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Abstract
The evolution operator U(t) for a time-independent parity-time-symmetric systems is well studied in the
literature. However, for the non-Hermitian time-dependent systems, a closed form expression for the evo-
lution operator is not available. In this paper, we make use of a procedure, originally developed by A.R.P.
Rau [Phys.Rev.Lett, 81, 4785-4789 (1998)], in the context of deriving the solution of Liuville-Bloch equations
in the product form of exponential operators when time-dependent external fields are present, for the eval-
uation of U(t) in the interaction picture wherein the corresponding Hamiltonian is time-dependent and
in general non-Hermitian. This amounts to a transformation of the whole scheme in terms of address-
ing a nonlinear Riccati equation the existence of whose solutions depends on the fulfillment of a certain
accompanying integrability condition.
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1. INTRODUCTION

Parity-time (PT) symmetric quantum mechanical Hamiltoni-
ans, of which the time-reversal is an anti-linear operator, form a
distinct sub-class of a wider branch of non-Hermitian Hamilto-
nians [1, 2]. Such Hamiltonians are of interest because a system
possessing an exact PT-symmetry generally preserves the real-
ity of their bound-state eigenvalues [3]. Should PT be broken,
the eigenvectors cease to be simultaneous eigenfunctions of the
joint PT-operator, and as a result, complex eigenvalues sponta-
neously turn up in conjugate pairs. We refer to such a system
as belonging to a PT-broken phase. The PT- transition causes a
system to cross over from an equilibrium to a non-equilibrium
state. During the past few years, the relevance of PT-structure
has been noticed in various optical systems wherein balancing
gain and loss is an interesting issue toward experimental real-
ization of PT-symmetric Hamiltonians [4, 5, 6].

A PT-symmetric system is often thought to evolve in a
manner wherein the accompanying time evolution of the state
vector is unitary with respect to the CPT inner product. How-
ever, up until now there has been no evidence of experimental
support of any physical system for which the time evolution
proceeds through a CPT-inner product. Of course, for a non-
Hermitian, PT-symmetric Hamiltonian, when looked upon as
an open quantum system, loss of unitarity is not a big issue
irrespective of whether the spectrum of H is purely real or sup-
ports complex conjugate pairs of eigenvalues. Recall that in
conventional quantum mechanics the concept of Hermiticity
holds with respect to the Hamiltonian of a closed system re-
sulting in the reality of the energy spectrum (see, for instance,
[7]) .

In the literature, there have been efforts to study sev-
eral classes of non-Hermitian Hamiltonians even for time-
dependent situations [8, 9, 10, 11, 12, 13, 14, 15, 16, 17] in-
cluding the time periodic cases in the Rabi problem [18, 19].
It was recently pointed out [15] that introducing explicit time-
dependence into the coupling parameters can render the cor-
responding Hamiltonian to be physically viable and gave jus-
tifications toward the existence of such a possibility in a quan-
tum mechanical context. This motivates us to have a fresh look
at the class of such Hamiltonians, even if non-Hermitian, for
which an explicit form of the evolution operator can be con-

structed in the set-up of an interaction picture. Here, as we
shall see, the adoption of the technique implemented by Rau
several years ago [28], in the context of solving Liouville-Bloch
equations, proves to be extremely facilitating (see also [29]). We
note in passing that in several quantum mechanical pictures
an equivalent Hermitian counterpart of the underlying non-
Hermitian Hamiltonian exists through the use of the so-called
Dyson map that transforms a non-Hermitian Hamiltonian into
an equivalent Hermitian form [20, 21, 22].

Our paper is organized as follows. In section 2, we run
through some of the basic equations of the time-dependent
quantum mechanics formalism including writing down the
standard expression of the evolutionary operator. In section 3,
we summarize the basic features of a two-level PT-symmetric
system and express the associated matrix Hamiltonian in terms
of the Pauli matrices for use in the later sections. In section 4, we
take up the derivation of the evolutionary operator U(t) of such
a system through the use of Baker-Campbell-Hausdorff (BCH)
formula and note that the complete solvability of the prob-
lem requires coming to terms with a nonlinear Riccati equa-
tion. In section 5, we address the evaluation of U(t) for a time-
dependent two-level spin system adopting a similar strategy as
in the previous section. Finally, in Section 6, we provide a brief
summary of our work.

