
Knowledge Engineering and Data Science (KEDS) pISSN 2597-4602

Vol 6, No 1, April 2023, pp. 79–91 eISSN 2597-4637

https://doi.org/10.17977/um018v6i12023p79-91

©2023 Knowledge Engineering and Data Science | W : http://journal2.um.ac.id/index.php/keds | E : keds.journal@um.ac.id

This is an open access article under the CC BY-SA license (https://creativecommons.org/licenses/by-sa/4.0/)

 Round-Robin Algorithm in Load Balancing for National

Data Centers

I Kadek Wahyu Sudiatmika 1,*, Gede Indrawan 2, Sariyasa 3

Universitas Pendidikan Ganesha,
Jl. Udayana No.11, Buleleng 81116, Indonesia

1 wahyu.sudiatmika@undiksha.ac.id*; 2 gindrawan@undiksha.ac.id; 3 sariyasa@undiksha.ac.id
* corresponding author

I. Introduction

The Bali Provincial Government currently operates many public service applications integral to

the lives of its residents, local villages, and regional apparatus. Prominent among these systems are

the Traditional Village Financial Management System (in Indonesian, Sistem Informasi Keuangan

Desa Adat or SIKUAT), the Civil Service System (in Indonesian, Sistem Manajemen Kepegawaian

or SIMPEG), the Virtual Office (e-Office), and the Electronic Procurement System (in Indonesian,

Sistem Pengadaan Secara Elektronik or SPSE). With these systems operating on single, on-premise

servers, the challenge of resource limitation becomes increasingly apparent. A single server has finite

CPU, RAM, storage, and bandwidth. Overloading a server with multiple systems can lead to

performance degradation or crashes. Furthermore, the security of all the systems becomes

jeopardized if one system on the server is compromised.

Robust server management techniques, like load-balancing and virtualization, become crucial to

alleviate these issues. Load balancing, by definition, is the distribution of a workload across multiple

servers, ensuring that no singular server bears an overwhelming load [1]. This process optimizes and

stabilizes system performance, ensuring maximum uptime and consistent service delivery. Among

the strategies employed for load-balancing, the Round Robin algorithm stands out. This algorithm

systematically assigns incoming server requests to the next server in line, ensuring an equitable

ARTICLE INFO A B S T R A CT

Article history:

Received 21 July 2023

Revised 21 August 2023

Accepted 18 September 2023

Published online 22 September 2023

The Provincial Government of Bali assumes a crucial role in administering various
public service applications to meet the requirements of its community, traditional
villages, and regional apparatus. Nevertheless, the escalating magnitude of traffic and
uneven distribution of requests have resulted in substantial server burdens, which may
jeopardize the operation of applications and heighten the likelihood of downtime.
Ensuring efficient load distribution is of utmost importance in tackling these
difficulties, and the Round Robin algorithm is often utilized for this purpose.
However, the current body of research has not extensively examined the distinct
circumstances surrounding on-premise servers in the Bali Provincial Government. The
primary objective of this study is to address the significant gap in knowledge by
conducting a comprehensive evaluation of the Round Robin algorithm's effectiveness
in load-balancing on-premise servers inside the Bali Provincial Government. The
primary objective of our study is to assess the appropriateness of the algorithm within
the given context, with the ultimate goal of providing practical and implementable
suggestions. The observations above can optimize system efficiency and minimize
periods of inactivity, thereby enhancing the provision of vital public services across
Bali. This study provides essential insights for enhancing server infrastructure and
load-balancing strategies through empirical evaluation and comprehensive analysis.
Its findings are valuable for the Bali Provincial Government and serve as a reference
for other organizations facing challenges managing server loads. This study signifies
a notable advancement in establishing reliable and practical public service
applications within Bali.

This is an open access article under the CC BY-SA license

(https://creativecommons.org/licenses/by-sa/4.0/).

Keywords:

Load-balancing

Round-Robin Algorithm

Server on-premise

Performance

Public service application

http://u.lipi.go.id/1502081730
http://u.lipi.go.id/1502081046
http://journal2.um.ac.id/index.php/keds
mailto:keds.journal@um.ac.id
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

 Sudiatmika et al. / Knowledge Engineering and Data Science 2023, 6 (1): 79–91 80

distribution [2]. However, a significant gap exists: no existing research evaluating the performance

of the Round Robin algorithm specifically within the Bali Provincial Government's on-premise

server context exists.

This work undertakes a novel and groundbreaking investigation to address a significant gap in

load balancing. The primary aim of this study is to examine the efficacy of the Round Robin

algorithm within the specific context of on-premise servers used by the province government of Bali.

This particular domain has been noticeably underrepresented in previous research efforts.

Our research aims to offer the Bali Provincial Government carefully crafted recommendations

based on rigorous information and specifically customized to their distinct server environment. This

study gives particular attention to assessing and examining the round-robin methodology. This study

aims to precisely construct a framework that maximizes the operational efficiency of the National

Data Centers managed by the Bali Provincial Government.

This work distinguishes itself via its innovative approach, as it explores hitherto unexplored

domains to tackle the urgent requirement for server optimization within a specific and intricate real-

world context. Through a thorough examination of the Round Robin algorithm's appropriateness for

this unique context, our objective is to offer fresh perspectives and remedies that can be utilized not

only by the Bali Provincial Government but also serve as a valuable point of reference for comparable

entities grappling with comparable obstacles in their management of server infrastructure. This

research has the potential to impact the domain of load balancing and server optimization

substantially, hence facilitating the development of more efficient and robust server environments in

the coming years.

II. Method

The research design commences with the collection of data, which is subsequently followed by

the formulation of test cases, the testing of these test cases, and the analysis of the obtained test results

[3][4][5][6]. The initial phase entails the identification of the system environment and infrastructure

that will undergo testing, the collection of pertinent information regarding the application to be

evaluated, and the establishment of the test's objectives and requirements. The subsequent phase

involves the formulation of test cases for every test scenario, with the objective of including all

crucial facets of the application and system environment. The third phase entails the execution of test

cases based on specified scenarios, the documentation of test outcomes, and the verification of their

alignment with the anticipated results. The concluding phase involves the examination of the test

outcomes and their comparison with the objectives and requirements of the test. This process entails

the identification of any issues or flaws in the application or system environment, followed by the

implementation of the requisite enhancements or optimizations. In general, the study design is

implemented to assure the systematic and rigorous execution of tests, hence generating dependable

outcomes that can be utilized for the advancement of system development. The processes outlined in

Figure 1 provide a more comprehensive and deep understanding.

