leq (j+1)^{\frac{1}{q}-\frac{1}{p}} \left(n^{p} + \sum_{i=2}^{r+1} a_{i}^{p} \right)^{\frac{1}{p}}$$

$$< 2^{-\frac{(n-1)}{p}} \left(n^{p} + \sum_{i=2}^{r+1} a_{i}^{p} \right)^{\frac{1}{p}}$$

$$< 2^{-\frac{(n-1)}{p}} \left(\underbrace{n^{p} + n^{p} + \dots + n^{p}}_{r+1 \text{ times}} \right)^{\frac{1}{p}}$$

$$= 2^{-\frac{(n-1)}{p}} (r+1)^{\frac{1}{p}} (n^{p})^{\frac{1}{p}}$$

$$\leq 2^{-\frac{(n-1)}{p}} 2^{\frac{(n-1)}{p}} n$$

$$= n.$$

It thus follows that

$$||x^{(1)} + x^{(2)} + \dots + x^{(n)}||_{\ell_q^p} = n.$$

As we have remarked earlier, the largest absolute value of $x^{(1)} \pm x^{(2)} \pm \cdots \pm x^{(n)}$ is equal to n for every combination of \pm signs. Moreover, it is clear that for $k \notin \{0, 2j, \dots, (2^{n-1}-1)j\}$, the

k-th term of $x^{(1)} \pm x^{(2)} \pm \cdots \pm x^{(n)}$ is equal to 0. Hence, we obtain

$$\|x^{(1)} \pm x^{(2)} \pm \dots \pm x^{(n)}\|_{\ell_q^p} = \sup_{m \in \mathbb{Z}, N \in \omega} |S_{m,N}|^{\frac{1}{q} - \frac{1}{p}} \left(\sum_{k \in S_{m,N}} |x_k^{(1)} \pm x_k^{(2)} \pm \dots \pm x_k^{(n)}|^p \right)^{\frac{1}{p}}$$
$$= \sup_{m \in \mathbb{Z} \cap [0, (2^{n-1} - 1)j], N \in \mathbb{Z} \cap [0, (2^{n-1} - 1)j/2]} |S_{m,N}|^{\frac{1}{q} - \frac{1}{p}} \left(\sum_{k \in S_{m,N}} |x_k^{(1)} \pm x_k^{(2)} \pm \dots \pm x_k^{(n)}|^p \right)^{\frac{1}{p}} = n.$$

Consequently, we get

$$\frac{\sum_{\pm} \|x^{(1)} \pm x^{(2)} \pm \dots \pm x^{(n)}\|_{\ell_q^p}^2}{2^{n-1} \sum_{i=1}^n \|x_i\|_{\ell_q^p}} = \frac{2^{n-1} n^2}{2^{n-1} n} = n$$

and

$$\min \|x^{(1)} \pm x^{(2)} \pm \cdots \pm x^{(n)}\|_{\ell_q^p} = n,$$

whence

$$C_{NJ}^{(n)}(\ell_q^p(\mathbb{Z})) = C_J^{(n)}(\ell_q^p(\mathbb{Z})) = n.$$

Case 2: d > 1. Here we choose $j \in \mathbb{Z}$ to be a nonnegative, even integer such that $j > 2^{(\frac{n-1}{d})(\frac{q}{q-p})} - 1$ or, equivalently,

$$(j+1)^{d(\frac{1}{q}-\frac{1}{p})} < 2^{-\frac{(n-1)}{p}}.$$

Then, using the sequences

$$x^{(i)} = (x_{k_1}^{(i)})_{k_1 \in \mathbb{Z}} \in \ell_q^p(\mathbb{Z}), \quad i = 1, \dots, n,$$

in the case where d = 1, we now define $x^{(i)} := (x_k^{(i)})_{k \in \mathbb{Z}^d} \in \ell_q^p(\mathbb{Z}^d)$ for i = 1, ..., n, where

$$x_{k}^{(i)} = \begin{cases} x_{k_{1}}^{(i)}, & k = (k_{1}, 0, 0, \dots, 0) \\ 0, & \text{otherwise.} \end{cases}$$

We shall then obtain

$$C_{NJ}^{(n)}(\ell_q^p(\mathbb{Z}^d)) = C_J^{(n)}(\ell_q^p(\mathbb{Z}^d)) = n,$$

as desired.

Corollary 2.2.1. For $1 \le p < q < \infty$, the space ℓ_q^p is not uniformly non- ℓ_n^1 .

Corollary 2.2.2. For $1 \le p < q < \infty$, the space ℓ_q^p is not uniformly n-convex.

Acknowledgement. The work is part of the first author's thesis. Both authors are supported by P2MI 2021 Program of Bandung Institute of Technology.

References

- B. Beauzamy, Introduction to Banach Spaces and Their Geometry, 2nd Ed., North Holland, Amsterdam- New York-Oxford, 1985. https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt= PASCAL82X0319279.
- [2] H. Gunawan, D.I. Hakim, A.S. Putri, On geometric properties of Morrey spaces, Ufimsk. Mat. Zh. 13 (2021) 131–136. https://doi.org/10.13108/2021-13-1-131.
- [3] H. Gunawan, E. Kikianty, C. Schwanke, Discrete Morrey spaces and their inclusion properties, Math. Nachr. 291 (2018) 1283–1296. https://doi.org/10.1002/mana.201700054.
- [4] H. Gunawan, E. Kikianty, Y. Sawano, and C. Schwanke, Three geometric constants for Morrey spaces, Bull. Korean. Math. Soc. 56 (2019) 1569-1575. https://doi.org/10.4134/BKMS.b190010.
- [5] R.C. James, Uniformly non-square banach spaces, Ann. Math. 80 (1964) 542-550. https://doi.org/10.2307/ 1970663.
- [6] M. Kato, Y. Takahashi, and K. Hashimoto, On n-th Von Neumann-Jordan constants for Banach spaces, Bull. Kyushu Inst. Tech. 45 (1998), 25–33. https://ci.nii.ac.jp/naid/110000079659.
- [7] L. Maligranda, L. Nikolova, L.-E. Persson, T. Zachariades, On *n*-th James and Khintchine constants of Banach spaces, Math. Inequal. Appl. 1 (2007) 1–22. https://doi.org/10.7153/mia-11-01.
- [8] W.A. Wojczynski, Geometry and martingales in Banach spaces, Part II, in: Probability in Banach Spaces IV, J. Kuelbs, ed., Marcel-Dekker, 1978, 267–517. https://doi.org/10.1201/9780429462153.