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In this paper, a generalized upper bound solution is developed for extrusion of bi-metallic
rectangular cross-section bars through dies of any shape. The internal, shearing and fric-
tional power terms are derived and they are used in the upper bound model. By using
the developed upper bound model, the extrusion pressures for two types of die shapes, an
optimum wedge shaped die as a linear die profile and an optimum streamlined die shape
as a curved die profile, are determined. The corresponding results for those two die shapes
are also determined by using the finite element code and compared with the upper bound
results. These comparisons show a good agreement.
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Nomenclature

bc, bs – widths of core and sleeve materials, respectively
dQ – differential volume flow
P – extrusion pressure
J∗ – externally supplied power of deformation
L,Lo – length of die and initial bi-metallic billet length
m1,m2 – friction factor between sleeve and die, and between core and sleeve
r, θ, z – cylindrical coordinate system
rf , ro – radial position of surfaces S2 and S4, and of surfaces S1 and S3
x – punch displacement
S – surface of integration
S1-S4 – cylindrical surfaces of velocity discontinuity
t1f , t2f – half thickness of sleeve and core in final product
t1o, t2o – half thickness of sleeve and core in initial bar

U̇r, U̇θ, U̇z – radial, angular and third components of velocity
V – volume of integration
Vf , Vo – velocity of final product and initial billet, respectively

Ẇf , Ẇi, Ẇs – friction power losses along the wall, internal power of deformation and shear
power losses along surface of velocity discontinuity, respectively

α – angle of line connecting initial to final point of die
γ – arbitrary angle on cylindrical surfaces S1 and S3
β – angle of interface in deformation zone
∆V – velocity difference
ε̇rr, ε̇θθ, ε̇zz – normal strain rate components in radial, angular and third directions
ε̇rθ, ε̇rz, ε̇zθ – shear strain rate components
η – local angle of die surface with respect to local radial velocity component
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σc, σs – mean flow stress of core and sleeve material
ψ(r), ψi(r) – angular position of die and interface as function of radial position

1. Introduction

Bimetals are components made up of two separate metallic units, each occupying a distinct
position in the component. Bimetal components make possibility of combining properties of
dissimilar metals. The compressive state of stress in extrusion and the possibility of producing
metallurgical bonds between the two metals make this process a suitable choice for producing
bimetal bars (Berski et al., 2004). In this process, alike other metal forming processes, estimation
and minimization of the extrusion pressure is important. The upper bound technique as an
analytical method and the finite element method have been widely used for the analysis of the
extrusion of bars made of mono-metal and bi-metallic materials. One of the limitations of most
of the current FE solution schemes for metal forming is that they do not provide parametric
analysis. Hence, any parametric investigation is usually done manually by changing one FE
model to another until a feasible solution is obtained. Analytical solutions facilitate parametric
study and can aid an FE modeler in seeking out optimal extrusion process conditions. After
the upper bound model has determined the optimal die shapes, a finite element model has then
been used to study the extrusion through dies with these optimal shapes.

