
LONTAR KOMPUTER VOL. 10, NO. 1 APRIL 2019 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2019.v10.i01.p03 e-ISSN 2541-5832
Accredited B by RISTEKDIKTI Decree No. 51/E/KPT/2017

19

Identifying Requirements Association Based on Class
Diagram Using Semantic Similarity

Hernawati Samosir

a1
, Daniel Siahaan

a2

a
Informatics Department, Institut Teknologi Sepuluh Nopember

Kampus ITS, Sukolilo,Surabaya, Indonesia
1
hernawati16@mhs.if.its.ac.id

2
daniel@if.its.ac.id (Corresponding author)

Abstract

Requirements association depicts inter-relation between two or more requirements within a
software project. It provides necessary information for developers during decision-making
processes, such as change management, development milestones, bug prediction, cost
estimation, and work breakdown structure generation. Modeling association between
requirements became a focus of software requirements researchers. Previous studies indicate
that requirements association was pre-defined by requirements engineer based on their expert
judgments. The judgments require knowledge on requirements and their class realizations. This
paper introduces a method to generate a mapping between a set of requirement statements
and a set of classes of a given project that realized the respected requirements. The method
also generates associations among requirements based on information on associations
between classes and the class-requirement mapping. The method utilizes element of relational
information resided in a class diagram of respected project. A semantic similarity method was
used to define the requirements with their realization classes. A class is considered realizing a
requirement if and only if their semantic similarity is higher than a certain threshold. A set of
experimentation on four different projects was conducted. The result of the approach was
compared with the output produced by human annotators using kappa statistics. The approach
is considered as having a fair agreement level (i.e. with kappa value 0.37) with the human
annotators to identify and model requirement associations.

Keywords: Class Realization, Mapping, Requirements Association, Requirement Statement,
Semantic Similarity

1. Introduction

Requirements engineering is a collection of activities identify or discover software requirements,
and then communicate and document them [1]. It includes a number of processes, i.e.
elicitation, analysis, specification, validation, and management of software requirements. During
the requirements engineering processes, a change on requirements may occur. A change on a
specific requirement may trigger a set of changes on relevant requirements.

There are several studies have been conducted on requirements change [2], [3]. Widiastuti &
Siahaan (2008) introduces a graphical model of requirement change called Labeled Transition
System for Requirement Change (LTS-RC). LTS-RC models changes on requirements in term
of state transitions. A state transition models a requirement changing component. The study
suggests that the model requires information related to requirements changes as an input.
Müller & Rumpe (2014) models requirements change by analyzing alteration between versions
of a design artifact, i.e. class diagram [3]. Any alteration on requirements from previous iteration
should have a direct mapping to the changes in class diagram. Figure 1 describes the detail
design of modeling requirement association method. It consists of 4 parts, First, it prepares
requirement and class. In this part there are 2 data are required, i.e. SRS document and class
diagram. Second, it maps requirement and class. This part consists of two sub parts. The first
subpart prepares requirement statement and information of class, such as class name, attribute
and also method. Then, the second subpart preprocesses text of requirement and text of class
into predefined metadata. Lastly, the third subpart calculates the similarity between the two
preprocessed text. The similarity value represents the degree of certainty that the respected

LONTAR KOMPUTER VOL. 10, NO. 1 APRIL 2019 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2019.v10.i01.p03 e-ISSN 2541-5832
Accredited B by RISTEKDIKTI Decree No. 51/E/KPT/2017

20

requirement was realized by and the respected class. Third, it generates requirement
dependency graph. Fourth, it produces a dependency requirement. Therefore, the output of this
method is a requirement dependency graph.

Figure 1 Modeling Requirements Association Method

The previous studies suggest that a change made to a requirement could affect other
requirement [2], [3]. There are several reasons why the associations between requirements is
important in requirements changes [4]. First, it provides information, such as list of changed
modules, development effort with respect to the changed module, and possible bugs, for project
manager to predict cost due to a change on a requirement. Second, it indicates dependencies
between requirements, which help predicting bug, determining project milestone, and planning a
work breakdown structure of a software project.

