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Based on the suggested multi-scale model of Local Approach (LA) to fracture, four main
problems of LA are considered, namely: (i) the effect of micro-stress fluctuations on the
crack nuclei instability; (ii) intensity of micro-crack nucleation and its influence on fracture
probability; (iii) theoretical and experimental assessment of the value of threshold stress;
(iv) stochastic analysis of “multi-barrier” effect at micro-crack growth in polycrystalline
metal.
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1. Introduction

The Local Approach to fracture (LA) has been significantly developed for the last three decades.
This approach has enabled not only to clarify the nature and micromechanism of metal fracture,
but also to describe the effect of loading conditions on the fracture limit of structures, which can-
not be easily realized with the conventional global approach (Pineau, 2006; Pineau and Benoot,
2010; Bordet et al., 2005; Beremin 1983, Margolin et al., 1998). However, recent findings have
demonstrated limitation of the conventional version of LA both in the theoretical and applied
sense. This is due, first of all, to unnecessarily oversimplified description of the fracture process
in Beremin’s version of LA and its further modifications. Simultaneously with this version, the
multi-scale approach to brittle fracture was offered in Kotrechko (1995, 2002, 2003), Kotrechko
and Meshkov (2001), Kotrechko et al. (2007). Specific feature of this approach lies in possibility
to describe regularities of a pre-cracked solid on macroscopic scale based on realistic physical
models of the crack nuclei (CN) creation and instability in polycrystalline metals and alloys.
This version of LA is more sophisticated for practical use; however, it may be applied as the the-
oretical basis for further development of conventional LA. This paper is aimed at consideration
of key problems of LA, namely:

• accounting for the effect of stochastic micro-stress field on the CN instability in polycry-
stalline aggregate;

• prediction of the effect of plastic strain and temperature on the CN generation;
• theoretical and experimental determination of the value of threshold stress;
• properties and experimental determination of the local fracture stress;
• analysis of “multiple-barrier” effect at the CN propagation in polycrystal.

2. Crack nuclei instability

The Griffith criterion is conventionally used for description of the beginning of macro-crack
unstable growth. However, most works do not account that the CN becomes unstable under the
influence of micro-stresses. Only macroscopic stresses are usually considered. Pineau and Bennot
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(2010) noted that the effect of micro-stresses should be accounted because it is the reason for
both scatter of fracture stress and the value of statistical scale effect. The statistical model of
cleavage fracture of a polycrystalline metal, in which the CN instability in stochastic micro-
stress field is considered, was suggested in Kotrechko (1995). Microstresses in polycrystalline
aggregate are characterized by a wide spectrum of amplitudes and wave lengths. Therefore,
at modelling, two components were accounted separately, namely: (1) the microstresses ξij
produced by grain-to-grain elastic misfit and (2) the microstresses ξpij due to dislocations. In
the first approximation, the microstresses ξij may be considered as homogeneous within the
grain and changing from a grain to grain. The statistical distribution of these stress values may
be approximated with sufficient accuracy by the normal law. The values of variances of these
microstresses Dξ11 , Dξ22 , Dξ33 are functions of principal macro-stresses σ1, σ2, σ3, and the mean
values ξ11, ξ22, ξ33 are equal to σ1, σ2, σ3, respectively
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where DI = 1.7 · 10−2, DII = µII = 0.66 · 10−2, µI = 0.72 · 10−2 for polycrystalline iron and
Fe-based alloys.

From (2.1) it follows that even at uniaxial macroscopic tension (σ1 > 0, σ2 = σ3 = 0), the
microscopic stress state is triaxial (ξ11 > 0, ξ22 6= 0, ξ33 6= 0). In this case, for iron, the value
of microscopic stress ξ11 changes from 0.6σ1 to 1.4σ1, and the values ξ22 and ξ33 change from
−1.24σ1 to +1.24σ1. This specific feature is one of the reasons for scatter of cleavage fracture
on macroscopic scale, but it does not account in most conventional models.