A number of people have used the upper bound method and FEM to analyze the mono-
metal and bimetal extrusion process through a variety of die shapes. Zimmerman and Avitzur
(1970) modeled the mono-metal extrusion using the upper bound method with generalized shear
boundaries. Osakada et al. (1973) described the hydrostatic extrusion of bi-metallic bars with
hard cores through conical dies by the upper bound method. Nagpal (1974) developed velocity
fields for axisymmetric mono-metal extrusions through arbitrarily shaped dies. Chen et al. (1979)
used finite element analysis to examine the axisymmetric extrusion through conical dies. Avitzur
(1983) summarized the factors that affect simultaneous flow of layers in the extrusion of a
bimetal bar through conical dies. Tokuno and Ikeda (1991) verified the deformation in extrusion
of composite bars by experimental and upper bound methods. Yang et al. (1999) studied the
axisymmetric extrusion of composite bars through curved dies by experimental and upper bound
methods. Sliwa (1997) described the plastic zones in the forward extrusion of metal composites
by experimental and upper bound methods. Chitkara and Aleem (2001a,b) theoretically studied
the mechanics of extrusion of axisymmetric bi-metallic tubes from solid circular bars using
fixed mandrel with application of generalized upper bound and slab method analyses. They
investigated the effect of different parameters such as the extrusion ratio, frictional conditions,
and shape of the dies and the mandrels on the extrusion pressures. Kang et al. (2002) designed a
die for the hot forward and backward extrusion process of Al-Cu clad composite by experimental
investigations and FEM simulations. Hwang and Hwang (2002) studied the plastic deformation
behavior within a conical die during composite bar extrusion by experimental and upper bound
methods. Haghighat and Asgari (2011) proposed a generalized spherical velocity field for the
bi-metallic tube extrusion process through dies of any shape. Haghighat and Amjadian (2011)
developed velocity fields for the mono-metal plane strain extrusion through arbitrarily curved
dies.

The purpose of this paper is to develop a generalized upper bound solution for flow of bi-
metallic rectangular cross-section bars during extrusion through dies of any shape. Based on
this model, for a given die shape and process parameters, the optimum die length and extrusion
pressure are derived. The FEM simulation on the extrusion of a bi-metallic rectangular cross-
section bar composed of a copper sleeve layer and an aluminum core layer is also conducted.
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2. Upper bound analysis

Based on the upper bound theory, for a rigid-plastic Von-Misses material and amongst all the
kinematically admissible velocity fields, the actual one that minimizes the power required for
material deformation is expressed as

J∗ =
2√
3
σ0

∫

v

√

1

2
ε̇ij ε̇ij dV +

σ0√
3

∫

SV

|∆V | dS +m σ0√
3

∫

Sf

|∆V | dS −
∫

St

TiVi dS (2.1)

where σ0 is the mean flow stress of the material, ε̇ij the strain rate tensor, m the constant
friction factor, V the volume of the plastic deformation zone, SV and Sf the area of velocity
discontinuity and frictional surfaces, respectively, St the area where tractions may occur, ∆V the
amount of velocity discontinuity on the frictional and discontinuity surfaces and Vi and Ti are
the velocity and tractions applied on St, respectively.

The extrusion of the bi-metallic rectangular cross-section bar through a die of arbitrary
curved shape is modelled as shown in Figs. 1 and 2. An initially billet, made up two different
ductile materials with the mean flow stresses σc and σs, is considered. The subscripts c and s
denote the inner material, core, and outer material, sleeve, respectively. The material starts as
a bar with the sleeve thickness 2t1o and core thickness 2t2o and it extrudes into a product of
thicknesses 2t2f and 2t1f for the sleeve and core through a curved die, respectively. Because of
the width of the core bc and width of the sleeve bs are long, bc ∼= bs ≫ 2t1o, the process can be
assumed as a plane strain extrusion.

Fig. 1. The extrusion process of a bi-metallic rectangular cross-section billet through an arbitrarily
curved die

To analyze the process, the material under deformation is divided into six zones, as shown in
Fig. 2. The die surface, which is labeled as ψ(r) in Fig. 2, is given in the cylindrical coordinate
system (r, θ, z). The origin of the cylindrical coordinate system is located at the point O which
is defined by the intersection of the midline with a line at the angle α that goes through the
point where the die begins and the exit point of the die.