There have been a number of studies on element dependencies [5]–[13]. Wang & Wang (2016)
focuses on dependencies between requirements. The study introduces a dependency model
between requirements based on information on the frequency of bug occurrences. The
generated model is used to predict feature bug. Thus, it helps providing an initial estimation of
the software. However, the identification of requirements dependencies was done based on
expert judgment.

This paper introduces a method to map requirements to their class realizations of a given
software development project. Giving this mapping and the associations between the classes,
the method identifies and models associations between requirements within a software
development project [14]. The requirement associations were derived based on information
associations extracted from a class diagram of respected project. The process of generating
model should be carried after each iteration within the software development lifecycle.

2. Reseach Methods

This section provides an overview of research design carried out to develop and evaluate the
proposed method for identifying and modeling requirements association. There are four case
studies used in this research. All case studies were real software development projects. Each
project varies in size and domain. Table 1 describes the projects used as the case studies.

LONTAR KOMPUTER VOL. 10, NO. 1 APRIL 2019 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2019.v10.i01.p03 e-ISSN 2541-5832
Accredited B by RISTEKDIKTI Decree No. 51/E/KPT/2017

21

The aim of this study is to design a method to generate a model of requirements association by
means of information extracted from a class diagram. This method was designed in the
following processes. First process preprocesses the requirement statements and the class
diagram. This process focuses on extracting features of a class and a requirement statement
which are relevant to identify and model requirements association. It also identifies requirement
associations and class association that can be used in this study. Second process maps
requirements to realization classes. This process focuses on finding a method to measure
semantic similarity between a requirement statement and a class. It also focuses on finding a
threshold that can produce the best mapping result. Third process models the associations
between requirements. This process focuses on designing a set of rules to transpose class
association and mapping between requirement statements and classes into requirements
associations. Last process visualizes the produced model, i.e. requirements association model.
This process focuses on designing a graphical model of requirements association.

2.1. Preparing Requirement Data and Class Diagram

Software Requirement Specification (SRS) is used to generate requirement statements. This
document includes requirement statements. As an illustration, the Library System is used as an

example throughout the paper. Table 3 shows the requirements specification of the Library
System. The first column is requirement identity. The second column consist of the respected
textual statement of each requirement. Figure 2 shows a class diagram of the Library System. It
shows classes and their associations. A class may have a set of information, i.e. class name,
attributes, and methods.

Table 2. Result Preprocessing Requirement Statement and Class
Req. ID Req. Token Class ID Class data

R01 patron; library; manage;
account

C01 book;isbn; name; subject;
overview; publisher; publication; date

R02 patron; library; search;
catalog;

C02 book; item; barcode; tag; isbn; subject;
title; lang;numberofpages; format;
borrowed; loan;period;duedate;isoverdue

R03 patron; library;
reserve;book; item;

C03 author;name; biography; birthdate;

R04 library; renew; item; C04 account; number; history; opened; state;
R05 patron; provide;

feedback;
C05 library; name; address; patron; name;

address;
 C06 librarian; name; address; position;

C07 catalog;
C08 search;
C09 manage;

Table 1. Description of Case Study Projects
Project Name Project Description Number of

requirements
Number of
classes

Tutorial Request A web based information system used to serve tutorial
requests for ITS information majors

6 7

Department
Calender

Web-based information systems are used to provide
information to lecturers and students about their schedules
in the Information Department

6 16

Letter Submission
Information System

Information system used to serve the process
and the filing flow of the letter.

4 3

RAnalyzer Software to serve fast financial analysis in each new
iteration to respond to changing requirements

13 21

Table 3. Set of Requirement Statements of a Project
ID Requirements Statement

R01 Patron or library can manage account
R02 Patron or library can search catalog
R03 Patron or library can reserve book item
R04 Library can renew book item
R05 Patron can provide feedback

LONTAR KOMPUTER VOL. 10, NO. 1 APRIL 2019 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2019.v10.i01.p03 e-ISSN 2541-5832
Accredited B by RISTEKDIKTI Decree No. 51/E/KPT/2017

22

Both requirements specification and class diagram are preprocessed to produce string of tokens
as shown in Table 2. The third column is class ID. The last column is a list of texts extracted
from each class. Using tokenizer, each requirement statements is split into tokens. The next
process is removing stop words. A class diagram is also used to generate metadata of each
classes within the diagram and their associations. The information includes ID, name, attribute,
method, and class associations. Each information is also split into tokens using tokenizer. After
tokenizing, all tokens that contain stop words are removed.