2. TIME-DEPENDENT QUANTUM MECHAN-

ICS

Consider a time-dependent non-Hermitian Hamiltonian H(t)
having a Hermitian counterpart h(t). The corresponding
Schrodinger equations that these Hamiltonians obey are

H(t)ψ(t) = ih̄∂tψ(t), h(t)φ(t) = ih̄∂tφ(t) (1)

Dyson’s map connects ψ(t) to φ(t) through

φ(t) = η(t)ψ(t) (2)

and provides the following link between H(t) and h(t) in the
manner

h(t) = η(t)H(t)η−1(t) + ih̄∂tη(t)η
−1(t) (3)
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For a general quantum mechanical Hamiltonian H̃ [23], the
Schrodinger equation of the time evolution operator U(t, t0) is
given by

ih̄U̇(t, t0) = H̃U(t, t0), U(t0, t0) = I, t > t0 (4)

where if the Hamiltonian does not depend on time a solution
of the above equation emerges as

U(t, t0) = exp[
−iH̃(t − t0)

h̄
] (5)

The Hamiltonian is considered to be Hermitian because in a
standard quantum mechanical formalism the observables cor-
respond to the expectation value of Hermitian operators.

However, if the Hamiltonian depends on time, as is the case
of the interaction picture, the solution is given by

U(t, t0) = T(exp[
−i

h̄

∫ t

t0

H̃(t′)dt′]) (6)

where T stands for the time-ordering operator and the Hamil-
tonian H̃ is time-dependent: H̃ = H̃(t) and is considered Her-
mitian. The standard approach to tackle U(t) is to consider its
iterative evaluation by solving (6) comprehensively in terms
of nested time-integrations over different categories of time-
ordered product. In the following we will set h̄ = 1.

In this context, it is useful to note that in attempting to solve
the evolution equation, the Lie algebraic approach, based on
the Wei-Norman theorem has also been effective [24]. In order
to reduce the evolution operator in a disentangled form here
too one needs to solve a Riccati equation [25, 26, 27].

Although for the determination of the evolution operator U
in a non-Hermitian scenario the explicit unitariness is violated,
we can effectively use the technique developed in [28, 29] by
postulating for U(t) a representation in terms of the product
of a finite number of exponential operators which close up on
the use of BCH expansion for certain classes of commutators.
The closure ensures that on moving the relevant operators ju-
diciously, the exponentials stand to the extreme right and facil-
itate comparison with the given non-Hermitian Hamiltonian a
rather straightforward task. Actually, such a procedure allows
us to obtain a set of consistency conditions which, under certain
advantageous situations, can be completely solved in terms of
a nonlinear Riccati equation.

3. A TWO-DIMENSIONAL PT-SYMMETRIC

SYSTEM

Let us concentrate on the following non-Hermitian but a PT-
symmetric two-level system [30]

Ĥ =

(

reiθ s

s re−iθ

)

, Ĥ 6= Ĥ† (7)

where H† is the Hermitian conjugate of Ĥ and the three param-
eters r, s, θ are real.

The eigenvalues of Ĥ are λ± = r cos θ ±
√

s2 − r2 sin2 θ
which stay real when the inequality s2

> r2 sin2 θ holds.
The above Hamiltonian commutes with the PT operation i.e.
[Ĥ, PT] = 0 with

P =

[

0 1
1 0

]

(8)

and T pointing to the usual complex conjugation operation.

The simultaneous eigenstates of H and PT are

|ψ+〉 =
1√

2 cos α

(

e
iα
2

e−
iα
2

)

(9)

and

|ψ−〉 =
1√

2 cos α

(

e−
iα
2

−e
iα
2

)

(10)

where sin α = r
s sin θ.

It is important to realize that if the above condition for real
eigenvalues is met then PT is unbroken. If the contrary is the
case, then the states |ψ+〉 and |ψ−〉 are no longer eigenstates of
PT because α becomes imaginary and points to PT entering a
zone of broken phase. Indeed the PT operations are PT |ψ+〉 =
|ψ−〉 and vice versa.

From now onward we are going to work with the following
form for H

Ĥ = r cos θ I + ir sin θσz + sσx (11)

where I is the identity matrix and σ± = σx ± iσy, the Pauli
matrices σx , σy along with σz being

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

(12)

The PT-symmetric evolution operator for the Hamiltonian
(11) has been evaluated in a closed form [31, 32] by the use
of the formula (5) in connection with the solvability of the
Brachistochrone problem [31].