Micro-stress fields induced by dislocations are significantly inhomogeneous, so, the effect of
such fields may be described by the effective stress ξ (Indenbom, 1961)
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2
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where a is the CN length, ξp11(x) is the distribution function for tensile micro-stress along the
path of microcrack growth.

The essence of this dependence is that micro-stresses support a crack growth if they change
according to the law 1/

√
x with distance x change. In Kotrechko (1995), the expression for ξ

induced by the layer of randomly distributed dislocations near the grain boundary where the CN
forms was obtained. The values of these stresses increase with plastic strain e growth. However,
the critical value ec exists, at exceeding of which ξ decreases. As it is exhibited in Kotrechko
(2002), Kotrechko et al. (1995, 2007), for typical structural steels ec ≈ 0.02. At e < ec, the
dependence of ξ on strain may be approximated as
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where kξ is the coefficient (for α-Fe and carbon steels it is equal to ≈ 16.8MPa
√
m); e is the

equivalent macro-plastic strain; d is the grain size.

At strain ec < e ¬ 0.2, the expression for ξ is the following1
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1For typical ferritic steels ec ≈ 0.02.



The key problems of local approach to cleavage fracture 77

where ke is the coefficient (for α-Fe and carbon steels it is approximately equal to 40MPa
√
m).

As it is shown in Kotrechko et al. (1995, 2007), Kotrechko (2003), the effect of dislocation
micro-stresses on the CN instability results in a non-monotonic dependence of critical fracture
stress σf on the value of plastic strain (Fig. 1).

Fig. 1. Effect of plastic strain on the value of cleavage fracture stress σf under uniaxial tension:
ec is the critical value of plastic strain corresponding to the minimum level of brittle strength of

metal RMC at uniaxial tension

With account of these regularities, the expression for critical stress of the CN instability on
microscopic scale ξc is the following

ξc =
(kIc√

a
− ξ
)

ϕ(θ, η) (2.5)

where kIc is the critical value of the stress intensity coefficient for the CN; ϕ(θ, η) is the function
describing the effect of CN orientation and the micro-stress state mode on the value of ξc. In
2D-approximation

ϕ(θ, η) =
1

√

cos2 α+ η sin2 α
(2.6)

where α is the angle between the normal to crack plane and ξ11 direction; η is the parameter
of the micro-stress state mode (η = ξ22/ξ11).
Equation (2.5) with account of (2.1) enables one to predict the value of macroscopic fracture

stress σf based on the criterion of CN instability on microscopic scale

ξ11  ξc (2.7)

As it is exhibited in Kotrechko (1995, 2002), Kotrechko et al. (2001), the probability of instability
of one CN is the following
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where g(ξc) is the density distribution function for critical micro-stresses ξc
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g(θ), g(η) and g(A) are the density distribution functions for the orientation angles θ, parameter
of micro-stress state mode η and CN sizes a2, respectively.
The function g(η) is determined based on the condition that ξ11 and ξ22 are distributed by

a normal law with variances (2.1)1,2.
According to the “weakest link” concept, cleavage fracture of a metal volume VI occurs if

not less than one crack of all numbers of cracks Na (Na = ρV ) becomes unstable

P (σf ) = 1− [1− P0(σf )]ρV (2.11)

where P (σf ) is the probability of fracture of macroscopic volume V at uniform distribution of
macro-stresses σf .
For inhomogeneous distribution of stresses and strains ahead the crack tip or notch, the

expression for probability of global fracture is

P (σf ) = 1−
i=M
∏

i=1

[1− Pi(σf )] (2.12)

where Pi(σf ) is the probability of metal fracture in i-th finite element (FE) volume; M is the
number of FE in the “process zone”.
In conventional versions of LA, the Weibull distribution is employed instead of expression

(2.11) for fracture probability Pi(σf ). In Kotrechko et al. (2001) within the framework of the
approach proposed, it was shown that the distribution of probability of instability of one CN,
P0(σf ) may be approximated by an exponential law. In this case, expression (2.11) may be
presented as follows

P (σf ) ≈ 1− exp
[

−ρV
(σ − σth

σu

)m]

(2.13)

where σth is the value of threshold stress; σu is the scale stress; m is the shape parameter of
the Weibull distribution.