2.2. Mapping Requirements and Classes

To map each requirement into each realization class, a matrix Smxn is created. The m indicates
the number of classes, while n indicates the number of requirements. Table 4 shows the initial
matrix. A cell sij is a semantic similarity value of class-i (ci) and requirement-j (rj). As the initial
matrix, each column is filled with 0.

Table 4. The Matrix Smxn of Library System
Smxn R01 R02 R03 R04 R05

C01 0 0 0 0 0
C02 0 0 0 0 0
C03 0 0 0 0 0
C04 0 0 0 0 0
C05 0 0 0 0 0
C06 0 0 0 0 0
C07 0 0 0 0 0
C08 0 0 0 0 0
C09 0 0 0 0 0

Figure 2. Class Diagram of Library System

LONTAR KOMPUTER VOL. 10, NO. 1 APRIL 2019 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2019.v10.i01.p03 e-ISSN 2541-5832
Accredited B by RISTEKDIKTI Decree No. 51/E/KPT/2017

23

For each cell sij, another matrix Wixj is created in order to measure semantic similarity between a
class and a requirement. Table 5 illustrates the process of measuring semantic similarity
between requirement R01 and class C01 of the Library System. The class C01 contains 8
tokens. The requirement R01 contains 4 tokens. First, the method measures the semantic
similarity between all word pairs, i.e. a token-i of the class and a token-j of the requirement. The
method uses WuPalmer and Levensthein Distance word similarities for this purpose. For each
pair, it tries to measure semantic word similarity between the two tokens. It utilizes hypernym
relation of WordNet Thesaurus. Equation 1 shows how the semantic similarity of a token of a
class (t1) and a token of a requirement is measured.

 (1)

If it returns similarity value lower than or equal to zero, i.e. they are different part of speeches.
Then, it measures the syntactic similarity of the two tokens. Equation 2 shows how the
Levensthein Distance is used to measure the similarity.

 (2)

Given all token-pairs similarities as shown in Table 5, a greedy algorithm is applied to calculate
the best semantic similarity between the class-requirement pair. The preprocessing of
requirements R01 produces four string tokens. Therefore, the string token of R01 is represented
by R01-1 until R01-4. The preprocessing of class C01 produces eight string tokens. Therefore,
C01 is presented by C01-1 until C01-8. Each cell represents the string similarity value of each
token pairs. Figure 3 illustrates how the algorithm is working on C01 and R01 [15]. The
algorithm starts by selecting a cell with the highest value, that is, the cell from the “publication-
library” pair. And then, the rest of the cells of the same column and row are deleted which is
denoted by the cross. If there are still unprocessed cells, this process will be repeated. If there

Table 5. Similarity values between C01 and R01
 R01-1 R01-2 R01-3 R01-4

C01-1 0.38 0.52 0.00 0.12
C01-2 0.00 0.00 0.00 0.14
C01-3 0.14 0.13 0.50 0.31
C01-4 0.15 0.14 0.00 0.50
C01-5 0.13 0.13 0.00 0.43
C01-6 0.12 0.11 0.00 0.25
C01-7 0.40 0.56 0.00 0.13
C01-8 0.14 0.13 0.33 0.31