For the time dependent version of Ĥ we adjust the coeffi-
cient parameters to re-cast it in the form

Ĥ = νI + iκ(t)σz + λ(t)σx ≡ νI + iκ(t)σz +
λ(t)

2
(σ+ + σ−)

(13)
where ν is assumed to be a real constant and κ, λ are taken to
be, in general, real and continuous functions of t. If the latter are
arbitrary then Ĥ is of course non-Hermitian but for situations
when κ(t) and λ(t) are invariant under t− > −t, PT-symmetry
will still apply. In the following, our task would be to determine
the evolution operator U(t) associated with Ĥ.

4. EVOLUTION OPERATOR OF THE TIME-

DEPENDENT NON-HERMITIAN HAMIL-

TONIAN ˆH(T)

Let us project U in the form

U(t) = e−ia(t)eib(t)σ+eic(t)σ−ed(t)σz (14)

where the real functions a(t), b(t), c(t) and d(t) are to be de-
termined, analogous to the arrangement of the exponentials in
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[28]. However, it is to be remarked that U(t) is non-unitary here
because of the choice of the last factor d(t) in the right side. Tak-
ing the time derivative gives us the expression

iU̇(t) = ȧ IU − ḃσ+U − (ċ + 2cḋ)e−iaeibσ+σ−eicσ−edσz

+ iḋe−iaeibσ+σzeicσ−edσz (15)

A bit of manipulations on the last two terms of the right
side through the use of the BCH formula namely that for two
operators A and B the expansion

eABe−A = B + [A, B] +
1

2!
[A, [A, B]] + ... (16)

implies

eAB = (B + [A, B] +
1

2!
[A, [A, B]] + ...)eA (17)

we have the relationships

i(ċ + 2cḋ)e−iaeibσ+σ−eicσ−edσz

= i(ċ + 2cḋ)(σ− + 4ibσz + 4b2σ+)U (18)

and

ḋe−iaeibσ+σzeicσ−edσz = ḋ(σz − 2ibσ+)U (19)

In the above we used the commutation rules

[σz, σ±] = ±2σ±, [σ+, σ−] = 4σz (20)

Thus (15) is converted to the form

iU̇(t) = [ȧI + i(−4bċ + ḋ − 8bcḋ)σz

− (ḃ + 4b2 ċ − 2bḋ + 8b2cḋ)σ+ − (ċ + 2cḋ)σ−]U (21)

Identifying the items inside the squared-brackets in the
right-side with the time-dependent Hamiltonian Ĥ and com-
paring it with (13) gives us a set of four equations by seeking
consistencies between them namely,

ȧ = ν (22)

− 4bċ + ḋ − 8bcḋ = κ(t) (23)

ḃ + 4b2 ċ − 2bḋ + 8b2cḋ = −λ(t)

2
(24)

ċ + 2cḋ = −λ(t)

2
(25)

With ν being devoid of any time-dependence, the parame-
ter a can be determined by direct integration which turns out
to be a linear function of t. The equation for b can be found out
by first combining (24) and (25) to get

ḃ − 2λb2 − 2bḋ = −λ

2
(26)

and then through (23) and (25) arriving at

ḋ + 2bλ = κ (27)

From the last two equations (26) and (27) we can eliminate ḋ to
get a first-order ordinary differential equation

ḃ − 2κb + 2λb2 = −λ

2
(28)

The above equation can be recognized to be in the nonlinear
Riccati form.

To tackle such an equation it is interesting to consider the
underlying integrability condition as recently pointed out by
Mak and Harko [33]. They observed that the general solution
of an equation of the form (28) depends upon the coefficients
of the equation satisfying an auxiliary condition. In the present
context the latter reads in terms of a suitably defined generating
function f (t)

λ +
d

dt
(
−2κ +

√

f

2λ
) +

4κ2 − f

4λ
= 0 (29)

and a similar one corresponding to the negative sign of the
square-root. While for arbitrary κ(t) and λ(t) this equation ap-
pears to be rather complex to allow the Riccati equation to be
solved in a closed form, certain special cases could work. For
instance, when the derivative term in (29) is disregarded by
having

−2κ +
√

f

2λ
= constant (30)

one can derive plausible relations between κ and λ for which
(29) holds. To pursue this point a little further, let us take the
constant to be c( 6= 1). Then from (30) f turns out to be

f = 4(κ + cλ)2 (31)

while (29) implies

f = 4(λ2 + κ2) (32)

Equating the above two expressions for f we easily find that λ
is related to κ as

λ =
2cκ

1 − c2
, c 6= 1 (33)

implying

f = 4κ2(
1 + c2

1 − c2
)2 (34)

Once f , λ and κ are known, the general solution of b satisfying
the Riccati equation (28) is known too as given by a rational
expression. The form is too complicated to be reproduced here
and we refer to [33] for a further study (see also [34]).

