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Abstract

Sea-level forecasting is essential for coastal development planning and minimizing their significant
consequences in coastal operations, such as naval engineering and navigation. Conventional sea
level predictions, such as tidal harmonic analysis, do not consider the influence of non-tidal ele-
ments and require long-term historical sea level data. In this paper, two deep learning approaches
are applied to forecast sea level. The first deep learning is Recurrent Neural Network (RNN), and
the second is Long Short Term Memory (LSTM). Sea level data was obtained from IDSL (Inex-
pensive Device for Sea Level Measurement) at Sebesi, Sunda Strait, Indonesia. We trained the
model for forecasting 3, 5, 7, 10, and 14 days using three months of hourly data in 2020 from 1st
May to 1st August. We compared forecasting results with RNN and LSTM with the results of the
conventional method, namely tidal harmonic analysis. The LSTM’s results showed better perfor-
mance than the RNN and the tidal harmonic analysis, with a correlation coefficient of R2 0.97 and
an RMSE value of 0.036 for the 14 days prediction. Moreover, RNN and LSTM can accommodate
non-tidal harmonic data such as sea level anomalies.

Keywords: Sea Level, Forecasting, Deep Learning, RNN, LSTM

1. Introduction

Information on the sea level is necessary for the operation of ports, in particular, for the scheduling
of naval transportation and the port services operation [1]. Ships with deep draft depend on the
sea level forecasting for their navigation in a shallow coastal area. Moreover, historical data on
the sea level is vital for the planning of coastal and offshore buildings, and the sea level prediction
is necessary during the construction phase of the structures [2]. Another importance of predicting
sea level is to gather information on climate change how likely the rise of sea level is in the future
so that we can minimize the consequent, especially in a coastal area such as flooding [3]. The sea
level consists of two general elements, tidal and non-tidal elements. The dominant forces shaping
the sea level are the tidal elements because tidal is the most stable pattern in oceanographic [4].
The non-tidal elements come from wind or other occurrences that are affecting the sea level [5].
Tidal harmonic analysis (THA) is a conventional way to forecast sea level. THA assumes sea
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level as a superposition of harmonic components or tidal representatives. Typically, using Least
Square Estimation (LSE), the tidal components in a given area can be reliably calculated using
the measured sea level. However, the forecasted sea level is the tidal parts only since THA cannot
predict the non-tidal components. Another major downside, THA needs long historical sea level
data to extract all tidal elements.

Various attempts proposed to improve the accuracy of the THA method for predicting the sea
level, such as using multivariate least-square harmonic estimation [6] and combining the LSE
method with the Inaction Method (IM) [7]. Moreover, there is also another approach for predict-
ing sea-level namely ARIMA (Autoregressive Integrated Moving Average) [8], SARIMA (Seasonal
Autoregressive Integrated Moving Averaged) [9], and Holtz-Winters Exponential Smoothing [10].
The prediction performance from ARIMA, SARIMA, and Holtz-Winters for seven prediction days
measured by RMSE are 0.226, 0.155, and 0.134, respectively. These results offer a challenge
to finding a better predictive model. ARIMA, SARIMA, and Holt-Winter approaches are methods
based on time series analysis. Machine learning approaches such as ANN (Artificial Neural Net-
work) to forecast sea-level is discussed in [11] where ANN is applied to predict sea level anoma-
lies. In 2018, Imani et al. [12] applied relevance vector machine models and extreme learning
machines to predict sea-level. Rizkina et al. [13] in 2019 compared the nonlinear autoregressive
(NAR) neural network and tidal harmonic analysis to obtain a short-term prediction of sea level
in Semarang. Using the NAR method, they obtain prediction with an R-value of 0.9566 and an
RMSE value of 0.0736.

This research aims to investigate a reliable sea-level prediction approach that needs only rea-
sonably short-term historical data. Sea level prediction is carried out by applying the Recurrent
Neural Network (RNN) and Long Short-Term Memory (LSTM), two popular deep learning meth-
ods. RNN is a type of neural network designed to handle sequential data. Not only suitable for
solving classification problems in Natural Language Problem (NLP), the RNN is also suitable for
predicting time series data. However, RNN often encounters problems such as vanishing the
gradient, where the loss function decreases exponentially. It interferes with the learning process.
LSTM is an improvement RNN to avoid this problem. LSTM architecture consists of a memory
cell, input gate, forget gate, and output gate. As a study area, we chose the Sebesi station in
Sunda Strait, Indonesia. Sea level data comes from measurements by IDSL or Inexpensive De-
vice for Sea Level measurement. The RNN and LSTM in predicting the sea level is then compared
to the traditional approach using THA.