Figure 3. Illustration of Greedy Algorithm Implementation on C01 and R01

Table 6. Class-Requirement Semantic
Similarities of Library System

ID R01 R02 R03 R04 R05

C01 0.32 0.33 0.43 0.44 0.18
C02 0.21 0.22 0.30 0.28 0.10
C03 0.56 0.27 0.37 0.35 0.29
C04 0.42 0.25 0.21 0.30 0.21
C05 0.54 0.36 0.46 0.53 0.30
C06 0.44 0.37 0.46 0.36 0.39
C07 0.47 0.28 0.40 0.42 0.31
C08 0.20 0.40 0.32 0.38 0.18
C09 0.11 0.40 0.11 0.13 0.08
C10 0.40 0.16 0.07 0.09 0.14

Table 7. Mapping Class and Requirement
ID R01 R02 R03 R04 R05

C01  

C02

C03 

C04 

C05   

C06  

C07   
C08 
C09 
C10 

LONTAR KOMPUTER VOL. 10, NO. 1 APRIL 2019 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2019.v10.i01.p03 e-ISSN 2541-5832
Accredited B by RISTEKDIKTI Decree No. 51/E/KPT/2017

24

are no unprocessed cell, the process stops. Given the result, the semantic similarity of C01 and
F01 can be calculated as follows:

 ;

=

=

=

By using Equation 1, the sematic similarity of C01 and R01 is 0.32. This calculation is performed
on all pairs of requirements and class. Table 6 shows the result of calculating all cells of matrix
S. Given a predefined threshold, e.g. 0.40, the method selected all pairs that have semantic
similarity values higher than the threshold. The threshold was defined by experimental results.
The cells which were marked bold are the class-requirement pairs that are considered having
realization relation, i.e. the class realizes the requirement. These cells have similarity value
higher than the given threshold. Table 7 shows that class C01 realized two requirements, i.e.
R03 and R04. It also shows that requirement R01 was realized by C03, C04, C05, C06, and
C07. These prove that the cardinality of realization relation is many to many.

The next step, the method transforms Table 6 to Table 7. The cells with checklist, i.e. sij,
indicates that the respected class, i.e. ci, realizes the respected requirement i.e. rj,. Aside the
many-to-many relation, Table 7 also shows that there is row without any checklist marker. For an
example, the class C02 does not realize any requirement. There are three possible reasons.
First, this could be because the class provides functionalities that only support other classes.
This means that within a project, there is a probability that a class may not directly realize any
requirement. Second, this could be because the class provides functionalities that are never
being used to implement or unrelated to any requirement. Third, this could be because the class
contains names of class, attribute, and method which are not representing their functions. It also
shows that the dataset is not good.

On the other hand, Table 7 also shows that there is a column without any checklist marker. This
means that the requirements are not realized by any class. There are two reasons for this. First,
this could be because no class realizes the requirement. This means that the project is a failure,
since the project delivered deficient artifacts. Second, this could be because the designer failed
to address separation of concern. Third, this could be because the class contains names of

Table 8. Associations between Classes
Source
Class

Destination Class
C01 C02 C03 C04 C05 C06 C07 C08 C09 C10

C01
C02 s

C03 c
C04 c
C05 c c H
C06 d
C07 d d
C08 c i i
C09
C10

Table 9. Dependency Between Requirements
Destination Requirements

S
o
u
rc

e

 R01 R02 R03 R04 R05

R01 h c c

R02

R03 c,u h,u

R04 c,u h,u

R05

Table 10. Functionality Based on Class
Relationships

No. Source Relation Destination

 R01 strong aggregation R02
 R03 uses R01, R02
 R04 uses R01, R02
 R03 strong aggregation R02
 R04 strong aggregation R02

LONTAR KOMPUTER VOL. 10, NO. 1 APRIL 2019 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2019.v10.i01.p03 e-ISSN 2541-5832
Accredited B by RISTEKDIKTI Decree No. 51/E/KPT/2017

25

class, attribute, and method which are not representing their functions. This condition may occur
due to lack of quality during the software design process.

2.3. Extracting Class Dependency from Class Diagram

Next step is extracting dependency between classes. Class dependency was extracted based
on an association between the respected classes. Table 8 illustrates the class dependency
extraction of the Library System. There are a number of class diagram associations, i.e. s, c, h,
i, and d. The association s stands for specializes, h stands for has (strong aggregation), c
stands for contain (weak aggregation), u stands for uses, and i stands for implements, and d
stands for dependency. For example, relation between C02 and C01 is specialization, relation
between C03 and C01 is weak aggregation, relation between C05 and C08 is strong
aggregation, and relation between C07 and C09 is dependency.