3. Crack nucleation

Prediction of a number of micro-cracks nucleating during plastic deformation is one of the most
difficult and less investigated problems of LA. In classic models, determination of length of
forming micro-cracks and critical stress of their instability is accentuated. However, as it follows
from (2.11) and (2.13), the number of CN significantly influences the value of fracture probability
and critical local stress σf . Besides, in most models, the main peculiarity of CN behaviour in
metals is not accounted. It is the fact that only freshly nucleated micro-cracks may result in
global fracture of the metal. If at the moment of crack nucleation, Griffith’s condition for it is not
hold, then this crack blunts and now can not “compete” with “fresh” sharp crack nuclei, which
is permanently generated during the plastic deformation. This specific feature CN behaviour in
a metal was taken into account in the statistical model of fracture proposed in Kotrechko (1995)
and multi-scale version of LA developed based on this model (Kotrechko and Meshkov, 2001;
Kotrechko, 2002, 2003). In Bordet et al. (2005) it was noted that supposition of conventional LA
about keeping of the CN activity over the entire loading history is invalid for metals. Therefore,
the composition ρV in (2.11) and (2.13) is not the totality of CN accumulated in the metal
during its loading before a certain value of plastic strain e is reached, but it is the number of
CN, which arises at that strain. It means that ρ is the rate of CN generation with respect to
strain.

2If fracture is initiated by carbide cracking, g(a) is the density distribution function for these particles.
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Inhomogeneity of micro-plastic deformation, which gives rise to plastic deformation incom-
patibility on grain and interphase boundaries, is a general reason for the CN formation in poly-
crystalline solids. So, in Kotrechko (1995), a statistical model was offered where the formation
of CN was considered as a stochastic process of reaching the critical micro-plastic strain value.
This model describes the CN formation on micro-scale in terms of average strains over the grain.
However, this may be described more thoroughly if one accounts that the local incompatibility
of plastic deformations on the grain and interphase boundaries may be described with sufficient
accuracy by dislocation pile-ups. The crack nucleus arises if two conditions are held, namely:
(i) relaxation in the pile-up tip is absent (pile-up blocking); (ii) formation of the pile-up of cri-
tical capacity at which the value of local stresses ahead of its tip is sufficient for formation of
atomically sharp flaw near the grain boundary or interphase “ferrite-carbide” boundary3. As it
is exhibited in Kotrechko et al. (2011), formation of such a pile-up may be described as follows

CL
[

σ(kσT −M) + β
√

e

d

]2

 τc (3.1)

where C is a constant depending on elastic constants of the lattice (for α-Fe C = 0.0336 N/m);
β is constant (β ≈ 2.57MPa√m; d is the average grain size; L is the pile-up length; σ and
e are equivalent macroscopic stresses and plastic strains, respectively; kσ is a coefficient
(kσ =

√

Dξns/σ), where Dξns is the variance of shear microscopic stresses ξns in the slip sys-
tems, (for α-Fe and slip systems {110}〈111〉kσ = 0.225); t is the dimensionless value of shear
stresses ξns “applied” to the pile-up (t = ξns/

√

Dξns); M is the factor averaged over the gra-
in orientation (for b.c.c. crystals M = 0.36); τc is the critical shear stress for crack nucleus
formation.

In dependence (3.1), the expression β
√

e/d specifies the value of shear micro-stresses caused
by the interaction of grain of averaged orientation M with plastically deformed to strain e
surrounding matrix. The value of fluctuation of stresses in the slip system where a pile-up has
formed ξns is specified by the expression σ(kσt−M).
It should be noted that the expression β

√

e/d characterizes shear micro-stresses induced by
dislocations in contrast to ξ (Eq. (2.3)), which specifies the normal component of the tensor of
these stresses. Besides, while determining the value of coefficient β, a different law for averaging
stresses over the pile-up length is used. Accurate to coefficients, the decrease in these stresses at
a strain e greater than the critical one ec is described by the same dependence (2.4).

