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Abstract

Rice is one of the global most critical harvests, and a great many people eat it as a staple eating
routine. Different rice plant diseases harm, spread, and drastically reduce crop yields. In extreme
situations, they may result in no grain harvest at all, posing a severe threat to food security. In
this paper, to amplify the recognition ability for rice leaf disease (RLD) classification, we proposed
hierarchical transfer learning (HTL) methods incorporating ensemble models containing two-step.
In the first step, an ensemble combining MobileNet and DenseNet was addressed to tackle the
diseased leaf problem. Consequently, DenseNet and XceptionNet were fused to identify three
RLDs. Here, we compare our models with state-of-the-art deep learning models such as ResNet,
DenseNet, InceptionNet, Xception, MobileNet, and EfficientNet. Our framework at top-notch with
89 % and 91 % for accuracy. In future works, RLD segmentation is suggested to pinpoint the
illness and quantify the afflicted region.

Keywords: Rice Leaf Disease,Transfer Learning,Ensemble Learning, Hierarchical Learning, CNN.

1. Introduction

Rice disease is one of the factors causing the decline in rice production and even crop failure. One
of the causes of rice disease is fungal attack so that plants dry up and wither by Plant Pest Organ-
isms (PPO) consisting of pests, plant diseases, and weeds. In general, the symptoms of disease
in plants can be seen, although still slightly before reaching a more severe and widespread stage.
Rice leaves are the easiest part to identify disease symptoms that arise in rice. This is because
the leaves have a broad cross-section compared to other parts of the body of the rice plant so
that changes in color and shape can be seen more clearly. Therefore, the leaves can be used
as an initial step for disease detection in rice. The spots that appear on rice leaves have specific
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patterns and colors. Differences in the shape and color of the spots determine the type of disease
affected in rice. The spots that arise have various forms, such as round, oval, rectangular, and
other shapes [1, 2].

The presence of disease attacks on rice can cause crop failure. Proper control is needed when
the attack occurs, and preventive action is the most crucial to avoid harvesting failure. However,
farmers often ignore this situation due to the lack of knowledge and consider these symptoms to
be expected at the time of planting.

With the advancement of digital photography and computer processing in recent years, new meth-
ods for identifying plant diseases have emerged. Because of its visualization capabilities, com-
puter vision technology is becoming an appealing tool for continuous illness monitoring. Image
and machine learning (ML) research and applications have received a lot of attention, and specific
classifiers are often employed to categorize plants into healthy or sick varieties [3, 4, 5]. In reality,
the image obtained must span a wide range of situations in order to capture diverse symptom
signs associated with plant diseases. Plant diseases can also affect any component of the plant,
including the leaves, stems, seeds, and so on. Despite the restrictions, all prior research has
substantially supported the CNN model’s efficacy in detecting plant illnesses.

Our contribution towards this research is the improvement of RLD classifier using a hierarchical
transfer learning (HTL). By using HTL, instead of classifying four class, we classify the normal
and abnormal leaves first before detecting the RLD. As we know, the more targets or outputs, the
longer times it takes to process. Our proposed HTL also achieved the best performance in term
of accuracy.

Many works have been proposed to detect [6, 7, 8], segment [9], and classify [2, 10, 11, 12]
rice leaf disease. In 2020, [13] proposed an on-field dataset containing around 6000 images.
This dataset contains four distinguished RLD, Bacterial Blight, Blast, Brown Spot, and Tungro.
Moreover, this work evaluated eleven pre-trained CNN methods and SVM. It was reported that
CNN incorporated with SVM performs the best compared to other CNN methods.

Li [2] proposed a recognition system for rice leaf disease (RLD) using video-based on CNN. The
suggested technique attempts to detect crop lesion footage in real-time for the first time. The
system included a frame extraction module, an image detector, and a video synthesis module and
was trained on a still-image neural network model using images from their dataset. The system
can distinguish many sorts of lesion locations in a single video. Faster-RCNN is used as the
architecture for the still-image detector, with a custom deep convolutional neural network (DCNN)
backbone. Alidrus [14] proposed a simple CNN to classify RLD. The dataset was collected public
and manually hand-picked from the local paddy field. This work contained three convolutional
layers with MaxPooling paired with ReLU as an activation function. The result of this network
that the accuracy gained was 77 percent. Rahman [5] proposed an RLD identification based on
transfer learning (TL) and fine-tuning model. Even though this method was called Simple CNN, it
adapted from some famous deep learning model, VGGNet16. The results were quite impressive
for both mean accuracy and standard deviation with 94.33 percent and 0.96, respectively.