2.4. Generating Requirement Association Model

After extracting the class associations resided in the class diagram, a destination class should
be mapped to requirement statement list based on realization class-requirement pairs. Table 9
represents association mapping between different requirements. For an example, the
requirement R01 has strong aggregation with R02. Strong aggregation means one requirement
is required by other requirement. R01 correlates weak aggregation with R03 and R04. R03 and
R04 have the same relation to R01, namely weak aggregation and uses. R03 and R04 have the
same relationship with R02, which is a strong aggregation and uses. Modeling requirement
associations can be seen in IPTEK Journal of Proceeding Series [16].

Table 9 shows the relations between requirements based on their respected class dependencies.
For an example, in Table 9 the association of R01 and R02 is "h" (strong aggregation). The
‘strong aggregation’ relation was derived from the following steps:
1. Given Table 7, it is known that R01 is implemented by C03, C04, C05, C06, C07 and C10

or R01 = {C03, C04, C05, C06, C07, C10}

2. One of the features used is R01 is implemented by C05 (see Step 1). Then in Table 8, it is

known that C05 has a “c/weak aggregation” relation to C02, C04 and C08.

3. From Table 7, it is known that C02 does not implement any requirement, C04 implements

requirement R01, and C08 implements requirement R02. This indicates that R01 has a

relation "h (strong aggregation)" to R02.

The description details from Table 9 are shown in Table 10. It represents the associations
between requirements obtained based on inter-class associations from class diagram.
Association between requirements can be seen in Table 9. Weak aggregation is not included in
Table 9 because there is no previous definition of that relation. Furthermore, the type of
association used for this study is adopted from Dahlstedt (2001). This explains a number of

Table 11. Association Between Requirements
Type Description

and (R1 and R2) In order R1 to be functional, R1 requires R2
requires (R1 requires R2) R1 requires R2 to work, but not vice versa
temporal (R1 temporal R2) R1 should be implemented before R2 or vice versa
cvalue (R1 CVALUE R2)

R1 affects the value of R2. Values can be positive or negative

icost (R1 ICOST R2) R1 affects the cost of R2 implementation. Value can be
positive or negative

or (R1 OR R2) Only R1 and R2 can be implemented

Table 12. Mapping Requirement
Associations and Class Diagram

Associations

Requirement Association
Class Diagram

Association

and (r1 and r2) Implements

requires (r1 requires r2) strong aggregation

temporal (r1 temporal r2) uses, strong aggregation

Table 13. Requirements Association
Source Relation Destination

R01 requires, temporal R02
R03 temporal R01, R02
R04 temporal R01, R02
R03 requires, temporal R02
R04 requires, temporal R02

LONTAR KOMPUTER VOL. 10, NO. 1 APRIL 2019 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2019.v10.i01.p03 e-ISSN 2541-5832
Accredited B by RISTEKDIKTI Decree No. 51/E/KPT/2017

26

association types within requirements. Some of these associations are described in Table 10.
There are six association types mentioned in Table 11, i.e. and, requires temporal, cvalue, icost
and or.

After analyzing associations between requirements and class diagrams, a number of
associations are considered relevant to each cases [17], e.g. the associations of class
diagrams. The relevant types are and, requires, and temporal. Details of the requirement and
association pairs of the class are given in Table 12. Given the results in Table 7 and Table 8, the
requirement associations can be extracted from pre-determined mapping. Those can be seen in
Table 12. The results of the requirement mapping association based on class diagrams can be
seen in Table 13.