In zones I and II, the incoming materials are assumed to flow horizontally as a rigid body
with velocity Vo. In zones V and VI, the extruded materials are assumed to flow horizontally
as a rigid body with velocity Vf . Zones III and IV are the deformation regions, where the
velocity is complex. These zones are surrounded by four velocity discontinuity surfaces S1, S2,
S3 and S4. In addition to these surfaces, there are two frictional surfaces between the sleeve and
container and the die surface and sleeve S5. The surfaces S1 and S3 are located at a distance ro
from the origin, and the surfaces S2 and S4 are located at a distance rf from the origin. The
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Fig. 2. Schematic diagram of a plane strain extrusion of a bi-metallic strip through a curved die and the
cylindrical coordinate system

mathematical equations for radial positions of four velocity discontinuity surfaces S1, S3 and
S2, S4 are given by

ro =
t1o − t2o
sinα

rf =
t1f − t2f
sinα

(2.2)

where α is the angle of the line connecting the initial point of the curved die to the final point
of the die and

tanα =
t1o − t1f

L
(2.3)

where L denotes the die length. The interface surface between the inner and the outer materials
is defined by ψi(r), which is the angular position of the interface surface as a function of the
radial distance from the origin. The angle β, shown in Fig. 2, is given by

sin β =
t2o
t1o
sinα (2.4)

2.1. Velocity field in the deformation zone

The first step in the upper bound analysis is to choose an admissible velocity field for the
material undergoing plastic deformation. The velocity field that derives from incompressibility
condition and satisfies the velocity boundary conditions is a kinematically admissible velocity
field.
The velocity component in the radial direction within the deformation zone U̇r can be

obtained by assuming volume flow balance. In Fig. 2, the volume flow of the material across the
S1 and S3 surface at the point (ro, γ, z) in the radial direction is

dQ = −Vo cos(γ)bro dγ (2.5)

The volume flow of the material in the radial direction at the point (r, θ, z) in the deformation
zone is

dQ = U̇rbr dθ (2.6)

Equating Eqs. (2.5) and (2.6), the radial velocity in the deformation zone is

U̇r = −Vo
ro
r
cos γ

dγ

dθ
(2.7)
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Regarding the relationship between the angular positions γ, on the surfaces S1 and S3, and
the angular position θ in the deformation zone and assuming proportional distances from the
midline in the deformation zone (Gordon et al., 2007), one obtains

sin γ

sinα
=
sin θ

sinψ
(2.8)

where the angle ψ is the angular position of a point on the die profile.
Differentiating Eq. (2.8) yields

cos γ
dγ

dθ
= sinα

cos θ

sinψ
(2.9)

Replacing Eqs. (2.9) into Eq. (2.7) gives the radial velocity component in the deformation zone
as

U̇r = −Vo
ro
r

sinα

sinψ
cos θ (2.10)

When the die shape reduces to a linear die profile, it has a single value (i.e. ψ(r) = α) and Eq.
(2.10) reduces to the velocity field proposed by Avitzur (1968) for the mono-metal plane strain
extrusion through a wedge shaped die.
The full velocity field for the flow of the material in the deformation zones is obtained by

invoking volume constancy. The volume constancy in cylindrical coordinate system is defined as

ε̇rr + ε̇θθ + ε̇zz = 0 (2.11)

where ε̇ii is the normal strain rate component in the i-th direction. The strain rates components
in cylindrical coordinates are defined as

ε̇rr =
∂U̇r
∂r

ε̇θθ =
1

r

∂U̇θ
∂θ
+
U̇r
r

ε̇zz =
∂U̇z
∂z

ε̇rθ =
1

2

(∂U̇θ
∂r
+
1

r

∂U̇r
∂θ
− U̇θ

r

)

ε̇θz =
1
2

(

∂U̇θ
∂z
+
1

r

∂U̇z
∂θ

)

ε̇zr =
1

2

(∂U̇r
∂z
+
∂U̇z
∂r

)

(2.12)

For the plane strain extrusion (i.e. U̇z = 0), the full velocity field is obtained by placing U̇r,
from Eq. (2.10) into Eqs. (2.11) and (2.12), solving for U̇θ and applying appropriate boundary
conditions. The boundary conditions are as U̇θ|θ=0 = 0 for the midline and for the die surface
(U̇θ/U̇r)|θ=ψ = r∂ψ/∂r. Then, the velocity components can be given by