From Figure 1, in more detail, the research steps are described as follows. First, the data collection

stage, is one of the initial stages in conducting research. Data collection is carried out to collect

information and data relevant to the research problem to be solved. In this stage, the method of data

collection that will be carried out is a literature study and interviews. Second steps is preparation of

test cases. The test case preparation stage is essential in load-balancing research using the Round

Robin algorithm on an on-premise server in the Bali provincial government. This stage aims to create

a series of test cases that are used to test the performance of the Round Robin algorithm under various

conditions. Next step is test case testing, at this stage, the researcher will test several test cases that

have been prepared previously in the test case preparation stage. From the results of the test cases, it

is hoped that information will be obtained about the performance and suitability of the Round Robin

algorithm in an on-premise server environment at the Bali Provincial government so that it can

provide recommendations to the Bali Provincial government regarding the most suitable load-

balancing algorithm to use.

81 Sudiatmika et al. / Knowledge Engineering and Data Science 2023, 6 (1): 79–91

Fig. 1. Research steps

In the last stage, results of the test case test that have been carried out before will be analyzed in

depth to determine the performance of the Round Robin algorithm in load-balancing on the server

on-premise of the Bali Provincial government. This analysis will include an evaluation of load

testing, failover testing, robustness testing, and security testing. Based on the results of the analysis

from this stage, the researcher will conclude the advantages and disadvantages of the Round Robin

algorithm in load-balancing on the server on the premise of the Bali Provincial Government and

provide recommendations regarding the most suitable load-balancing algorithm used in an on-

premise server environment.

III. Result and Discussion

This study aims to analyze the performance of the round-robin algorithm in a load balancer. In this

study, we tested the performance of the round-robin algorithm in selecting the destination server for

each incoming request.

The Test Case will use standard testing from Grafana Labs K6 [7][8][9][10][11][12][13]. Based

on Grafana Labs documentation, K6 is an open-source load balancer testing tool that simplifies and

increases performance testing productivity for cloud technicians and engineers. The following tests

will be carried out based on the Grafana Labs K6 standard.

 Sudiatmika et al. / Knowledge Engineering and Data Science 2023, 6 (1): 79–91 82

The assessment of a load balancer's performance under conditions that roughly resemble its

regular workday load is a crucial benchmark, also referred to as average-load testing. This testing

method offers significant insights into the ability of the load balancer to achieve its performance

targets during regular operations continuously [14][15][16][17][18].

Figure 2 visually depicts the outcomes derived from the Average-load testing, illustrating our

findings. The presented testing scenario portrays an environment that exhibits a typical workload,

which closely resembles the load balancer's actual use during regular weekdays. Moreover, it

illustrates a moderate labor duration, providing insight into the time required to handle and allocate

incoming requests effectively.

Fig. 2. Average-load test

The insights obtained by doing Average-load testing provide a practical understanding of the load

balancer's capacity to manage the routine demands it faces effectively. Through simulating common

use patterns, researchers can get a more comprehensive knowledge of the load balancer's

performance within a context that closely aligns with its practical reality. Understanding this

information is crucial in guaranteeing that the load balancer can continuously and effectively fulfill

the requirements of the systems it assists throughout regular operations, hence improving the system's

overall stability and user satisfaction.

The stress testing process, as seen in Figure 3, is a crucial stage in assessing the resilience and

performance of a load balancer under extreme loads that exceed standard usage patterns. This testing

methodology comprehensively evaluates the load balancer's capacity to uphold system stability and

consistent reliability while subjected to intense stress levels [19][20][21][22][23][24][25][26][27].

Fig. 3. Stress test

Figure 3 provides a visual representation of the stress testing results, effectively illustrating the

responsiveness of the load balancer under extreme conditions. This scenario's purpose is to impose

excessive demands on the system deliberately, so replicating instances of high usage or unanticipated

surges in traffic to identify vulnerabilities, bottlenecks, or possible failure sites.

By putting the load balancer to these increased conditions, researchers can obtain vital insights

regarding its resilience and ability to manage unexpected increases in user activity, ensuring the

continuous provision of services. The stress testing process is of utmost importance in enhancing the

load balancer's performance characteristics, ensuring its ability to withstand and remain robust in

highly demanding use scenarios. These insights are crucial for enterprises aiming to uphold high

83 Sudiatmika et al. / Knowledge Engineering and Data Science 2023, 6 (1): 79–91

availability and ensure smooth user experiences, particularly in times of increased demand or

unforeseen swings in traffic.

The process of breakpoint testing, as illustrated in Figure 4, is a critical undertaking aimed at

precisely identifying the underlying constraints inside a system. The justification for doing

breakpoint testing is complex and involves a range of compelling factors, all of which contribute

considerably to the overall durability and strength of the system [28][29][30][31][32][33][34][35]

[36].

Fig. 4. Breakpoint test

Primarily, breakpoint testing plays a crucial role in proactive planning. Organizations can obtain

valuable insights into the operating boundaries of the system by intentionally submitting the load

balancer to progressively significant loads until it approaches its breakpoint. This information is the

basis for developing thorough remediation techniques for load balancer failures or catastrophic

system overloads. With this understanding, companies can establish predetermined measures for

mitigating risks, resulting in decreased periods of inactivity, limited service disruptions, and the

assurance of a prompt and efficient reaction to obstacles.

Moreover, the utilization of breakpoint testing is of utmost importance in the process of protocol

creation. This capability enables businesses to optimize response protocols by refining the methods

and procedures necessary to address prospective challenges. The use of a proactive strategy is crucial

in the identification and preventative resolution of vulnerabilities, hence enhancing the overall

dependability and stability of the system.

It is essential to acknowledge that breakpoint testing is a methodical and regulated procedure. The

demand is gradually augmented until the load balancer nears its breakpoint, at this juncture, the test

is manually terminated to mitigate any potential server harm. This cautious strategy guarantees the

system's reliability while allowing enterprises to collect vital data about system performance and

constraints.

Breakpoint testing is fundamentally a strategic endeavor that enhances system resilience and

optimizes performance. This technology enables enterprises to effectively manage the intricacies of

load balancing, instilling them with a sense of assurance in their ability to address obstacles

proactively, mitigate interruptions, and provide uninterrupted service quality to their consumers.