The condition of the pile-up blocking is formulated as follows
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where r is the distance from the grain boundary to the dislocation source in the neighbouring
grain (r ≪ L), where the starting of a such source is possible at reaching the critical value of
shear stresses The parameter m characterizes the influence of the slip system orientation of the
dislocation source on the value of shear stress acting in this system.

If the fluctuations of values τ
Y
and r are neglected, then the expression for probability of

CN formation is the following
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3At certain shape of the carbide particle, carbide cracking is more preferable than CN formation on
the interphase boundary.
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where
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The distribution density function g(m) is determined based on the distribution of a scalar
angle of misorientation of grain boundaries (Lindley et al., 1970)4.
According to (3.1), an expression for the critical value tc is described by the dependence
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The density distribution function g(t) is determined as
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)

(3.6)

In some cases, during calculations, it is reasonably to use an approximate expression for Pnucl .
It may be obtained if m fluctuation is neglected. In this case

Pnucl ≈ P (tc < t < tr) = 2

tr
∫

tc

g(t) dt (3.7)

Accounting for (3.6), Pnucl is the following

Pnucl ≈ 2[Φ(tr)− Φ(tc)] (3.8)

where Φ(tr) and Φ(tc) are values of the Laplace function at the corresponding value of the
parameter t.
The expression for the parameter tr that characterises relaxation conditions is the following
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In a general case, the rate of CN generation in the metal volume unit may be specified as

ρ = kρPnucl (3.10)

where kρ is the coefficient depending on the density of carbide particles and grain size. The value
of this coefficient may be estimated using an experimental evidence by a calibration procedure.
The approach proposed enables one to model the effect of many factors on the rate of

CN generation, such as metallurgical factors (average grain size d and maximum grain size
L ≈ (0.5-1.0)dmax), loading condition (temperature and loading rate (parameters τY and σ),
crystallographic texture (function g(m)), the value of plastic strain e. Figure 2 presents the
dependence of ρ on the value of plastic strain at different test temperatures for the reactor
pressure vessel steel 2Cr-Ni-Mo-V. The specific feature of these dependences is a non-monotonic
change of ρ with e growth. This agrees well with data of the work by Lindley et al. (1970)
demonstrating that the number of cleaved carbides grows up to a certain level, after which the
nucleation rate decreases monotonically. It should be noted that comparison of the experimental
evidence with the obtained results requires to account that ρ is not a cumulative CN density, but
is the rate of its nucleation with respect to strain. Therefore, description of the CN formation
on submicroscales enables one to solve adequately one of the key problems of LA related to the
prediction of crack formation under the action of plastic flow.

4Expression for g(m) is somewhat intricate, so it is not presented in an explicit form.
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Fig. 2. Dependence of the CN density in RPV steel ρ on the value of plastic strain and temperature:
e and ec are the equivalent plastic strain and its critical value, respectively

4. Threshold fracture stress

As it is known, the assessment of the threshold stress value is one of the important problems of
LA. In most cases, to simplify the calibration procedure, two-parameter Weibull’s distribution
is employed (Pineau, 2006; Pineau and Benoot, 2010; Beremin, 1983), i.e. it is supposed that
σth = 0. However, for steels, the value of σth is rather high, and may amount to σth ≈ (0.4-0.6)σf ,
where σf is the local fracture stress. So, neglecting the σth value, gives rise to essential errors at
the estimation of the Weibull modulus m by experimental evidence. This results in errors of the
prediction of scatter and temperature dependence of the fracture toughness. Attempts are known
to estimate the value σth by the yield stress at low temperatures. However, it contradicts the
physical essence of the threshold fracture stress. According to the model proposed, the value σth
may be specified as

σth =
ξminc
1 + 3Iξ11

(4.1)

where Iξ11 is the coefficient of variation of principal tensile micro-stresses ξ11 (for ferritic steels
under uniaxial tension Iξ11 ≈ 0.13); coefficient “3” means that σth is estimated with probabili-
ty 0.997; ξminc is the minimum value of the critical stress of the CN instability.
According to (2.5)

ξminc =
( kIc√

amax
− ξmax

)

ϕmin(θ, η) (4.2)

where amax, ξmax and ϕmin(θ, η) are the maximum and minimum values of corresponding
parameters in dependence (2.5)5.
Figure 3 illustrates the idea of experimental determination of the value of threshold stress σth.