3. Result and Discussion

An experiment was designed to provide a proof that the method is a potential solution to model
requirements association. Four datasets contain four projects were set up for this purpose (Table
1). The projects were developed within previous bachelor software engineering courses. The

projects are Tutorial Request, Department Calender, Letter Submission Information System and
RAnalyzer. To measure the performance of the method, the kappa statistic was used to measure
its reliability. Three experts were involved as annotators. The experts work in the field of software
engineering and have the experience in the field of requirements specification. The annotators
The annotators annotated each class-requirement pair for each project with true or false (equal
to Table 6). The annotation is true if and only if the class was considered realizing the respected
requirement. The annotation is false if and only if the class was not considered realizing the
respected requirement. The annotators also annotated each requirement-pair for each project
with true and false (equal to Table 8). The annotation is true if and only if the source requirement
was considered depending to the destination requirement. The annotation is false if and only if
the source requirement was not considered depending to the destination requirement.

The reliability of the proposed method was measured by calculating the level of agreement
between the human annotators and method. The reliability level was based on the kappa
statistical method, namely Gwet's AC1. The method was treated as one of the experts whose
answers would be compared with the human annotators. Table 14 shows the reliability
performance of the method in comparison with the human annotator in identifying class that
realizes requirements. The results show that this method has a fair agreement level with respect
to the all human annotators. The reason is because human annotators can identify more
dependencies between requirements. This is due to the fact that human annotators have implicit
knowledge regarding domain problems. The fifth column (with gray color) contains the reliability
scores between each expert and the majority answer among human annotators. Almost all
experts have moderate level of agreement, but only the third human annotator has the level of
almost perfect agreement.

The result of the method compared to human-1 is lower than the value generated by human-2
and human-3. If it is broken down from each dataset, then it is known that the lowest score of
Gwet’s AC1 was the result of dataset 1 and dataset 2. Number of requirements in these
datasets is 6. Thus, most of the classes only contain class name. While in dataset 2, most of
classes in the class diagram do not have a method, this is likely to affect the results of the AC1
generated by the method. Furthermore, classes in dataset-3 have redundant functions. Thus,
these results indicate that the method could be used to map the requirements and its realization
classes. But low-quality design process may cause inconsistency and low level of compliance of
design artifact with respect to their requirements specification.

Table 14. Reliability of The Approach in Identifying Realization Class-Requirement
 Human-1 Human-2 Human-3 Method Experts Average

Human-1 ////////////// 0.27 0.41 0.13 0.60 0.27

Human-2 0.27 /////////////// 0.52 0.43 0.71 0.41

Human-3 0.41 0.52 ////////// 0.25 0.82 0.40

Method 0.13 0.43 0.25 ////////// 0.37 0.27

LONTAR KOMPUTER VOL. 10, NO. 1 APRIL 2019 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2019.v10.i01.p03 e-ISSN 2541-5832
Accredited B by RISTEKDIKTI Decree No. 51/E/KPT/2017

27

4. Conclusion

This study developed a method to identify and model associations between requirements within
a software project. To identify and model the requirements association, the method starts by
mapping the requirements into their realization classes. The experimentation shows that the
method was able to identify an association type among requirements, i.e. requires. Thus, the
method is considered having a fair agreement level with the human annotators, i.e. having
kappa value 0.37.

Nevertheless, the monitoring process is considered less sensitive in distinguishing the existence
of true positive relations. This is due to weighting of class name, attribute, and method that is
not accurate. Furthermore, some of the requirements specified by system analysis weren’t
transparently realized by a use case. Some classes were not directly derived from the use
cases. There were invariants occurred during the transition process between artifacts. Further
research is required to experiment with distributed data in order to get the optimal result.

The fair reliability level of the method is the result of explicit knowledge usage, i.e. the textual
semantic similarity between requirement statement and the class diagram of a respective
software project. Further research is required to experiment with other property of both artifacts,
such as structural similarity and context similarity. The context similarity could be achieved by
aggregating the information collected by this method (using class diagram artifact) and the
information collected from other design artifacts, such as use case diagram, sequence diagram,
collaboration diagram, component diagram, state diagram, etc.

Acknowledgement

The author would like to thank Institut Teknologi Sepuluh Nopember and the Del Institute of
Technology for their support on this research.