Before conducting the test, a scenario will be created for each test case. The test scenarios are

Average-load testing, stress testing, and breakpoint testing.

In the context of load testing, our objective is to accurately simulate the dynamic patterns of user

interactions with the load balancer through a meticulously constructed average-load testing scenario.

This process is conducted with a high degree of control and methodical precision. The initial stage,

which involves the progressive inclusion of people individually over 5 minutes, closely resembles

the natural accumulation of user engagement during typical usage. This phase enables a detailed

observation of the load balancer's response to incremental requests, enabling an assessment of its

capacity to effectively distribute resources and sustain minimal delay as the number of users

progressively increases. Additionally, this provides valuable information regarding the load

balancer's handling of the initial surge of connections, which is a critical factor in guaranteeing a

smooth user experience during times of increased demand.

 Sudiatmika et al. / Knowledge Engineering and Data Science 2023, 6 (1): 79–91 84

The succeeding step involves the simultaneous engagement of 100 users with the load balancer

for 10 minutes, which acts as a critically significant stress test. This rigorous phase simulates

situations in which the system becomes overwhelmed due to abrupt increases in traffic, such as the

dissemination of viral content or the execution of marketing campaigns. By putting the load balancer

to a period of high demand, we can evaluate its capacity to effectively manage substantial workloads

while ensuring optimal performance, uptime, and resource allocation. This phase assesses not only

the technical capabilities of the load balancer but also its ability to maintain service quality under

challenging circumstances, therefore mitigating the risk of service interruptions during periods of

high demand [37].

Figure 5 provides a comprehensive visual depiction of the dynamic scenario, effectively

illustrating the entire testing procedure, facilitating comprehension of the many stages of testing and

serving as a framework for interpreting and analyzing results. By employing carefully designed

testing scenarios and utilizing visual aids, businesses can obtain an in-depth understanding of the

load balancer's functionality, enabling them to make informed decisions based on data analysis,

aiming to improve system performance and resilience.

Fig. 5. Scenario average-load testing

Figure 6 represents a pivotal juncture when intentional and significant pressure is applied to the

load balancer, resulting in a massive surge of incoming traffic. The simulation provided in this study

aims to recreate real-world scenarios where sudden and quick surges in user activity can place

substantial pressure on the system's resources and capabilities. The initiation of stress testing entails

users systematically consecutively accessing the load balancer for an extended duration of 10

minutes, progressively augmenting the user count to a substantial aggregate of 200 individuals. The

progressive incorporation of users underscores the load balancer's capacity to adjust to an ever-

expanding user load while maintaining consistent performance metrics [38].

Fig. 6. Stree testing scenario

85 Sudiatmika et al. / Knowledge Engineering and Data Science 2023, 6 (1): 79–91

Once the user count exceeds the critical threshold of 200, the situation transitions into a phase

marked by a prolonged duration of heightened demand, wherein intensive demands persist for 10

minutes. This phase replicates scenarios involving high stress levels, during which system resources

are entirely used. During this phase, a comprehensive analysis is performed on critical performance

indicators, encompassing reaction times, resource utilization, and error rates. The data produced

presents valuable information into the load balancer's capacity to effectively manage heavy

workloads while maintaining service quality at a satisfactory level [39].

The culmination of the stress testing scenario occurs when users systematically complete their

requests within a 5-minute timeframe, resulting in a gradual decrease in user burden. The

phenomenon that has been noticed demonstrates a decline in user involvement that naturally occurs

after increased demand. This observation offers valuable insights about the load balancer's capacity

to manage the reduction in incoming requests efficiently. Organizations can enhance their

comprehension of the load balancer's performance in high-stress conditions by employing visual

representations of stress testing scenarios. These insights are of paramount importance for companies

seeking to enhance the resilience of their systems against unexpected surges in user traffic and ensure

uninterrupted service delivery, especially in peak demand.

The Break Point Test scenario, as illustrated in Figure 7, is a critical stage within our extensive

testing protocol. This scenario aims to methodically evaluate the capabilities and thresholds of the

load balancer, especially when confronted with a continuous and substantial increase in user traffic.

The process commences with a notable influx of 20,000 users consistently visiting the load balancer,

persistently exerting pressure on its capacities until a threshold is reached. This phase aims to

determine the specific threshold at which the load balancer's performance begins to deteriorate or is

compromised when subjected to high-load situations [40].

Fig. 7. Breakpoint testing scenario

In order to do thorough examinations and verify the results, we utilize the advanced Grafana Labs

K6 testing tool. This tool facilitates the precise execution of tests, ensuring adherence to specified

scenarios that faithfully replicate real-world usage patterns. The use of Grafana Labs K6 guarantees

that both control and representation of genuine user behavior characterize our testing methodology,

allows us to extract significant insights into the load balancer's performance in diverse scenarios.

In addition, the testing procedure on the server side is closely monitored by utilizing Kibana Data

Analytics tools. Using a dual-monitoring technique functions as a reliable validation mechanism,

enabling cross-referencing and verifying the outcomes derived by Grafana Labs K6. By utilizing the

sophisticated analytics features of Kibana, a comprehensive understanding of the load balancer's

performance can be obtained, including evaluating resource use, response times, and error rates [41].

The testing protocol we employ is characterized by its rigorous nature, resulting in substantial

data and valuable insights. These findings are meticulously arranged and effectively communicated

 Sudiatmika et al. / Knowledge Engineering and Data Science 2023, 6 (1): 79–91 86

through a collection of tables. The tables above encompass the Test Results in Average-load Testing

(Table 1), Test Results of Stress Testing (Table 2), and Breakpoint Testing Results (Table 3).

Utilizing a tabular format facilitates the seamless comparison and analysis of crucial performance

parameters, enabling the process of making well-informed decisions and implementing optimization

methods for the load balancer and its connected systems.

Table 1 provides a comprehensive analysis demonstrating the constant and reliable performance

of the Round Robin algorithm across several vital parameters. Notably, this algorithm exhibits

exceptional proficiency in processing HTTP requests and establishing secure connections. The

consistent capacity to produce expected outcomes highlights its appropriateness for the server

environment of the Bali Provincial Government, where the utmost importance is placed on stability

and dependability.