An RLD classification-based CNN and TL were proposed to differentiate Leaf Blast, Leaf Blight,
and Brown Spot [15]. This method employed five convolutional blocks with a two-dimensional
convolutional layer (CL) in the first two-layer followed by three-dimensional CL in the remaining
layers. Each block is pooled with a maximum value. In the dense layer, it implemented a 128-
neuron fully-connected layer. As the complement of CNN, this research also benefited TL based
on VGG16Net. However, it was concluded that the performance of CNN was worse than VGGNet
based TL with 74% and 92.46%, respectively.

Jiang [16] suggested a study the following year, collecting 40 images of leaf illnesses to improve
the VGGNet model, which is based on the idea of multi-task learning. For TL, the model used
ImageNET’s pre-training model. The model’s accuracy is 97.22 percent for rice leaf diseases,
and for wheat leaf diseases, it is 98.75 percent. Comparative trials show that this strategy outper-
forms the single-task model, a TL reuse-model method, ResNet50, and DenseNet121 models.
The experimental findings suggest that the proposed upgraded VGG16 model and multi-task TL
approach can detect rice and wheat leaf illnesses simultaneously, providing a reliable method for
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Figure 1. Our proposed framework for HTL architecture

recognizing leaf diseases in a wide range of plants.

A MobileNet based is proposed by [17] incorporating two different types of building pieces for two
variations of depthwise separable convolution. To improve accuracy of the regular MobileNet, this
work modified into a reduced MobileNet. A width multiplier α is introduced to reduce computa-
tional complexity within network uniformly. The network model was trained on a public PlantVillage
dataset and achieved around 98% in accuracy. MobileNet is often used to gain small latency for
the Internet of Things (IoT) and embedded systems. A method based on MobileNet was proposed
with optimized bayesian rules for hyperparameter tuning optimization [11]. The proposed work in-
corporates attentive depthwise deep networks and augmented mechanism (AM). The interesting
point of this work was the existence of AM part. AM can smooth and translate the efforts from in-
puts in a spatial domain disparity. The dataset collected contains four categories of RLD with 400
data. For the preprocessing technique, the dataset was processed to morphological segmentation
before being transformed. It was shown that the method achieved accuracy at 94.65%.

2. Research Methods

In this work, we proposed a framework for RLD classification using several layers of deep learning
(DL) models. This section is separated into some subsection which are data gathering, data pre-
processing, first and second layer modeling.

2.1. Data Gathering

We collected some datasets from two different sources. First, we got a public dataset from kag-
gle.com. This dataset was collected from several sources. One of them is from [18]. The content
of the dataset is three distinguished rice leaf diseases, namely Leaf Blast (LB), Hispa (Hsp), and
Brown-spot (BS). Second, we took several photos from some local rice fields and combined them
into the first dataset. We separated the dataset into two groups for detection and classification
purposes from the last dataset. For the detection purpose, we split into healthy and diseased

198



LONTAR KOMPUTER VOL. 13, NO. 3 DECEMBER 2022
DOI : 10.24843/LKJITI.2022.v13.i03.p06
Accredited Sinta 2 by RISTEKDIKTI Decree No. 158/E/KPT/2021

p-ISSN 2088-1541
e-ISSN 2541-5832

classes.

2.2. Data Preprocessing

This subsection preprocessed the dataset with image augmentation (IA) and image resizing. The
word augment does not always mean adding a new data image. Instead of increasing data size,
image augmentation is a series process of multiple transformations such as image rotation, trans-
lation, shearing, flipping, and shifting. Then, the augmentation yields a new image and replaces
the existing image with arbitrary augmented batch images.