According to these data, in the case of uniform distribution of stresses, the average value of frac-
ture stress tends to σth very fastly with an increase in the specimen volume. It enables one
to estimate values of σth by the minimum value of brittle fracture stress RMC for standard
(V = 1000mm3) tensile specimens over the ductile-to-brittle transition temperature range
(Fig. 4) (Kotrechko and Meshkov, 2001)

σth = λRMC (4.3)

where λ is the coefficient whose value depends on the rate of CN generation under the action
of plastic deformation. For typical structural steels λ ≈ 0.75, . . . , 0.95.
5In the first approximation ϕmin(θ, η) ≈ 1.
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Fig. 3. Dependence of the fracture probability on stress at different volumes V of specimens for RPV
steel: Na is the number of forming CN; σth is the threshold stress; RMC is the minimum level of brittle

strength of the standard (V = 1000mm3) tensile specimen

Fig. 4. Temperature dependence of mechanical properties of RPV steel at uniaxial tension: σ0.2 is the
proof stress; Rf is the true fracture stress; RMC is the brittle strength; ψ is the reduction in area

The ductile-to-brittle transition temperature range of high-ductile structural steels for tensile
specimens is located below the temperature of boiling of liquid nitrogen (T = −196◦C). In this
case, RMC value may be determined by the results of tests of cylindrical specimens with notch
radius 2mm at T = −196◦C. The use of this technique for σth determination enables one to
employ three-parameter Weibull distribution in LA and to improve predictive capabilities of LA.

5. Local fracture stress

Initially, LA was aimed at the prediction of a temperature dependence of fracture toughness of
steel. However, further development of this approach on the ground of multi-scale models has
enabled not only improvement of predictive capabilities of the approach, but also clarificatiob
of specific features of the mechanism of cleavage fracture initiation in a highly inhomogeneous
stress-strain field ahead the crack tip. Specifically, it appears in the possibility of differentia-
ting the effects both of metallurgical factors and loading conditions (temperature, constraint
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lost effect etc.) on the fracture limit of structures. The CN instability is the reason for brittle
fracture, so the effect of these defects on the local fracture stress is determined through both
properties of separate CN (CN length and orientation) and the rate of CN generation during
plastic deformation. In terms of the “weakest link” concept, properties of one separate CN pre-
determine the type and parameters of the function P0(σf ) in (2.11), and, respectively, the values
of Weibull distribution parameters σth, σu and m in dependence (2.13). The effect of the rate
of CN generation with respect to strain is characterised by the term ρ in expressions (2.11) and
(2.13).
Dependences of the Weibull distribution parameters on the most probable value of the grain

size at different magnitudes of grain structure inhomogeneity were obtained in Kotrechko et al.
(2001). It was exhibited that the values of σth and σu rise linearly with growth of 1/

√

dmpv
(dmpv is the most probable grain size). The value of shape parameter m is virtually independent
of dmpv, however, it decreases with an increase in the variance of the grain size logarithm Dln d

m = a1 − b1
√

Dln d (5.1)

where for iron: a1 = 3.35 ± 0.27, b1 = 1.84 ± 0.11.
At the same time, the absolute value of parameter m decreases from 3.0 to 2.1 for typical

range of
√
Dln d (

√
Dln d = 0.2-0.7).