Table 1. Test results in average-load testing

Algorithm Round Robin IP Hash

data_received. 243 MB 270 kB/s 218 MB 330 kB/s

data_sent. 32 MB 35 kB/s 108 MB 43 kB/s

http_reg_blocked avg=131.88ms min=3us med=115.75ms

med=115.75ms max=2.35s p(90)=165.48m

p(95)=190 .69ms

avg=140.85ms min=1µs

med=117.38ms max=57.57s

p(90)=185.54ms p(95)=223.84ms

http_req_connecting avg=9.12ms min=0s med=0s max=1.035

p(90)=17.99ms p(95) -24.65 ms

avg=7.76ms min=0s med=0s

max=3.03s p(90)=14.91ms

p(95)=22.45ms

http_req_duration avg=109.32ms min=21.92ms

med=114.79ms max=2.39s p(90)=199.
14ms p(95)=226 .37 ms

avg=154.45ms min=20.54ms

med=121.04ms max=1m0s
p(90)=216.97ms p(95)=262.81ms

{expected_response:
true}

avg=109.32ms min=21.92ms
med=114.79ms max=2.39s p(90)=199.

14ms p(95)=226.37 ms

avg=153.07ms min=20.54ms
med=121.04ms max=57.6s

p(90)=216.96ms p(95)=262.77ms

http_req_failed 0.00% / 0 × 51290 0.00% ✓ 4 ✗ 172777

http_req_receiving avg=44.16ps min=5us med=25us

max=6.13ms p(90)=100 us p(95)=123us

avg=37.75µs min=0s med=18µs

max=21.62ms p(90)=78µs
p(95)=126µs

http_req_sending avg=72.87ms min=3us med=86.91 ms
max=2.36s p(90)=159.74ms

p(95)=182.22ms

avg=116.84ms min=3µs med=92.41ms
max=57.58s p(90)=177.1ms

p(95)=214.64ms

http_req_tls_handshaking avg=54.33ms min=0s med=0s max=1.49s

p(90)=126.68ms p(95)=141.39ms

avg=53.93ms min=0s med=0s

max=45.91s p(90)=133.34ms

p(95)=157.43ms

http_req_waiting avg=36.41ms min=21.8ms med=31.65ms

max=2s p(90)=49.24ms p(95)=59.91ms

avg=37.57ms min=20.5ms

med=30.21ms max=1m0s
p(90)=49.2ms p(95)=63.94ms

http_regs 51290 56.925729/s 172781 69.609188/s

iteration duration avg=1.17s min=1.07s med=1.15s

max=3.39s p(90)=1.21s p(95)=1.25s

avg=1.21s min=1.04s med=1.15s

max=1m1s p(90)=1.24s p(95)=1.3s

iterations 51290 56.925729/s 172781 69.609188/s

vus 1 min=1 max=100 1 min=1 max=100

vus max 100 min=100 max=100 100 min=100 max=100

On the other hand, the IP Hash algorithm demonstrates its advantages in data transmission rates

and its ability to handle a larger number of requests per second effectively. These characteristics

make it appealing when the primary focus is on swift data delivery. Nevertheless, it is essential to

acknowledge that compromises in other aspects of performance accompany these benefits.

The data obtained from these experiments provides a comprehensive understanding of the

performance of both methods, demonstrating distinct strengths in various load-balancing aspects.

Although both Round Robin and IP Hash have their advantages, the predominant data indicates that

Round-Robin's constant and dependable performance establishes it as the preferable option inside

87 Sudiatmika et al. / Knowledge Engineering and Data Science 2023, 6 (1): 79–91

the server ecology of the Bali Provincial Government. Nevertheless, it is essential to consider the

individual deployment and use-case needs, as they may necessitate a more nuanced conclusion.

Therefore, more research should be conducted to examine these aspects and offer more customized

advice the government's servers.

The findings reported in Table 2 demonstrate the superior performance of the round-robin

algorithm compared to the IP Hash technique across all critical performance criteria. Significantly,

the Round Robin algorithm demonstrates exceptional performance in connection times, request

lengths, and overall efficiency in effectively handling HTTP requests. Consistent superior outcomes

across all crucial factors establish Round Robin as the optimum solution for enhancing performance

in the tested setting.

Table 2. Test results of stress testing

Algorithm Round Robin IP Hash

data_received. 787 MB 525 kB/s 1.1 GB 162 kB/s

data_sent. 102 MB 68 kB/s 151 MB 22 kB/s

http_reg_blocked avg=194.77ms min=0s med=166.53ms

max=5.68s p(90)-246.5ms p(95)=315.45ms

avg=920.09ms min=0s

med=589.27ms max=16m48s

p(90)=1.06s p(95)=1.12s

http_req_connecting avg=16.67ms min=0s med=0s max=1. 1s

p(90)=36.26ms p(95)=49.9ms

avg=277.56ms min=0s med=0s

max=16m48s p(90)=68.84ms
p(95)=118.92ms

http_req_duration avg=171.3ms min=0s med=141.69ms
max=59.97s p(90)=302.22ms

p(95)=377.21ms

avg=4.72s min=0s med=228.01ms
max=56m54s p(90)=1.22s p(95)=1.38s

{expected_response:

true}

avg=167.37ms min=21.42ms

med=141.66ms max=5.75s p(90)=302.16ms

p(95)=377.06ms

avg=2.16s min=20.51ms

med=225.44ms max=40m7s

p(90)=1.22s p(95)=1.32s

http_req_failed 0.00% / 14 × 166217 0.66% ✓ 1592 ✗ 236692

http_req_receiving avg=38.17us min=0s med=18us
max=579.45ms p(90)=68us p(95)=94us

avg=25.75µs min=0s med=19µs
max=11.5ms p(90)=38µs p(95)=53µs

http_req_sending avg=114.06ms min=0s med=93.2ms

max=5.7s p(90)=241.33ms p(95)=298.