By introducing random vibrations and disturbances into the original training pattern, data IA covers
various strategies for generating "new" training patterns. When using IA, the generalization func-
tion of the model improves. Our network is constantly exposed to new, slightly modified copies of
the input data to learn more robust properties. However, we limit the usage of IA during testing,
instead evaluate trained networks against raw test data. Training accuracy is slightly reduced in
most cases, but test accuracy is improved.

2.3. Leaf Disease Detection

In recent year, numerous works based on CNN have been proposed for the task of rice leaf
disease (RLD) classification [5, 19, 12] and TL [2, 20, 10]. Our previous work in 2021 is also
based on CNN [14]. Here, we proposed a framework incorporating hierarchical and TL for rice
leaf disease identification called HiT-LIDIA as in Figure 1. HiT-LIDIA is composed of a two-step
model. In the first step (MK-I), the model classifies rice leaves into two categories, healthy (Hl)
and diseased (Ds). Second (MK-II), the results from diseased leaves are separated into three
distinguished classes: Hsp, LB, and BS. Our framework, not only stops here, but also improved
further by combining each layer with several deep learning methods. We discuss each model as
follows:

2.3.1. MK-I

Standard CNN has a weakness when the convolutional layer goes deeper. It is prone to vanish-
ing gradient and redundant feature windows. DenseNet simplifies the layer-to-layer connectivity
pattern found in previous architectures to tackle such a problem. Rather than relying on extremely
deep or wide topologies for representational strength, DenseNet makes use of the network’s po-
tential by repeating features.

DenseNet [21] and MobileNet [22] have significant results for RLD context compared to other
previous methods. DenseNet, contrary to popular belief, requires fewer parameters than a typical
CNN because it does not require the acquisition of redundant feature images. Additionally, many
layers contribute relatively minor and can be ignored in numerous ResNet versions. ResNet has
considerable quantity trainable parameters with demanding weights to optimize independently.
DenseNet layers, on the other hand, have a minimal number of filters, resulting in an insignificant
number of new feature maps.

MobileNet is a deep learning architecture based on depthwise separable convolution (DSN), which
contains two convolutions, depth-wise (DWC) and point-wise (PWC). Each input channel receives
a single filter via the DWC. This calculation differs from a regular convolution, which filters all input
channels. The computing cost of a conventional convolution is dependent on the extent of both
input and output dimensions allotted, the input attribute map, and the convolution kernel in the
spatial domain. As illustration, given an input image M with size d x d x c and three δ x δ kernels
k with one channel each, we can compute M and k by using DWC. Before that, we compare the
complexity of conventional CNN with DWC. We have:

Θ1 = kδ · kδ · d · d̂ · Fs · Fs (1)

Where Fs denotes the input feature map’s unique dimensions, and kδ denotes the convolution
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Figure 2. Architecture of MK-I.

kernel’s size. The input and output channels are d and d̂, respectively. And for the DWC cost
complexity is:

Θ2 = kδ · kδ · d · Fs · Fs (2)

From equations 1 and 2, we can see that the complexity of Θ2 is reduced compared from Θ1

because the DWC only calculate each channel and not combine them. Additionally, DWC works
with PWC in order to improve the computational speed.

Two pre-trained deep learning models, DenseNet and MobileNet, are incorporated in model MK-I.
A combination of two or more models is also called ensemble learning (EL) [23, 24] Initially, the
top layers of DenseNet are frozen. The previous step was pre-trained with the Hl-Ds dataset (D1).
Various hyperparameters are set beforehand to find the most optimized. Subsequently, the fittest
model is achieved for MK-I. This whole process can be seen as in Figure 2.

2.3.2. MK-II

As we know, regular CNN (RegCNN) is computationally expensive as its layers go deep. For
this reason, many CNN models have been proposed to tackle such problems. For instance,
MobileNet reduced the convolution computation complexity from input images into CNN-feature
maps as well as DenseNet with parameter reduction strategy. InceptionNet, as worthy of its name,
is often mentioned as a breakthrough in CNN world [25]. Instead of working with a deeper layer,
InceptionNet goes wider. This network utilized an auxiliary classifier (AuxC) to achieve better
convergence where standard CNN failed due to vanishing gradient. However, in the next year,
InceptionNet was overwhelmed by XceptionNet in ImageNet challenge [26].