2. Research Methods
Figure 1 shows our research methodology. The study utilizes the sea level data obtained from
the IDSL at Sebesi station in Sunda Strait, Indonesia. The raw data is pre-processed to remove
noises as well as to fill in missing data. The data set is then separated into training also testing
data and then tested for three forecasting methods, the traditional THA and the deep learning
methods using the RNN and LSTM. We performed several forecasting scenarios based on the
length of days to forecast for 3, 5, 7, 10, and 14 days. The prediction results from these three
methods are then compared qualitatively and quantitatively. The performance is measured using
the correlation coefficients (R2) together with the Root Mean Square Error (RMSE). These steps
in the methodology of this paper are explained in more detail in Figure 1.

2.1. Sea Level Data
The data are collected from a sea-level measurement device called IDSL (Inexpensive Device
for Sea Level measurement). The IDSL is a joint effort between the European Commission’s
Joint Research Centre, The Marine Research Centre of MMAF, and The Indonesia Society of
Tsunami Experts (IATSI). The station supports the tsunami early warning system in the Sunda
Strait due to its proximity to the Krakatau Volcano that generated the tsunami in 2018 [14]. The
Sebesi station was selected for IDSL due to its important location as a tourism destination and
community livelihoods. Monitoring of sea levels due to global climate change is also vital for sea-
level rise risk mitigation. The location of Sebesi Station is between the lines 5° 56’ 9.7692" South
Latitude and 105° 30’ 43.5816" East Longitude as shown in Figure 2.
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Figure 1. Research methodology in this study.

Figure 2. Location of tidal buoy in Sebesi.

2.2. Preprocessing Data

The sea level data from the IDSL is recorded initially every 20 seconds. It is unnecessary to use
detailed temporal spacing data for sea-level forecasting since they include unnecessary harmonic
components, especially high frequencies. Instead, we use hourly data for sea level forecasting.
Moreover, the measured sea level data contained missing values, which will lead to a problem for
the forecasting process by using a deep learning approach. To that end, the original 20s temporal
data is transformed into hourly data by calculating the average.

In this paper we use 3.5 months data, i.e. 1th May - 15th August 2020. The original 20 s temporal
data is shown in the top of Figure 3, whereas the hourly sea level data is depicted in the middle
of Figure 3. The missing values in the original data are filled with interpolated data shown in the
lower plot of Figure 3.

The preprocessed data is separated into training and testing data as depicted by Figure 4. We
use three months of sea level data, 1th May - 31th July 2020 for training to forecast 3, 5, 7, 10,
and 14 days ahead.

A brief explanation related to the three forecasting methods, the classical Tidal Harmonic Analysis
(THA), Recurrent Neural Network (RNN) as well as the Long Short Term Memory (LSTM) are
described in the following subsection.
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Figure 3. Time series of sea level data at Sebesi from 1th - 30th July 2020: Original data (upper
plot), hourly data (middle plot), and interpolated hourly data (lower plot). The missing data are
indicated by red area in the middle plot.

2.3. Tidal Harmonic Analysis

As stated in [15], the sea level is mainly generated by tidal waves, which are strongly influenced
by the moon and the sun. The tide is affected by the relative astronomical location of the earth
with the moon and the sun. Changes in the astronomical location lead to the rising and dropping
of the sea level. These astronomical forces that shape the tide could be considered as a summa-
tion of harmonic components, which is the core principle of the Tidal Harmonic Analysis (THA)
method [6, 7]. This fact makes the tide the most predictable oceanographic physical phenomenon,
especially compared to wind and waves [4]. As a result, the tide can be expressed as (1)

h(t) = h0 +

N∑
i=1

fiHi cos(ωit− gi). (1)

Here, h0 is the mean of sea level or MSL, fi is the node factor, Hi is the ith amplitude component
of the tidal component-i, ωi, and gi are the the ith tidal constituent and its phase, respectively. High
and low tides can be calculated by searching the critical value of the formula (1), by calculating the
first derivative of the formula, equated to zero as in equation (2). Nevertheless, the equation (1)
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Figure 4. Sea level data splitting, training data (1 May - 31 July 2020 or 80 %, indicated by blue
line) and testing data (1-15 August 2020 or 20 %, indicated by yellow line).

cannot capture the variation in the peak tide since the peak of superposition of harmonic waves
in the equation (1) are constant and appear periodically.

−
N∑
i=1

fiHi sin(ωit− gi) = 0. (2)

There is no analytic solution for the equation (2). The parameters Hi, fi, ωi, and gi are estimated
using the Least Square Estimation (LSE) method with measured sea level as the reference in
many tidal harmonic analysis methods [16]. As a consequence of the THA approach, the THA
method cannot predict non-tidal elements at sea level. Moreover, the THA method requires a
relatively long historical sea level data set to correctly describe the low frequencies component of
the sea level.