96ms

avg=2.04s min=0s med=136.15ms

max=40m7s p(90)=1.12s p(95)=1.17s

http_req_tls_handshaking avg=75.22ms min=0s med=0s max=4.77s

p(90)=172.42ms p(95)=198.03ms

avg=183.01ms min=0s med=0s

max=10m54s p(90)=863.72ms
p(95)=963.06ms

http_req_waiting avg=57.2ms min=0s med=43.39ms
max=59.52s p(90) =80. 37ms

p(95)=100.45ms

avg=2.68s min=0s med=60.85ms
max=56m54s p(90)=181.39ms

p(95)=325.93ms

http_regs 166231 110.778429/s 238284 34.517602/s

iteration duration avg=1.26s min=1.06s med=1.22s

max=1m1s p(90)=1.34s p(95)=1.44s

avg=2.2s min=1.03s med=1.87s

max=1m1s p(90)=2.24s p(95)=2.55s

iterations 166231 110.778429/s 238282 34.517312/s

vus 1 min=1 max=200 1 min=1 max=200

vus max 200 min=200 max=200 200 min=200 max=200

In sharp contrast, despite its higher overall data processing and repetition, the IP Hash algorithm

has a significantly distinct profile. It is characterized by significantly reduced speeds, prolonged

waiting periods, and an increased frequency of request failures. The deficiencies above prove the

system's constraints in providing expeditious and prompt service, a crucial factor for consumers in a

rapidly evolving digital environment.

The information presented in Table 3 is quite explicit and without significant ambiguity. Due to

its demonstrated dependability and effectiveness in managing key activities, the round-robin

scheduling algorithm is unequivocally favored for optimizing performance within the specific

context under examination. Nevertheless, it is advisable to consider the precise operational demands

 Sudiatmika et al. / Knowledge Engineering and Data Science 2023, 6 (1): 79–91 88

and use circumstances since these factors may need a more intricate decision-making process when

deploying load-balancing solutions. It is imperative to do more investigation into these intricate

situations to offer complete and customized suggestions for selecting an ideal load balancer.

Table 3. Breakpoint testing results

Algorithm Round Robin IP Hash

data_received. 20 MB 37 kB/s 20 MB 27 kB/s

data_sent. 2.4 MB 4.4 kB/s 2.4 MB 3.1 kB/s

http_reg_blocked avg=114.64ms min=75.82ms

med=101.49ms max=1.13s

p(90)=148.8ms p(95)=212.63ms

avg=106.5ms min=0s med=92.05ms

max=3.46s p(90)=106.75ms

p(95)=117.64ms

http_req_connecting avg=30.68ms min=20.57ms med=25.37ms

max=328.1ms p(90)=41.57ms

p(95)=56.4ms

avg=13.77ms min=0s med=5.45ms

max=2.01s p(90)=9.76ms

p(95)=13.83ms

http_req_duration avg=32.07ms min=21.58ms med=26.52ms

max=441.87ms p(90)=42.18ms
p(95)=55.14ms

avg=72.18ms min=0s med=27.29ms

max=18.38s p(90)=31.97ms
p(95)=36.02ms

{expected_response:
true}

avg=32.07ms min=21.58ms med=26.52ms
max=441.87ms p(90)=42.18ms

p(95)=55.14ms

avg=72.19ms min=21.89ms
med=27.29ms max=18.38s

p(90)=31.97ms p(95)=36.02ms

http_req_failed 0.00% ✓ 0 ✗ 4259 0.02% ✓ 1 ✗ 4258

http_req_receiving avg=156.23µs min=31µs med=139µs

max=4.04ms p(90)=198µs p(95)=242µs

avg=159.25µs min=0s med=139µs

max=8.04ms p(90)=214µs
p(95)=266.09µs

http_req_sending avg=140.53µs min=23µs med=125µs
max=7.45ms p(90)=190µs p(95)=229µs

avg=43.14ms min=0s med=132µs
max=18.35s p(90)=209µs

p(95)=294.19µs

http_req_tls_handshaking avg=83.66ms min=53.25ms med=72.74ms

max=1.07s p(90)=101.44ms

p(95)=144.09ms

avg=92.13ms min=0s med=85.78ms

max=3.45s p(90)=97.23ms

p(95)=105.03ms

http_req_waiting avg=31.77ms min=21.36ms med=26.2ms

max=441.6ms p(90)=41.79ms

p(95)=54.88ms

avg=28.87ms min=0s med=26.96ms

max=839.28ms p(90)=31.53ms

p(95)=35.32ms

http_regs 4259 7.884463/s 4259 5.59725/s

iteration duration avg=1.14s min=1.09s med=1.13s

max=2.18s p(90)=1.19s p(95)=1.26s

avg=1.19s min=1.09s med=1.12s

max=1m1s p(90)=1.14s p(95)=1.15s

iterations 4259 7.884463/s 259 5.59725/s

vus 1 min=1 max=13 1 min=1 max=25

vus max 50 min=50 max=50 50 min=50 max=50

The results shown in Table 3 highlight the Round-Robin method's superior performance compared

to the IP Hash alternative across several essential criteria. Significantly, the Round-Robin algorithm

demonstrates exceptional proficiency in data transmission speed, the duration of requests, and the

efficient execution of iterations. The constant and excellent performance of Round-Robin in these

crucial areas makes it a tempting option for optimizing load balancing within the dataset under

evaluation.

The IP Hash method demonstrates notable strengths in specific measures such as request blocking

and connection delays. However, the Round-Robin algorithm emerges as the most advantageous

option when examining the overall performance profile. The selection between the two algorithms is

contingent upon the particular priorities and exigencies of the given use case since each method

possesses distinct strengths and trade-offs.

Based on the extensive data provided, it can be concluded that the Round-Robin algorithm has

superior efficiency across all dimensions, rendering it a highly appealing alternative for enterprises

aiming to optimize their load-balancing techniques. Nonetheless, it is crucial to ensure that the choice

of algorithm follows the unique performance goals and operational limitations of the given context,

89 Sudiatmika et al. / Knowledge Engineering and Data Science 2023, 6 (1): 79–91

emphasizing the significance of customized approaches in the load-balancing domain. Additional

inquiry and contextual analysis can potentially enhance this judgment's precision significantly.

IV. Conclusion

Through our extensive examination of the IP Hash and Round Robin algorithms, we have

garnered significant insights that can contribute to advancing future research endeavors and provide

practical guidance for their implementation. Concerning data transfer rates, the IP Hash method

demonstrated a marginal superiority based on the average outcomes of the conducted tests.