Classifying Hl and Ds rice leaves are insufficient to handle a complex task. It is possible to
add a new output of the Hl class into our dataset and reduce the model just to handle a single
classification task. However, the distribution of both Hs and Ds is imbalanced in real life. In our
case, Hs class prevails over Ds in number. Consequently, instead of putting it into a single task,
we appended a new MK-II model to tackle Ds identification.

Before making the final decision, we trained and evaluated various models, including ResNet,
VGGNet, DenseNet, InceptionNetV3, XceptionNet, and EfficientNet. As a result, we chose the
top two levels as our ensemble model and combined those in MK-II: DenseNet and XceptionNet.
These two models were chosen based on their abilities. The architecture of MK-II can be seen in
Figure 3.
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Figure 3. Architecture of MK-II.

2.4. Evalution Procedures

Considering statistical for true negative (TN), false negative (FN), true positive (TP), and false pos-
itive(FP) detections, a comprehensive experiments was conducted to evaluate the performance
of all models in this paper. Various metrics such as Recall (Rec), Accuracy (Acc), F1-score (F1),
and Precision (Prec) were employed to measure RLD identification as in Eq. 5, 3, 4, and 6,
respectively.

Rec =
TP

TP + TN
(3)

Prec =
TP

TP + FP
(4)

Acc =
TP + TN

TP + TN + FP + FN
(5)

F1 =
2 ∗ TP

2 ∗ TP + FN + FP
(6)

Moreover, we added Cohen’s Kappa metric to assess the settlement between two scorers as
stated in Eq 7.

κ =
δ0 − δe
1− δe

(7)

where κ is the Cohen’s Kappa value, δ0 is the sum of all accuracy of the model, δe is the
settlement score between ground truth and predicted value for related class.

3. Results and Analysis

In this part, both MK-I and MK-II were tested on public rice leaf disease datasets received from
Kaggle. ResNet, DenseNet, EfficientNet, InceptionNet, XceptionNet, and VGGNet were all exam-
ined to determine how well they compared to our models. This test was performed on a PC with
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Figure 4. The sample images from augmentation techniques. (1 - 3) are the rice disease where
(1) is the Brown spot, (2) is Blast, (3) is Hispa. (a) is the original image, (b-h) are the augmentation
results where (b) is horizontal flipping, (c) is vertical flipping, (d) is a 30-degree of freedom rotation,
(e) is zooming, (f) is width shifting, (g) is height shifting, and (g) is shearing

16GB of RAM, an NVIDIA GTX 1050Ti 4GB GPU, and an Intel Core i7 8th-gen processor running
Ubuntu 20.04 x64.

3.1. Dataset Gathering

We collected dataset from public sources https://www.kaggle.com/shayanriyaz/riceleafs (D1) and
https://www.kaggle.com/tedisetiady/leaf-rice-disease-indonesia (D2). The D1 contains four direc-
tories BrownSpot, Healthy, Hispa, and LeafBlast. In order to train MK-I, D1 directories were
restructured into two categories, Healthy and Diseased. BS, Hl, and Hsp were accumulated into
the Diseased directory. We called this dataset Dt1. BS, Hl, and Hsp directories (Dt2) are used to
train MK-II. In addition to the test dataset, we handpicked some RLD from local rice fields with a
smartphone camera. The dataset sample are shown in 4.

3.2. Data Preprocessing

The dataset is partitioned into training and testing with portions 80% and 20%. As aforemen-
tioned, we implemented an image augmentation method to enrich the dataset because our im-
ages are taken in a particular condition with vivid background and foreground. Many augmen-
tations are deployed here, such as horizontal and vertical flipping, random rotation, zooming,
shearing, and shifting width and height to generate synthetic images. Some hyperparameters
were included as input to the synthetic image generator, such as 30 degrees of freedom for ro-
tation, zooming range at 0.2, shifting range at 0.1 and 0.2 for width and height, respectively, and
shearing at 0.2.

All of the images were resized to 224 x 224 pixels with three RGB channels because it is well-
known that the 224-sized image is the most suitable setup for SOTAs in here [27]. As the training
parameters, we set the number of epochs to 20 and batch size to 32. A stochastic gradient
descent (SGD) based algorithm, named ADAM, is adapted as the back-propagation optimization
method. Learning Rate is set to 1e-04, β1 to 0.9, β2 to 0.999, and ϵ to 1e− 08.