The normalised value of scaling stress σu/σth does not depend on the absolute grain size
either, and it is a linear function of the variance of grain size logarithms Dln d

σu
σth
= a2 + b2Dln d (5.2)

where for iron: a2 = 3.81 ± 0.07, b2 = 11.97 ± 0.02 at e = 0.02.
Their sense is that the parameters of distribution of grain sizes or carbide particles pre-

determine the distribution of CN lengths. The values of coefficients a2 and b2 depend on the
magnitudes of equivalent strain e. This is due to the effect of dislocation stresses on the value
of critical stress of the CN instability ξc (Eqs. (2.3)-(2.5)). These dependences are obtained for
polycrystalline iron; however, they are correct also for the case of fracture initiation by carbide
cracking.
As it was mentioned above, the number N of CN forming at the given value of plastic

strain (term ρV in (2.11) and (2.13)) is the second important factor affecting the local fracture
stress σf . As it is shown in Fig. 3, an increase in N gives rise to a decrease in both the average
fracture stress and its scatter. This is just the physical nature of the statistical scale effect at
cleavage fracture of metals and alloys.
It should be remarked that in the conventional version of LA, the CN density is characterised

by the expression 1/V0 (where V0 is the reference volume). In the calibration procedure, this
value is supposed to be constant. It is one of the reasons for σu and m dependence on test
temperature and notch parameters. Figure 5 presents the dependence σf (Na) for uniform stress
distribution in an explicit form. According to this evidence, an essential excess of σf over the
brittle strength RMC of standard (V = 1000mm

3, e = 0.02) tensile specimens is observed
at N  50000. At these N values, scatter limits of fracture stress increase significantly. The
magnitude of local fracture stress of a metal also depends on the plastic strain value (Fig. 6).
This is due to: (i) the effect of dislocation micro-stresses ξ on the instability of separate CN,
and (ii) dependence of their rate creation on the value of plastic strain (Fig. 2). It should be
noticed that in the existing versions of LA, the attempts were made to account for this effect
by the introduction of phenomenological dependences of the Weibull stress σW on the strain
value (Bordet et al., 2005; Beremin, 1983). Dependences in Fig. 5 are obtained for the case of
uniform stress and strain distribution (solid and dash lines). In the vicinity of a macro-crack
or notch, these distributions are essentially non-uniform. This gives rise to difficulties in the
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Fig. 5. Dependence of the normalized value of fracture stress σf on the CN number N for fracture
probabilities 5%, 50% and 95% at T = −196◦C under uniform uniaxial tension; (N, � are values of the
local fracture stress σf ahead the macro-crack or notch of R = 0.25mm at the corresponding values of

fracture probability (the arrows indicate the effect of local plastic strain gradient)

Fig. 6. The effect of plastic strain on the value local fracture stress σf for different volumes of the
plastically deformed metal

determination of the local fracture stress value. In the conventional Beremin version of LA, the
Weibull stress σW is used as a measure of local stress. This stress is an integral characteristic of
brittle strength for the region subjected to local yielding. Another approach to this problem was
offered in Lin et al. (1986) and developed in Kotrechko and Meshkov (2001), Kotrechko (2002).
In this case, the local fracture stress σf is determined as the value of tensile stress σ11 in the
locus where the probability of fracture initiation reaches it maximum value (Fig. 7). Such an
approach enables one to compare directly the calculated magnitude σf with the experimental
evidence determined by the value of tensile stresses at the cleavage initiation site ahead of the
macro-crack tip. Besides, it permits one to ascertain the region where fracture initiates (“process
zone”) (Fig. 7). As it is exhibited in Kotrechko and Meshkov (2001, Kotrechko (2003), this area
is much less than the whole region of local plastic yielding.

According to the computer simulation findings on fracture of the reactor pressure vessel
steel, in addition to the CN number, the value of stress-strain field inhomogeneity ahead the
macro-crack influences the value of local fracture stress σf (Fig. 5). This effect depends on
CN density. The smaller the density of forming CN, the stronger the effect of strain gradient
on the value of σf . The higher the stress value σf , the higher the fracture toughness KIc, so
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Fig. 7. Distribution of local tensile stresses σ11, equivalent local plastic strain e, and local
probability Pni of fracture initiation ahead the crack tip in the pre-cracked Charpy surveillance

specimen at temperature −120◦, KJc = 59.4MPa
√
m and the probability of global fracture PΣ = 0.63;

XPZ is the size of the “process zone” in the minimum cross-section of the specimen

manufacturing of steels with a low rate of CN generation will significantly increase their fracture
toughness and decrease their sensibility to crack-like defects. The latter is especially important
for high-strength steels.