Nevertheless, Round-Robin has shown to be a more reliable option, especially in terms of managing

HTTP requests and secure connections. The stability and dependability of Round-Robin were further

emphasized during stress testing, as it continually surpassed IP Hash across several performance

parameters. Significantly, Round Robin exhibited enhanced connection times, request durations, and

overall efficiency in managing HTTP requests. In the breakpoint test, the level of competition

between the two algorithms was more evenly balanced. Both IP Hash and Round- Robin algorithms

handled comparable data amounts. However, Round Robin exhibited superior data transmission

rates. Although IP Hash showed superior performance in request blocking and connection delays,

Round Robin once again showcased its proficiency in the crucial realm of HTTP request handling

and iteration processing rates. Upon examining the collective results obtained from the three tests, it

becomes apparent that the Round-Robin algorithm exhibits superior performance, consistency, and

reliability compared to the IP Hash method. Although IP Hash showed capabilities in certain areas,

Round-Robin consistently beat it across a broader range of performance criteria.

When businesses or entities are confronted with the decision between these two algorithms in

prospective research, it is highly recommended that Round-Robin be given significant consideration

due to its equitable and efficient performance, which holds particular significance when the utmost

importance is placed on maintaining consistency and reliability. Nevertheless, it is important to

acknowledge that individual use cases and distinct requirements may influence the final selection.

Hence, it is recommended that future research endeavors undertake a more comprehensive

investigation of these particular cases to offer additional insights and recommendations for the

selection and implementation of algorithms.

Declarations

Author contribution

All authors contributed equally as the main contributor of this paper. All authors read and approved the final paper.

Funding statement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of interest

The authors declare no known conflict of financial interest or personal relationships that could have appeared to influence
the work reported in this paper.

Additional information

Reprints and permission information are available at http://journal2.um.ac.id/index.php/keds.

Publisher’s Note: Department of Electrical Engineering and Informatics - Universitas Negeri Malang remains neutral with

regard to jurisdictional claims and institutional affiliations.

References

[1] A. Hanafiah, “Implementasi Load Balancing Dengan Algoritma Penjadwalan Weighted Round Robin Dalam

Mengatasi Beban Webserver,” IT J. Res. Dev., vol. 5, no. 2, pp. 226–233, Jan. 2021.

[2] Y. Arta, “Penerapan Metode Round Robin Pada Jaringan Multihoming Di Computer Cluster,” IT J. Res. Dev., vol. 1,
no. 2, pp. 26–35, Aug. 2017.

[3] T. D. Putra and R. Purnomo, “Average Max Round Robin Algorithm: A Case Study,” Sinkron, vol. 8, no. 3, pp. 1230–

1237, Jul. 2023.

http://journal2.um.ac.id/index.php/keds
https://doi.org/10.25299/itjrd.2021.vol5(2).5795
https://doi.org/10.25299/itjrd.2021.vol5(2).5795
https://doi.org/10.25299/itjrd.2017.vol1(2).677
https://doi.org/10.25299/itjrd.2017.vol1(2).677
https://doi.org/10.33395/sinkron.v8i3.12051
https://doi.org/10.33395/sinkron.v8i3.12051

 Sudiatmika et al. / Knowledge Engineering and Data Science 2023, 6 (1): 79–91 90

[4] R. Purnomo and T. D. Putra, “Comparison Between Simple Round Robin and Improved Round Robin Algorithms,”

JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 3, pp. 2205–2221, Sep. 2022.

[5] R. Sharma, A. K. Goel, M. K. Sharma, N. Dhiman, and V. N. Mishra, “Modified Round Robin CPU Scheduling: A
Fuzzy Logic-Based Approach,” in Lecture Notes in Operations Research, 2023, pp. 367–383.

[6] A. Y. Ahmad, “An Attempt to Set Standards for Studying and Comparing the Efficiency of Round Robin Algorithms,”

J. Educ. Sci., vol. 32, no. 2, pp. 11–20, Jun. 2023.

[7] B. Manasa and A. R. Babu, “Dynamic Weighted Round Robin Approach in Software-Defined Networks Using Pox
Controller,” Int. J. Recent Innov. Trends Comput. Commun., vol. 11, no. 5, pp. 304–310, May 2023.

[8] S. E. Abubakar, “Modified Round Robin with Highest Response Ratio Next CPU Scheduling Algorithm using

Dynamic Time Quantum,” SLU J. Sci. Technol., pp. 87–99, Mar. 2023.

[9] D. Biswas, M. Samsuddoha, M. R. Al Asif, and M. M. Ahmed, “Optimized Round Robin Scheduling Algorithm Using
Dynamic Time Quantum Approach in Cloud Computing Environment,” Int. J. Intell. Syst. Appl., vol. 15, no. 1, pp.

22–34, Feb. 2023.

[10] M. A. S. Al-Mekhlafi and N. N. S. Al-Marbe, “Lower and Upper Quartiles Enhanced Round Robin Algorithm for

Scheduling of Outlier Tasks in Cloud Computing,” J. Eng. Technol. Sci. - JOEATS, vol. 1, no. 1, pp. 67–87, Mar.
2023.

[11] W. Ullah and M. A. Shah, “A novel resilent round robin algorithm based CPU scheduling for efficient CPU

utlilization,” in Competitive Advantage in the Digital Economy (CADE 2022), 2022, pp. 41–48.

[12] Y. Afrianto, H. Sukoco, and S. Wahjuni, “Weighted Round Robin Load Balancer to Enhance Web Server Cluster in
OpenFlow Networks,” TELKOMNIKA (Telecommunication Comput. Electron. Control., vol. 16, no. 3, p. 1402, Jun.

2018.

[13] H. M. Noman and M. N. Jasim, “A Comparative Performance Analysis for Static and Dynamic Load Balancing

Techniques in Software Defined Network Environment,” J. Phys. Conf. Ser., vol. 1773, no. 1, p. 012010, Feb. 2021.
[14] T. Chomsiri and D. Pansa, “Load Balancer Mechanism using Optimal Parameter based on Calculus,” in 2018

International Conference on Information Technology (InCIT), Oct. 2018, pp. 1–6.

[15] M. A. N. Saif, S. K. Niranjan, B. A. H. Murshed, F. A. Ghanem, and A. A. Q. Ahmed, “CSO-ILB: chicken swarm

optimized inter-cloud load balancer for elastic containerized multi-cloud environment,” J. Supercomput., vol. 79, no.
1, pp. 1111–1155, Jan. 2023.