3.3. Quantitative Assessment on Ds1

In here, we conducted assessment test on previous SOTAs compared with MK-I. We trained each
model with some hyper-parameters. Prior to training, we set iteration to 20 and batch size 32. As
the cost function, we implemented the binary cross-entropy.

Table 1 illustrates the performance comparison of several SOTAs models and our MK-I model.
Overall, the majority of SOTA’s achieved significantly high validated accuracy with scores greater
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Table 1. Assessment results from SOTAs and MK-I.

Models Acc (%) Loss κ Prec Rec F1-score
MK-I 0.89 0.3432 0.783 0.895 0.89 0.895
EfficientNet 0.5 0.7046 0.029 0.52 0.515 0.49
InceptionNetV3 0.88 0.3406 0.767 0.88 0.885 0.88
ResNet50 0.86 0.4061 0.710 0.855 0.86 0.855
VggNet19 0.57 0.6409 0.143 0.57 0.575 0.57
Xception 0.87 0.3451 0.739 0.87 0.87 0.87
DenseNet201 0.88 0.2964 0.766 0.885 0.88 0.885
MobileNet 0.84 0.4404 0.687 0.845 0.85 0.84

Figure 5. Training results from SOTAs and MK-I using Ds1. (a) is the training accuracy, (b) is the
loss

than 80%. Meanwhile, the proportion of the remaining counterparts is relatively lower than 60%.
MK-I stood at overall SOTAs with the percentage of accuracy at roughly 89%. It can be clearly
seen that MK-I was significantly more accurate than EfficientNet and VggNet19. Despite the fact
that MK-I has a tiny improvement over the rest, it is still top-notch. Unfortunately, our model is at
second runner-up in terms of Loss. DenseNet and InceptionNetV3 conquer MK-I.

MK-I outperforms other models for Cohen’s Kappa, Precision, Recall, and F1-score in the follow-
ing metrics. MK-I hit κ with a score of 0.783, followed by DenseNet201 and InceptionNetV3 at the
second and third positions, respectively. EfficientNet is at the bottom tiers with VggNet19, and the
disparity is quite significant compared to others. Furthermore, MK-I is also unrivaled for Precision,
Recall, and F1-score, with a score nearly hitting 0.9.

The line chart in Figure 5 exhibits the trend of six different types of SOTAs and MK-I by training
performance for both accuracy and loss. Overall, it can be seen that the training accuracy is
exponentially increasing while loss is declining. To begin with, it is clear that MK-I was undeniably
the most accurate and converged earlier at epoch 3. MK-I reached a smooth curve while the
others fluctuated and increased steadily. In loss performance, MK-I falls earlier at the first quarter
of epochs while the remainders roughly downward at a slow pace to the end of the epoch. At the
end of the epoch, MK-I is outstanding with 95% accuracy and almost reach 0.1 for loss. Second,
EfficientNet, ResNet, InceptionNetV3, XceptionNet, and MobileNet have remained similar since
the beginning of training and slightly increased and decreased for accuracy and loss over time
during iteration. Finally, VggNet did not make significant gains in both accuracy and loss from the
start. At epoch 18, the accuracy test only climbed from 55% to 60%, and then gradually fell for
loss. Nonetheless, towards the end of the iteration, it began to demonstrate remarkable progress.

203



LONTAR KOMPUTER VOL. 13, NO. 3 DECEMBER 2022
DOI : 10.24843/LKJITI.2022.v13.i03.p06
Accredited Sinta 2 by RISTEKDIKTI Decree No. 158/E/KPT/2021

p-ISSN 2088-1541
e-ISSN 2541-5832

Table 2. Assessment results from SOTAs and MK-II using dataset Ds2

Model Acc (%) Val Loss κ Precision Recall F1-score
MK-II 0.9100 0.2371 0.8566 0.9067 0.9133 0.9100
EfficientNet 0.4500 1.1231 0.1902 0.5333 0.4700 0.4400
InceptionNetV3 0.8700 0.3088 0.7996 0.8700 0.8700 0.8667
ResNet50 0.4861 2.2417 0.1237 0.4733 0.4300 0.3367
VggNet19 0.8160 0.5861 0.6208 0.7500 0.7800 0.7500
Xception 0.8829 0.9570 0.8218 0.8800 0.8967 0.8867
DenseNet201 0.8100 0.6239 0.7048 0.8067 0.8167 0.8000
MobileNet 0.3200 2.0657 0.0350 0.2800 0.3633 0.2133