U̇r = −Vo
ro
r

sinα

sinψ
cos θ U̇θ = −Voro

sinα

sinψ

∂ψ

∂r
cotψ sin θ U̇z = 0 (2.13)

Based on the established velocity field, the strain rate field for the deformation zone can be
obtained by Eqs. (2.12) as

ε̇rr = −ε̇θθ = Vo
ro
r2
sinα

sinψ
(1 + r

∂ψ

∂r
cotψ) cos θ

ε̇rθ =
1

2
Vo
ro
r2
sinα

sinψ

[

1− r2 cotψ∂
2ψ

∂r2
+ r2(1 + cot2 ψ)

(∂ψ

∂r

)2
+ cot2 ψ

(∂ψ

∂r

)2

+ r cotψ
∂ψ

∂r

]

sin θ

ε̇zz = ε̇θz = ε̇zr = 0

(2.14)
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With the strain rate field and the velocity field, the standard upper bound method can be
implemented. This upper bound model involves calculating the internal power of deformation
over the deformation zone volume, calculating the shear power losses over the four surfaces of
velocity discontinuity, and the frictional power losses between the sleeve and the die and between
the sleeve and the container.

2.2. Internal power of deformation

The internal power of deformation in the upper bound model is

Ẇi =
2√
3
σ0

∫

v

√

1

2
ε̇ij ε̇ij dV (2.15)

The internal power of zones I, II, V and VI are zero, and the equation to calculate the internal
power of deformation in zone III is

ẆiIII =
2σs√
3
b

ro
∫

rf

ψ(r)
∫

ψi(r)

√

1

2
ε̇2rr +

1

2
ε̇2θθ + ε̇

2
rθ r dθ dr (2.16)

where σs is the mean flow stress of the sleeve material, and is determined by

σs =
1

ε

ε
∫

0

σ dε ε = ln
t1o − t2o
t1f − t2f

(2.17)

and ψi(r) is the angular position of the interface surface as a function of the radial distance
from the origin O, and is given by

ψi(r) = sin
−1
[ sin β

sinα
sinψ(r)

]

(2.18)

The general equation to calculate the internal power of deformation in zone IV is determined as

ẆiIV =
2σc√
3
b

ro
∫

rf

ψi(r)
∫

0

√

1

2
ε̇2rr +

1

2
ε̇2θθ + ε̇

2
rθ r dθ dr (2.19)

where σc is the mean flow stress of core material and is given by

σc =
1

ε

ε
∫

0

σ dε ε = ln
t2o
t2f

(2.20)

2.3. Shear power losses

The equation for the power losses along the shear surface of velocity discontinuity is

ẆS =
σ0√
3

∫

Sv

|∆V | dS (2.21)
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The shear power losses along the velocity discontinuity surfaces S1, S2, S3 and S4 can be given
by

ẆS1 =
σs√
3
Vorob

α
∫

β

(

1 + ro
∂ψ

∂r

∣

∣

∣

r=ro
cotα

)

sin θ dθ

ẆS2 =
σs√
3
Vorob

α
∫

β

(

1 + ro
to
tf

∂ψ

∂r

∣

∣

∣

r=rf
cotα

)

sin θ dθ

ẆS3 =
σc√
3
Vorob

β
∫

0

(

1 + ro
∂ψ

∂r

∣

∣

∣

r=ro
cotα

)

sin θ dθ

ẆS4 =
σc√
3
Vorob

β
∫

0

(

1 + ro
to
tf

∂ψ

∂r

∣

∣

∣

r=rf
cotα

)

sin θ dθ

(2.22)

2.4. Friction power losses

The general equation for the friction power losses for the surface with a constant friction
factor m1 is

Ẇf = m1
σ0√
3

∫

Sf

|∆V | dS (2.23)