[16] K. K. Azumah, P. R. M. Maciel, L. T. Sørensen, and S. Kosta, “Modeling and Simulating a Process Mining-Influenced

Load-Balancer for the Hybrid Cloud,” IEEE Trans. Cloud Comput., vol. 11, no. 2, pp. 1999–2010, Apr. 2023.

[17] R. Uddin and F. Monir, “Performance Evaluation of Ryu Controller with Weighted Round Robin Load Balancer,” in
Communications in Computer and Information Science, 2021, pp. 115–129.

[18] K. Takahashi, K. Aida, T. Tanjo, and J. Sun, “A Portable Load Balancer for Kubernetes Cluster,” in Proceedings of

the International Conference on High Performance Computing in Asia-Pacific Region, Jan. 2018, pp. 222–231.

[19] O. Khoshaba, V. Lytvynov, V. Grechaninov, and K. Zavertailo, “Performance of the Reverse Load Balancer Method
in Cluster and Cloud Infrastructures,” in Advances in Intelligent Systems and Computing, 2021, pp. 186–196.

[20] X. Huang, Z. Guo, and M. Song, “FGLB: A fine‐grained hardware intra‐server load balancer based on 100 G FPGA

SmartNIC,” Int. J. Netw. Manag., vol. 32, no. 6, Nov. 2022.

[21] S. Mangalampalli, P. K. Sree, K. V. N. Rao, A. Rapaka, and R. T. Kocherla, “Prioritized Load Balancer for
Minimization of VM and Data Transfer Cost in Cloud Computing,” in Advances in Intelligent Systems and

Computing, 2022, pp. 263–271.

[22] S. Atalla, A. Bianco, R. Birke, and L. Giraudo, “A Hardware Load Balancer for a Multi-Stage Software Router

Architecture (Sep. 17),” in 2014 World Congress on Computer Applications and Information Systems, WCCAIS
2014, 2022, no. July.

[23] W. W. Mulat, S. K. Mohapatra, R. Sathpathy, and S. K. Dhal, “Improving Throttled Load Balancing Algorithm in

Cloud Computing,” in Algorithms for Intelligent Systems, 2022, pp. 369–377.

[24] M. Park, J. Seok, and K. Lee, “A SIP Load Balancer for Performance Enlargement,” 2022.
[25] S. S. Tripathy, D. S. Roy, and R. K. Barik, “M2FBalancer: A mist-assisted fog computing-based load balancing

strategy for smart cities,” J. Ambient Intell. Smart Environ., vol. 13, no. 3, pp. 219–233, May 2021.

[26] N. G. Elnagar, G. F. Elkabbany, A. A. Al-Awamry, and M. B. Abdelhalim, “Simulation and performance assessment

of a modified throttled load balancing algorithm in cloud computing environment,” Int. J. Electr. Comput. Eng., vol.
12, no. 2, p. 2087, Apr. 2022.

[27] F. Mulyadi and K. Akkarajitsakul, “Non-Cooperative and Cooperative Game Approaches for Load Balancing in

Distributed Systems,” in Proceedings of the 2019 7th International Conference on Computer and Communications

Management, Jul. 2019, pp. 252–257.
[28] M. Elveny, A. Winata, B. Siregar, and R. Syah, “A Tutorial: Load Balancers in a Container technology System using

Docker Swarms on a Single Board Computer Cluster,” Ilkogr. Online - Elem. Educ. Online, vol. 19, no. 4, pp. 744–

751, 2020.
[29] S. Sahana, T. Mukherjee, and D. Sarddar, “A Conceptual Framework Towards Implementing a Cloud-Based Dynamic

Load Balancer Using a Weighted Round-Robin Algorithm,” Int. J. Cloud Appl. Comput., vol. 10, no. 2, pp. 22–35,

Apr. 2020.

[30] T. Barbette, E. Wu, D. Kostic, G. Q. Maguire, P. Papadimitratos, and M. Chiesa, “Cheetah: A High-Speed
Programmable Load-Balancer Framework With Guaranteed Per-Connection-Consistency,” IEEE/ACM Trans. Netw.,

vol. 30, no. 1, pp. 354–367, Feb. 2022.

[31] O. Khoshaba, V. Grechaninov, A. Lopushanskyi, and K. Zavertailo, “Studying the Dynamic Bottlenecks of a Load

Balancer in Distributed Systems,” in Lecture Notes in Networks and Systems, 2022, pp. 199–211.