Figure 6. Training results from SOTAs and MK-II using Ds2. (a) is the training accuracy, (b) is the
loss

Figure 7. Confusion Matrix results from our models. (a) is MK-I, (b) is MK-II

3.4. Quantitative Assessment on Ds2

We compared preceding SOTAs to the MK-II in our assessment. With some hyper-parameters,
we trained each model. We adopted categorical cross-entropy as the cost function and configured
iteration to 20 and batch size to 32 before training.

The performance comparison of different SOTAs models and our MK-II model is shown in table 2.
In general, the majority of SOTAs attained considerably high validated accuracy, with scores over
85%. Meanwhile, the remaining equivalents make up a smaller percentage of the total. MK-II took
first place in overall SOTAs, with an accuracy rate of over 91 % percent. It is apparent that MK-II
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outperformed InceptionNetV3 and Xception in terms of accuracy. Despite the fact that MK-II is
only little better than the rest, it is still excellent.

Cohen’s Kappa, Precision, Recall, and F1-score are among the metrics where MK-II beats other
models. With kappa score of 0.8566, MK-II at top-notch while XceptionNet and InceptionNetV3
came in second and third, respectively. With ResNet50, EfficientNet is in the bottom tiers, and the
difference is noticeable when compared to other networks. In addition, the MK-II is unparalleled
in terms of Precision, Recall, and F1-score, with scores over 0.9.

The trend of six varying sorts of SOTAs and MK-II by training performance for both accuracy and
loss can be seen in Figure 6 train acc loss. Overall, the training accuracy steadily improves while
the loss is significantly reduced. To begin, it is indisputable that MK-II was the most accurate and
converged sooner at epoch 3. While others fluctuated and climbed consistently, MK-II reached a
smooth curve. In terms of loss performance, MK-II drops faster in the first quarter of epochs, then
gradually declines to the end of the epoch. MK-II performs admirably at the end of the period, with
95 percent accuracy and less than 0.1 percent loss rate.

The confusion matrix results was presented in Figure 7. Our models can easily distinguish most
of test dataset. MK-I is capable of separate between healthy and diseased leaf accurately with
correct identification more than 200 images. Only one of ten is misclassified of both classes.
Model MK-I also successfully recognized three RLDs. For instance, only 9 out of 103 for BS
class, Hsp 11 from 115 images, and LB under 10%.

4. Conclusion

In both theory and practice, CNN is a useful pattern identification approach. Two models are used
in this study to identify and categorize LB, Hsp, and BS images. The leaf lesions of three rice
illnesses were retrieved using an artificial computation approach and the MK-I ensemble model
to assess whether they were healthy or sick before disease categorization. After that, a TL-based
ensemble model known as MK-II was employed to identify and distinguish three different types of
rice leaf lesions. The experimental findings suggest that MK-I outperforms the compared SOTA
algorithms with an accuracy score of 89 percent, a loss score of 0.3432, and a Cohen’s Kappa of
0.783. MK-II beats SOTA techniques, with loss and Cohen’s Kappa values of 0.2371 and 0.8566,
respectively. Our models are able to recognize RLDs with a 91% accuracy rate. To summarize,
using a hierarchical mix of TL to identify rice leaf diseases and give technical help for future crop
fields can be beneficial.

Considering CNN’s significant advances in machine learning, certain research obstacles are con-
firmed. CNN, for instance, has dozens, if not hundreds, of levels. Finally, the optimal number of
layers and neurons is determined by each layer’s number of layers and neurons. Instead of en-
gaging on a vast number of tests, it does not have an option. The second issue is that large-scale
datasets have been necessary for an efficient deep learning platform. A better quality of images
dataset is required to increase RLD accuracy. We intend to utilize a range of deep networks and
training algorithms in the future to improve recognition performance.
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