2.4. Recurrent Neural Network

RNN is a family of artificial neural network (ANN) architecture that processes interrelated repetitive
input typically in sequential data, including time-series data. The RNN differs from the traditional
Neural Network. Each processing produced in the RNN is influenced by the current input and an
internal state resulting from the previous input processing. When the RNN makes a decision, the
time step t− 1 can influence the decision to be taken at time step t [17].

Figure 5. The architecture of Recurrent Neural Network (RNN).
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The RNN is a method commonly used for forecasting problems. In [18], the RNN is used for fore-
casting wind speed, where they also compare the method with the ARIMA model. In [19], the RNN
is used for forecasting for electricity consumption in medium-to-long-term, where they conclude
that the RNN produces better prediction than the three-layer multilayer perceptron model.

The architecture of the RNN can be illustrated as in Figure 5. Here, for each time step t, the state
St is calculated from the input Xt and the prior state St-1 by following the formula (3)

St = tanh(W ixX t +W sxSt-1 + bx). (3)

Here, Wix and Wsx are the weight matrix at input and hidden layer respectively, and bx denotes
the bias. The function tanh(x) is an activation function that is defined by the following formula

tanh(x) =
ex − e−x

ex + e−x
, (4)

where the range of function tanh(x) is from −1 to 1.

The output value Yt is given by the following formula

Y t =W oxSt + by, (5)

where Y t denotes the output, W ox is the weighted matrix at output layer, St is the states, and by is
the bias.

2.5. Long Short-Term Memory

LSTM was initiated by Hochreiter and Schmidhuber [20]. It is an improved version of RNN where
LSTM is equipped with a memory cell that could reserve information for a long time. Vanishing and
exploding gradient problems are problems in the RNN that fail to capture long-term dependencies,
thereby reducing the accuracy of a prediction on RNN [21]. Meanwhile, the LSTM could store or
discard data since each neuron has several gates that regulate the memory of each neuron.
Figure 6 shows the layout of the gates of LSTM.

Figure 6. The architecture of LSTM.

In LSTM there are three gates, namely ft, it, and ot as shown in Figure 6. Gate ft is the forget gate,
it is the input gate, and ot is the output gate [2].

The first step in assembling the LSTM is to differentiate the necessary and unnecessary data in
the first gate (forget-gate). A sigmoid function (6) defines this process. If the value of the sigmoid
function is 0 then the data will be discarded. If the value is 1 then the data will be updated or
passed through. Xt is the current input value and St−1 is the hidden state of the prior value. W
and b are coefficients where their values are determined from the training process.

f t = σ(W fxX t +W fsSt-1 + bf ) (6)
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The next process is in the input gate. The input gate controls how many states from the current
input will pass through. The output is determined by the sigmoid function (7) in the first layer,
and the hyperbolic tangent function (8) in the second layer, where the value of the cell state Ct is
defined in equation (9).

it = σ(W ixX t +W isSt-1 + bi). (7)

c̃t = tanh(W cxX t +W csSt-1 + bc). (8)

C t = f t × ct-1 + it × c̃t. (9)

And the final gate unit component is the output gate, which decides the internal state forward and
the cell state or memory cell to forward old information with additional new information to the next
cell state.

ot = σ(W oxX t +W osSt-1 + bo) (10)

St = ot × tanh(ct). (11)

By following the calculation at the output gate as defined in equation (10), the output value, namely
the cell state value Ct will be forwarded for the next memory cell calculation, and the current
hidden state St, will be generated using equation (8).

2.6. Evaluation

In this evaluation section, the optimal model search process is carried out, especially for using
deep learning models, namely RNN and LSTM. In searching for the optimal model for this deep
learning model, some stages are carried out. The first is searching for the optimal model by
calculating the scoring metric using the Correlation Coefficient and Mean Square Error. If in the
first stage of the search for the model the best model is obtained, then in the second stage by
finding the optimal number of lookbacks from the deep learning model by taking into account the
computational time in the training process itself, by using these two stages the model with the
best results is obtained.

2.7. Performance Analysis

The performance of both RNN and LSTM is evaluated by calculating the Root Mean Square Error
(RMSE) and R2 to see which one is better. The RMSE is a formula for measuring the average
error and is written as follows.

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2. (12)

In equation (12), N is the total value of input data, ŷi is the output of the prediction value and yi is
the target value [22].

The coefficient of determination R2 is a useful quantitative usually used to measure how well the
output of a model in predicting the target. Values of R2 are between 0 and 1 [23]. The R2 is
defined as follows in equation (13-15),

R2 = 1− SSR

SST
, (13)

SSR =

N∑
i=1

(yi − ŷi)
2, (14)

SST =

N∑
i=1

(
yi −

( 1

N

N∑
i=1

yi

))2
, (15)
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where SSR is the Sum of Squared Residuals and SST is the Sum of Squared Total, where yi is
the observed value, N is the amount of data, and ŷ is the value of the prediction.