For the die surface S5

dS5 =

√

1 +
(

r
∂ψ

∂r

)2
dr |∆V | = |U̇r cos η + U̇θ sin η|θ=ψ (2.24)

where η is the local angle of the die surface with respect to the local radial velocity component
and

cos η =
1

√

1 +
(

r ∂ψ
∂r

)2
sin η =

r ∂ψ
∂r

√

1 +
(

r ∂ψ
∂r

)2
(2.25)

The frictional power losses along the die surface are calculated as

Ẇf5 =
σs√
3
m1V0br1o

ro
∫

rf

sinα

r tanψ

[

1 +
(

r
∂ψ

∂r

)2]

dr (2.26)

where m1 is the constant friction factor between the sleeve and die.
The frictional power losses along the container surface S7 can be given by

Ẇf7 =
σs√
3
m1Vob(Lo − x) (2.27)

where x is the displacement of the punch and Lo is the initial bi-metallic billet length.
Based on the upper bound model, the total power needed for a bi-metallic plane strain

extrusion process can obtained by summing the internal power and the power dissipated on
all frictional and velocity discontinuity surfaces. Then, the total upper bound solution for the
extrusion pressure is given by

Pe =
ẆiIII + ẆiIV + Ẇs1 + Ẇs2 + Ẇs3 + Ẇs4 + Ẇf5 + Ẇf7

bt1oVo
(2.28)
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A MATLAB program has been implemented for the previously derived equations and has been
used to study the plastic deformation for different die shapes and friction conditions. It includes
the parameter L, the die length that should be optimized.

3. Results and discussion

To make a comparison with the developed model, a bimetal bar composed of aluminium as the
core layer and copper as the sleeve layer is used. The flow stresses for copper and aluminium in
room temperature are obtained as (Hwang and Hwang, 2002)

σAl = 189.2ε
0.239MPa σCu = 335.2ε

0.113MPa (3.1)

Friction factors m1 = 0.2 and m2 = 0.9, t1o = 10mm, t2o = 6mm, t1f = 7mm are adopted
during the analytical solution and FEM simulation.

The developed upper bound model can be used for the bi-metallic plane strain extrusion
through dies of any shape if the die profile is expressed as an equation of ψ(r). Two types of
die shapes are examined in the present investigation. The first die shape is wedge shaped die
as a linear die profile. This profile has a single constant value, i.e. ψ(r) = α. The second die
shape is taken from the work by Yang and Han (1987). They created a streamlined die shape as
a fourth-order polynomial whose slope is parallel to the axis at both entrance and exit. The die
shape of Yang and Han (1987) was expressed in the cylindrical coordinate system.

In Fig. 3, the extrusion pressure of the wedge shaped die and the Yang and Han die shape
obtained from the upper bound method are compared with each other. The extrusion pressure of
Yang and Han die shape is lower than that of conical die. Because this curved die has a smooth
transition at the die entrance and exit, the shearing in the velocity discontinuity surfaces is zero.
At a die length called the optimum die length, the extrusion pressure is minimized. As shown
in Fig. 3, the optimum die length in the case of the wedge shaped die is 7.9mm, and in the case
of Yang and Han die shape is of 10.7mm.

Fig. 3. Comparison between the analytical extrusion pressure values versus die length for the wedge
shaped die and Yang and Han die shape

The extrusion process is simulated by using the finite element code ABAQUS. Two die
shapes are used in simulations: (a) optimum wedge shaped die with 7.9mm die length and
(b) optimum Yang and Han die with 10.7mm die length. Considering the symmetry in geometry,
plane strain models are used for FEM analyses. In each case, the whole model is meshed with
CAX4R elements. The punch and the die are modeled as rigid materials. The die model is
fixed by applying displacement constraint on its nodes, while the punch model is loaded by
specifying displacement in the axial direction. Figure 4a illustrates the mesh used to analyze the
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deformation of the optimum Yang and Han die shape. Deformed models of the sleeve and core
are shown in Fig. 4b. This figure shows that aluminum leaves the deformation zone sooner than
copper. Since the flow stress of aluminum is lower than that of copper, the former extrudes first.
As the applied stress increases the flow stress of copper, simultaneous flow of the two metals
continues.