6. Multiple-barrier effect

Ascertainment of the critical event of micro-crack growth, which governs the global fracture, is
one of urgent problems of LA (Pineau and Benoot, 2010). The simplest model that enables one
to estimate the critical size of carbide micro-crack, which instability gives rise to global fracture,
was offered by Martin-Meizoso et al. (1994)

a

d
¬
(

k
c/f
Ia

k
f/f
Ia

)2

(6.1)

where d is the ferrite grain size; k
c/f
Ia and k

f/f
Ia are the critical values of stress intensity coef-

ficient corresponding to overcoming the interphase boundary “carbide-ferrite” and the ferrite

grain boundary, respectively. The value of k
c/f
Ia /k

f/f
Ia must be less than ∼ 1/5. It means that

unstable propagation of the carbide crack will give rise to global fracture if its size is at least
25 times less than the grain size. For typical steels, this condition is usually held. However, a
great number of arrested cleavage micro-cracks is observed in steels, see for example Lambert-
Perlade et al. (2004). This is due to three main factors: (i) random size of carbide particles and
grains; (ii) statistic distribution of ferrite grain boundary misorientations; (iii) fluctuation of
tensile micro-stresses which changes from grain to grain. In Kotrechko (1995) an approach was
formulated that enables modelling of micro-crack propagation in the polycrystalline aggregate
accounting for these factors. Within the framework of such an approach, an expression for the
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critical value of micro-stresses ξLc required to support the unstable propagation of a crack of
length L, is the following

ξLc =
2

πL

(

dc
∫

0

ξdc

√

x

L− x dx+
2d
∫

d

ξ2dc

√

x

L− x dx
)

(6.2)

where ξdc is the critical level of tensile stresses in the first grain, which guarantees its cleavage
(Fig. 9); ξ2dc is the critical cleavage stress for the second grain.
The value of critical stress required for cleavage of the first grain and overcoming the grain

boundary may be specified as

ξdc = αξc (6.3)

where

α =

√

a

d

k
f/f
Ia

k
c/f
Ia

(6.4)

The probability of cleavage of grain #1 (Fig. 8) resulting in formation of a disk-like crack of
diameter L = d at the given level of macro-stresses σf is described by the dependence

P2(σf ) =

ξdcmax
∫

ξd
cmin

g(ξdc )P1(σf |ξdc ) dξDc (6.5)

where g(ξdc ) is the distribution density function determined by (2.9) accounting for conditions
(6.3); P1(σf |ξdc ) is the conditional probability

P1(σ1|ξdc ) =
1

√

2πDξ11

ξmax
11
∫

ξdc

exp
(ξ11 − σf
√

2Dξ11

)

dξ11 (6.6)

Fig. 8. Scheme of micro-crack growth in a polycrystalline metal: a is the initial CN size; d is the grain
size; 1, 2, 3 are numbers of disk-like cracks at different steps of their extension

As it is shown in Fig. 8a, the further stage of formed disk-like crack #1 is the transition to
not less than one of m neighbouring grains (at this step of the crack growth m = 6). This gives
rise to formation of disk-like crack #2. For this event, the value of probability is following

P4(σf ) =

ξdcmax
∫

ξd
cmin

ξ2dcmax
∫

ξ2d
cmin

g(ξdc , ξ
2d
c )P3(σf |ξdc , ξ2dc ) dξdc dξ2dc (6.7)
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Disk-like crack #3 and the further ones are formed similarly.
If the fluctuation of the coefficient α in (6.4) is neglected, then dependence (6.7) will simplify

to

P4(σf ) =

ξdcmax
∫

ξd
cmin

g(ξdc )P3(σf |ξdc , ξ2dc ) dξdc (6.8)

where

P3(σf |ξdc , ξ2dc ) = 1− [1− P (ξ11 > ξDc , ξ
2D
11 > ξ2Dc )]

m (6.9)