References
[1] D. Siahaan, Analisa Kebutuhan dalam Rekayasa Perangkat Lunak, 1st ed. Yogyakarta:

Penerbit Andi, 2012.
[2] M. Widiastuti and D. Siahaan, “Mapping the Impact of Requirement Changes Using (LT-

RC),” in 4th International Conference Information & Communication Technology and
System, 2008, pp. 315–319.

[3] K. Müller and B. Rumpe, “A Model-Based Approach to Impact Analysis Using Model
Differencing,” Proceedings of the 8th International Workshop on Software Quality and
Maintainability., 2014.

[4] A. G. Dahlstedt and A. Persson, “Requirements Interdependencies : State of the Art and
Future Challenges,” Engineering and Managing Software Requirements, pp. 95–116,
2005.

[5] W. Chen, M. Zhang, and H. Li, “Utilizing Dependency Language Models for Graph-based
Dependency Parsing Models,” Proc. 50th Annu. Meet. Assoc. Comput. Linguist. (Volume
1 Long Pap., no. July, pp. 213–222, 2012.

[6] M. P. Robillard and G. C. Murphy, “Concern graphs,” Proceedings of the 24th
International Conference on Software Engineering, p. 406, 2002.

[7] M. De Marneffe and C. D. Manning, “Stanford typed dependencies manual,” 20090110
Httpnlp Stanford, vol. 40, no. September, pp. 1–22, 2010.

[8] W. Wei Zhang, H. Hong Mei, and H. Haiyan Zhao, “A feature-oriented approach to
modeling requirements dependencies,” in 13th IEEE International Conference on
Requirements Engineering (RE’05), 2005, pp. 273–282.

[9] J. Wang and Q. Wang, “Analyzing and predicting software integration bugs using
network analysis on requirements dependency network,” Requirement Engineering,
2016.

[10] A. B. Manik and D. O. Siahaan, “Rancang Bangun Kakas Bantu Deteksi
Ketidaksesuaian Kode Sumber terhadap Diagram Urutan,” Jurnal Teknik ITS, vol. 7, no.
1, pp. 23–26, Mar. 2018.

[11] D. Siahaan, Y. Desnelita, Gustientiedina, and Sunarti, “Structural and semantic similarity
measurement of UML sequence diagrams,” in 2017 11th International Conference on

LONTAR KOMPUTER VOL. 10, NO. 1 APRIL 2019 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2019.v10.i01.p03 e-ISSN 2541-5832
Accredited B by RISTEKDIKTI Decree No. 51/E/KPT/2017

28

Information & Communication Technology and System (ICTS), 2017, pp. 227–234.
[12] A. M. Yuwantoko, S. Daniel, and A. S. Ahmadiyah, “Pembuatan Kakas Bantu untuk

Mendeteksi Ketidaksesuaian Diagram Urutan (Sequence Diagram) dengan Diagram
Kasus Penggunaan (Use Case Diagram),” Jurnal Teknik ITS, vol. 6, no. 1, pp. 64–70,
Feb. 2017.

[13] F. B. Permana and D. O. Siahaan, “Pendekatan Kesamaan Semantik dan Struktur
dalam Kasus Penggunaan untuk Mendapatkan Kembali Spesifikasi Kebutuhan
Perangkat Lunak,” Journal of Information Systems Engineering and Bussiness
Inteligence, vol. 2, no. 2, p. 57, Oct. 2016.

[14] P. Gelu, R. Sarno, and D. Siahaan, “Requirements Association Extraction based on Use
Cases Diagram,” Lontar Komputer: Jurnal Ilmiah Teknologi Informasi, vol. 9, no. 1, pp.
11–19, May 2018.

[15] M. A.-R. Al-Khiaty and M. Ahmed, “Similarity assessment of UML class diagrams using a
greedy algorithm,” in 2014 International Computer Science and Engineering Conference
(ICSEC), 2014.

[16] D. Hernawati, “Generating Requirement Dependency Graph Based on Class
Dependency,” IPTEK The Journal of Technology and Science., 2018.

[17] Å. G. Dahlstedt, “Requirements Interdependencies – a Research Framework,” no. July,
2001