Fig. 4. (a) Finite element mesh and (b) deformed mesh in the bi-metallic plane strain extrusion process

In Figs. 5a and 5b, the extrusion pressure variation during the whole extrusion process
obtained from the upper bound solution are compared with the FEM for the wedge shaped
die and Yang and Han die shape having 8mm and 11mm die lengths, respectively. The results
show a good agreement between the upper bound data and the FEM results. As shown in these
figures, at the early stage of extrusion, an unsteady state deformation occurs, and the materials
have not yet filled up the cavity of the die completely.

Thus, the extrusion pressure increases as the extrusion process proceeds. After the materials
have filled up the cavity of the die completely, the extrusion pressure decreases gradually. The
gradual decrease in the load-displacement curves is due to decreasing of the frictional surface
area in the container as the punch is advanced. The results show a good agreement between the
analysis and FEM results. As shown in Figs. 5a,b, the analytically predicted pressure is about
14% higher than the FEM result, which is due to the nature of the upper bound theory.

Fig. 5. Comparison of analytical and FEM extrusion pressure-displacement curves for the wedge shaped
die (a) and for the Yang and Han die shape (b)
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The effect of die length on the extrusion pressure for different values of the friction factor
is shown in Fig. 6. As expected, for a given value of the friction factor, the extrusion pressure
is minimized in the optimum die length. It is observed that the optimum die length decreases
when the shearing friction factor increases. This figure, also, shows that an increase in the friction
factor tends to increase the extrusion pressure.

Fig. 6. The effect of die length on the extrusion pressure for different values of the friction factor for the
Yang and Han die shape

Since the developed upper bound solution is faster than FEM analysis, it can be very bene-
ficial in studying the influence of multiple variables on the bi-metallic rectangular cross-section
bar extrusion process and for a given die shape, it can be used for finding the optimum die
length which minimizes the extrusion pressure.

4. Conclusions

In this research, a generalized velocity field for use in the upper bound model of the extrusion
process of the bi-metallic rectangular cross-section bar through dies of any shape was developed.
By using the developed upper bound model, optimum die lengths for the wedge shaped die and
also for the Yang and Han die shape have been determined. The extrusion pressure for these two
dies has been found by using the finite element code, ABAQUS, and compared with analytical
results. These comparisons show a good agreement, and the extrusion pressure of the Yang and
Han die shape was lower than in the wedge shaped die.

The developed upper bound model can be used for fast estimation of the extrusion pressure
of bi-metallic rectangular cross-section bars through dies of any shape and for a given die shape
and process parameters. It can be used for finding the optimum die length which minimizes the
extrusion pressure.
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Uogólnione rozwiązanie ograniczenia górnego problemu wytłaczania bimetalowych belek

o przekroju prostokątnym za pomocą tłoczników o dowolnym kształcie

Streszczenie

W pracy wyprowadzono uogólnione rozwiązanie ograniczenia górnego problemu wytłaczania bime-
talowych belek o przekroju prostokątnym za pomocą tłoczników o dowolnym kształcie. Wyznaczono
wyrażenia potęgowe opisujące wewnętrzne, ścinające oraz tarciowe obciążenia i zastosowano je w mo-
delu matematycznym omawianego zagadnienia. Zaproponowana metoda badań pozwoliła na określenie
nacisku podczas wytłaczania elementów przy użyciu dwóch typów tłocznika – optymalnego klinowego
o profilu liniowym oraz tłocznika o zarysie krzywoliniowym, opływowym. W obydwu przypadkach ob-
liczenia porównano z wynikami uzyskanymi z metody elementów skończonych. Porównanie to wykazało
dobrą zgodność rozwiązania ograniczenia górnego z rezultatami MES.
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