Therefore, the crack growth in a polycrystalline metal consists in realisation of two sequentially
repeating events related to cleavage of not less than one grain neighbouring to the disk-like crack
with consequent formation of the disk-like crack with a greater diameter. Such a mechanism is
similar to the dislocation kink moving. The difference is that the dislocation kink is created
by thermal fluctuations, and in the crack movement it is due to fluctuation of tensile micro-
stresses ξ11 and stochastic misorientation of grain boundaries. The fanlike type of the cleavage
initiation site is one of the consequences of such a micromechanism (Fig. 8b). Figure 9 shows
computer simulation findings on crack growth in polycrystalline iron with a average grain size
97µm and the variance of grain logarithms Dln d = 0.19. This simulation was executed for
an extremely unfavourable condition α = 1 for overcoming the grain boundary by the crack.
According to the data obtained, in the case α = 16, the level of average critical macro- stress of
unstable propagation of carbide crack within the grain σf is sufficient for further growth of this
crack on macroscopic scale. It should be noted that this is a dependence for average macroscopic
fracture stress. As it follows from the suggested model, some cracks are arrested due to micro-
stress ξ11 fluctuations and grain boundaries. This gives rise to presence of arrested cracks with
a size equal to 1-2 grain sizes in the fractured specimens.

Fig. 9. Change in the average value of stress of micro-crack instability σf on its diameter a: σ
∗

f is the
critical stress of overcoming the grain boundary (of grain cleavage); dg is the average grain size

7. Conclusions

• The multi-scale approach to fracture enables one to overcome several essential challenges
of the conventional Local Approach:

– to offer a statistica criterion of cleavage fracture initiation accounting for fluctuation
of micro-stresses;

6It means that at d/a = 100, the ratio k
f/f
Ia and k

c/f
Ia reaches an extremely high level equal to 10.
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– to propose a dependence describing the effect of plastic strain, temperature and lo-
ading rate on the crack nuclei generation rate;

– to differentiate contribution of properties of a separate crack nucleus and the rate of
crack nuclei generation to change in the value of local fracture stress σf and fracture
toughness.

• The value of shape parameter of the Weibull distribution for one crack nucleus instabili-
ty m does not depend on the grain/carbide particle size; however, it is a linearly decreasing
function of square root from logarithm of this size variance

√
Dln d.

• The normalized value of the scaling stress σu/σth is a linear function of
√
Dln d.

• The dependence of the value of critical cleavage stress on the number of forming crack
nuclei is the reason for the statistical scale effect at cleavage fracture of metals. For α-Fe
and steels, this effect becomes quantitatively essential only for extremely small volumes
V ¬ 0.1mm3, and may amount to double increase for V ¬ 0.001mm3. Such small volumes
limit the “process zone” ahead the sharp cracks.

• The gradient of local plastic strain is one of the factors affecting the value of local fracture
stress σf . Reduction in the crack nuclei density gives rise to an increase in the susceptibility
of σf to the magnitude of the gradient value.

• A relation exists between the value of threshold stress of cleavage fracture σth and the mi-
nimum fracture stress of standard tensile specimens RMC , namely σth = (0.75-0.95)RMC .
This enables one to suggest a simple procedure of σth determination in the Local Approach
to fracture.

• The mechanism of micro-crack propagation in polycrystalline metals consists in realization
of two sequentially repeating steps related to cleavage of not less than one grain neighbo-
uring to the disk-like crack with further crack growth in the tangential direction resulting
in formation of the disk-like crack with a greater diameter.
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Kluczowe zagadnienia w lokalnym ujęciu kruchego pękania

Streszczenie

W oparciu o zaproponowany wieloskalowy model lokalnego sformułowania procesu pękania (Local
Approach – LA) wyróżniono cztery podstawowe problemy do rozważenia: (i) efekt fluktuacji mikrona-
prężeń na niestabilność jądra pęknięcia, (ii) intensywność zawiązywania się mikropęknięcia i jego wpływ
na prawdopodobieństwo powstania przełomu, (iii) teoretyczne i eksperymentalne oszacowanie wartości
naprężenia krytycznego, (iv) stochastyczna analiza efektu „wieloprogowego” na wzrost mikropęknięcia
w metalu polikrystalicznym.
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