Mean Bias Error (MBE) is useful to calculate average bias in the prediction and defined as [24]

MBE =
1

N

N∑
i=1

(ŷi − yi). (16)

A positive MBE means that the predictions are overestimating, and a negative MBE means an
underestimation.

3. Result and Discussion

As explained in the previous section, we use the sea level data from 1th May - 15th August 2020
at Sebesi Station. Using three months of sea level data for training data for the Tidal Harmonic
Analysis, RNN, and LSTM model, predict the next 3 to 14 days ahead. Based on Table 1, the
LSTM model shows better performance in predicting sea-level compared to the Tidal Harmonic
Analysis and RNN model.

Table 1. Prediction Result Of THA, RNN and LSTM

Prediction THA RNN LSTM
(Days) R2 RMSE MBE R2 RMSE MBE R2 RMSE MBE

3 0.8132 0.1214 -0.1127 0.9595 0.0580 0.0504 0.9795 0.0413 0.0353
5 0.8398 0.1173 -0.1096 0.9663 0.0547 0.0474 0.9827 0.0392 0.0326
7 0.8675 0.1082 -0.0984 0.9681 0.0538 0.0466 0.9827 0.0394 0.0326

10 0.8799 0.0976 -0.0856 0.9686 0.0496 0.0426 0.9818 0.0377 0.0306
14 0.8721 0.0905 -0.0790 0.9631 0.0479 0.0408 0.9782 0.0369 0.0295

Based on Table 1, the RMSE value of RNN is smaller than the RMSE value of THA for all pre-
diction days. It shows that prediction with RNN provides a closer estimate than THA. The result
is consistent with the value of the coefficient deterministic R2. The coefficient deterministic of
RNN is closer to one than THA. It means that the predicted results of RNN have a better match
with the original data than THA. However, prediction with LSTM gives better results than RNN for
all prediction days, both measured by RMSE and by R2. As an improved version of RNN, the
performance of LSTM is better than RNN due to its ability to handle information for a long time
that overcomes vanishing and exploding gradient problems in RNNs. By analyzing the length
of the prediction day, it can be seen that the longer the prediction day, the better the prediction
result. On longer prediction days, prediction errors will be more distributed. The MBE values of
THA are negatives for all prediction days. It means the THA predictions are underestimating. The
MBE of RNN and LSTM are positives for all prediction days. It means that their predictions are
overestimating. The MBE of LSTM is smaller than RNN’s. Overall, prediction with LSTM with 14
prediction days gives the best results.

Qualitative comparison between the prediction for 14 days with Tidal Harmonic Analysis, RNN,
and LSTM is shown in Figure 7. Based on Figure 7 we can see that the prediction results using
THA cannot accurately estimate the sea level around the top and bottom. The predictive graph
of THA is periodic and very well accommodates the tidal component of the sea level but fails to
accommodate the non-tidal element that affects the sea level. The THA model only considers the
influence of tidal components such as the tractive force of the sun, moon, and other astronomical
objects. The tidal component contributions are represented as a superposition of trigonometric
functions, as written in equation (1). Other components such as the effects of wind, waves, and
global warming have not been accommodated in the THA model. Even though the influence
of these components is not dominant, the effect is significant, especially at the top and bottom.
Prediction results using deep learning estimate sea levels more accurately, including around the
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top and bottom of the sea level. These predictions are also better than the previous prediction
methods using ARIMA, SARIMA, and Holt-Winters for testing with seven prediction days which
give RMSE 0.226, 0.155, and 0.134, respectively [10]. The RMSE values of RNN and LSTM for
seven prediction days are0.054 and 0.039, respectively.
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Figure 7. Tidal Harmonic Analysis (upper plot), RNN (middle plot), LSTM (lower plot) for 14 days
forecast at Sebesi.

4. Conclusion

We predict sea level using deep learning approaches, the Recurrent Neural Network together with
Long Short-Term Memory. As training data, we use three months time series of sea level data
to train the model to predict 3, 5, 7, 10, and 14 days. We conducted a prediction with Tidal Har-
monic Analysis, RNN, and LSTM method. All methods we used can predict with reasonably good
performance and follow the measured value of the buoy. However, the deep learning approach
shows better prediction than the Tidal Harmonic Analysis. Moreover, LSTM shows performance
improvement in predicting long-term sea-level data (14 days) with a R2 value of 0.97 and RMSE
value of 0.036. These results are better than RNN with a R2 value of 0.96 and the RMSE value
of 0.047.
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