https://doi.org/10.35957/jatisi.v9i3.2547
https://doi.org/10.35957/jatisi.v9i3.2547
https://doi.org/10.1007/978-981-19-8012-1_24
https://doi.org/10.1007/978-981-19-8012-1_24
https://doi.org/10.33899/edusj.2023.137735.1317
https://doi.org/10.33899/edusj.2023.137735.1317
https://doi.org/10.17762/ijritcc.v11i5.6618
https://doi.org/10.17762/ijritcc.v11i5.6618
https://doi.org/10.56471/slujst.v6i.363
https://doi.org/10.56471/slujst.v6i.363
https://doi.org/10.5815/ijisa.2023.01.03
https://doi.org/10.5815/ijisa.2023.01.03
https://doi.org/10.5815/ijisa.2023.01.03
https://doi.org/10.59421/joeats.v1i1.1420
https://doi.org/10.59421/joeats.v1i1.1420
https://doi.org/10.59421/joeats.v1i1.1420
https://doi.org/10.1049/icp.2022.2038
https://doi.org/10.1049/icp.2022.2038
https://doi.org/10.12928/telkomnika.v16i3.5601
https://doi.org/10.12928/telkomnika.v16i3.5601
https://doi.org/10.12928/telkomnika.v16i3.5601
https://doi.org/10.1088/1742-6596/1773/1/012010
https://doi.org/10.1088/1742-6596/1773/1/012010
https://doi.org/10.23919/INCIT.2018.8584884
https://doi.org/10.23919/INCIT.2018.8584884
https://doi.org/10.1007/s11227-022-04688-w
https://doi.org/10.1007/s11227-022-04688-w
https://doi.org/10.1007/s11227-022-04688-w
https://doi.org/10.1109/TCC.2022.3177668
https://doi.org/10.1109/TCC.2022.3177668
https://doi.org/10.1007/978-3-030-84842-2_9
https://doi.org/10.1007/978-3-030-84842-2_9
https://doi.org/10.1145/3149457.3149473
https://doi.org/10.1145/3149457.3149473
https://doi.org/10.1007/978-3-030-58124-4_18
https://doi.org/10.1007/978-3-030-58124-4_18
https://doi.org/10.1002/nem.2211
https://doi.org/10.1002/nem.2211
https://doi.org/10.1007/978-981-16-7088-6_23
https://doi.org/10.1007/978-981-16-7088-6_23
https://doi.org/10.1007/978-981-16-7088-6_23
https://doi.org/10.1109/WCCAIS.2014.6916593
https://doi.org/10.1109/WCCAIS.2014.6916593
https://doi.org/10.1109/WCCAIS.2014.6916593
https://doi.org/10.1007/978-981-19-0332-8_27
https://doi.org/10.1007/978-981-19-0332-8_27
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiu78Kjz72BAxWcSmwGHcTQDFUQFnoECBQQAQ&url=http%3A%2F%2Fwww.wseas.us%2Fe-library%2Fconferences%2Fjoint2002%2F451-298.pdf&usg=AOvVaw1WNtKGn2eAC_6nGClZfjoj&opi=89978449
https://doi.org/10.3233/AIS-210598
https://doi.org/10.3233/AIS-210598
https://doi.org/10.11591/ijece.v12i2.pp2087-2096
https://doi.org/10.11591/ijece.v12i2.pp2087-2096
https://doi.org/10.11591/ijece.v12i2.pp2087-2096
https://doi.org/10.1145/3348445.3348477
https://doi.org/10.1145/3348445.3348477
https://doi.org/10.1145/3348445.3348477
https://www.researchgate.net/publication/349158847_A_tutorial_Load_balancers_in_a_container_technology_system_using_docker_swarms_on_a_single_board_computer_cluster
https://www.researchgate.net/publication/349158847_A_tutorial_Load_balancers_in_a_container_technology_system_using_docker_swarms_on_a_single_board_computer_cluster
https://www.researchgate.net/publication/349158847_A_tutorial_Load_balancers_in_a_container_technology_system_using_docker_swarms_on_a_single_board_computer_cluster
https://doi.org/10.4018/IJCAC.2020040102
https://doi.org/10.4018/IJCAC.2020040102
https://doi.org/10.4018/IJCAC.2020040102
https://doi.org/10.1109/TNET.2021.3113370
https://doi.org/10.1109/TNET.2021.3113370
https://doi.org/10.1109/TNET.2021.3113370
https://doi.org/10.1007/978-3-030-89902-8_16
https://doi.org/10.1007/978-3-030-89902-8_16

91 Sudiatmika et al. / Knowledge Engineering and Data Science 2023, 6 (1): 79–91

[32] J.-B. Lee, T.-H. Yoo, E.-H. Lee, B.-H. Hwang, S.-W. Ahn, and C.-H. Cho, “High-Performance Software Load

Balancer for Cloud-Native Architecture,” IEEE Access, vol. 9, pp. 123704–123716, 2021.

[33] S. Atalla, A. Bianco, R. Birke, and L. Giraudo, “NetFPGA-based load balancer for a multi-stage router architecture,”
in 2014 World Congress on Computer Applications and Information Systems (WCCAIS), Jan. 2014, pp. 1–6.

[34] F. Alharbi and M. Mustafa, “Two-Tier Load Balancer as a Solution to a Huge Number of Servers,” J. Eng. Appl. Sci.,

vol. 9, no. 1, p. 1, 2022.

[35] K. I. Nikishin, “Load Balancer of Data in a Distributed Network via Nginx Proxy Server,” Proc. Southwest State
Univ., vol. 26, no. 3, pp. 98–111, Feb. 2023.

[36] A. K. Sinha, S. S. K. Singh, S. Sai, and M. Sivagami, “Implementing an Integrated Network Load Balancer for

Minimizing Weighted Response,” in Lecture Notes on Data Engineering and Communications Technologies, 2023,

pp. 651–662.
[37] M. Lopez-Martin, B. Carro, J. I. Arribas, and A. Sanchez-Esguevillas, “Network intrusion detection with a novel

hierarchy of distances between embeddings of hash IP addresses,” Knowledge-Based Syst., vol. 219, p. 106887, May

2021.

[38] E. Osei Kofi and E. Ahene, “Enhanced network load balancing technique for efficient performance in software defined
network,” PLoS One, vol. 18, no. 4, p. e0284176, Apr. 2023.

[39] T. Isobe et al., “Areion: Highly-Efficient Permutations and Its Applications to Hash Functions for Short Input,” IACR

Trans. Cryptogr. Hardw. Embed. Syst., pp. 115–154, Mar. 2023.

[40] C. Rawls and M. A. Salehi, “Load Balancer Tuning: Comparative Analysis of HAProxy Load Balancing Methods,”
2022.

[41] K. Takahashi, “A Study on Portable Load Balancer for Container Clusters,” University for Advanced Studies

(SOKENDAI), 2019.

https://doi.org/10.1109/ACCESS.2021.3108801
https://doi.org/10.1109/ACCESS.2021.3108801
https://doi.org/10.1109/WCCAIS.2014.6916593
https://doi.org/10.1109/WCCAIS.2014.6916593
https://doi.org/10.5455/jeas.2022050101
https://doi.org/10.5455/jeas.2022050101
https://doi.org/10.21869/22231560-2022-26-3-98-111
https://doi.org/10.21869/22231560-2022-26-3-98-111
https://doi.org/10.1007/978-981-99-1767-9_47
https://doi.org/10.1007/978-981-99-1767-9_47
https://doi.org/10.1007/978-981-99-1767-9_47
https://doi.org/10.1016/j.knosys.2021.106887
https://doi.org/10.1016/j.knosys.2021.106887
https://doi.org/10.1016/j.knosys.2021.106887
https://doi.org/10.1371/journal.pone.0284176
https://doi.org/10.1371/journal.pone.0284176
https://doi.org/10.46586/tches.v2023.i2.115-154
https://doi.org/10.46586/tches.v2023.i2.115-154
https://arxiv.org/abs/2212.14198v1
https://arxiv.org/abs/2212.14198v1
https://www.researchgate.net/publication/337971562_A_Study_on_Portable_Load_Balancer_for_Container_Clusters
https://www.researchgate.net/publication/337971562_A_Study_on_Portable_Load_Balancer_for_Container_Clusters