Once b is known, a solution of d is supposed to follow from
(27) and as a consequence the parameter c is can be found out
from either (25) or (23). In this way, the evolution operator U for
the non-Hermitian Hamiltonian (13) is determined completely.

5. EVOLUTION OPERATOR OF THE TIME-

DEPENDENT TWO-LEVEL SPIN MODEL

The Hamiltonian for a two-level spin model is modeled by

Ĥ = − 1

2
[ω I + λσz + iκσx ] (35)
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where ω, λ, κ are real coupling parameters. By diagonalization
the reality of the energy spectrum corresponds to the inequality
|λ| > |κ|. The anti-linear symmetry operator corresponds to
PT.

Fring and Frith [15] chose the time-dependent counterpart
of Ĥ to be

Ĥ = − 1

2
[ω I + ακ(t)σz + iκ(t)σx ]

≡ − 1

2
ω I − α

2
κ(t)σz − i

κ(t)

4
(σ+ + σ−) (36)

where α is real. Notice that the main difference of the above
form of the Hamiltonian with the one in (13) is that, apart from
an overall sign factor, the presence of the imaginary number i
in the coefficients of σz and σx is exchanged. In the simplified
model studied in [15] the coefficient of σz has been set equal
to ακ(t). Subsequently, it was shown that the time-dependent
coefficient λ is related to the solution of the Ermakov-Pinney
equation.

To work out the time evolution operator associated with the
Hamiltonian (36) we need to adopt a slightly different form for
U(t) because of the position of the imaginary number i being
different from (13). To this end, let us take a non-unitary U as
given by the following succession of exponentials

U(t) = iea(t)eib(t)σ+eic(t)σ−ed(t)σz (37)

where the real functions a(t), b(t), c(t) and d(t) are to be deter-
mined in the spirit of what we did in the previous section.

Making use of BCZ formula to move the Pauli matrices in
the right order gives

iU̇(t) = [iȧI + i(−4bċ + ḋ − 8bcḋ)σz

− (ḃ + 4b2 ċ − 2bḋ + 8b2cḋ)σ+ − (ċ + 2cḋ)σ−]U (38)

Comparing with the form (4) to identify the Hamiltonian
as the one given by (36), where we adjust a factor of i, gives us
the following set of four equations

ȧ = − 1

2
ω (39)

− 4bċ + ḋ − 8bcḋ = −α
κ(t)

2
(40)

ḃ + 4b2 ċ − 2bḋ + 8b2cḋ = − κ(t)

4
(41)

ċ + 2cḋ = − κ(t)

4
(42)

These equations readily furnish the counterpart equation to
(28) namely

ḃ + ακb + κb2 = − κ(t)

4
(43)

which is again of the Riccati type and can be handled in a sim-
ilar way as discussed earlier. Knowing b one can determine, in
principle, the other two function c(t) and d(t).

6. SUMMARY

In this work, we attempted to evaluate the evolution operator
for a couple of time-dependent non-Hermitian Hamiltonians.
The first one we studied has its roots in the general class of PT
-symmetric 2 × 2 systems with time-dependence explicitly in-
serted among its coupling constants. By writing the evolution
operator as a product of exponential factors defined in terms
of time-dependent coefficient functions, but in a non-unitary
form, we showed that these functions could be determined by
exploiting the closed operator algebra of the Pauli matrices. Of
course, this required a quadratic Riccati equation to be solved
which in turn called for the fulfillment of an integrability con-
dition. Although somewhat complicated in nature we pointed
out a simple case when the Riccati equation can indeed be han-
dled straightforwardly. Our second model of inquiry was that
of a time-dependent two-level spin model. Here we had to take
the evolution operator in a slightly different form. We found
that in this case too one of the coefficient functions satisfies a
nonlinear equation in the Riccati form whose knowledge sheds
light on the other couplings. The form of the Riccati equation
turned out to be similar to the previous one.
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