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Two applications of the boundary element technique to radiative ana-
lysis are discussed: radiation in participating media and the presence
of concave, self irradiating cavities in heat conducting bodies. When
compared with classic Hottel’s zoning approach, BEM leads to shor-
ter computing times. This is achieved because the most time consuming
procedure of Hottel’s approach, volume integration, can be avoided. Ad-
ditionally, instead of multiple integrals only a single integration ought
to be performed. The paper presents a general, self adaptive quadra-
ture capable of evaluating integrals over the elements located close to
the observation point. The paper shows also an original technique of
coupling heat radiation and conduction. Both problems are solved by
using BEM. Static condenstation of linear unknowns before entering the
iterative loop, makes this approach very efficient. Numerical examples
are included.
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1. Introduction

The Boundary Element Method (BEM) has become a well-established tool
in solving various engineering problems. Conductive heat transfer, elastosta-
tics, acoustics and electromagnetics are but a few examples where BEM can
be competitive to the Finite Elements Method (FEM) or Finite Differences
Method (FDM). The basic idea behind BEM consists in transformation the
original boundary-value problem into an equivalent integral equation. The
latter is then discretized and the resulting set of algebraic equations is solved
yielding the desired values of the unknown function and its derivative.
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Heat radiation is a phenomenon ruled by an integral equation. Therefore,
FEM and the FDM, being developed to solve differential equations, require
serious modifications to cope with the heat radiation. BEM, as a technique
of discretization of integral equations, seems to be the proper tool to handle
heat radiation problems. It is not only the type of equation that make BEM
suitable for radiative analysis. Bialecki (1993)showed that the kernel functions
arising in integral equations of heat radiation and heat conduction have the
same asymptotic singular behaviour. Both kernels depend on the distance
between the observation and current points in the power of —2. All these
features cause that the idea of using BEM to solve heat radiation problems
arise in a natural way.

The present paper shows some advantages of BEM when applied to solving
two types of heat radiation problems: heat transmission in optically active
media and heat conduction in bodies whose boundaries can mutually irradiate
themselves.

2. Radiation in emitting-absorbing medium

2.1. Governing equations

Consider a volume V containing participating medium and bounded by a
diffuse surface 5. The governing equations of heat radiation in this system
link the following four functions:

e radiative heat flux ¢” defined as a net radiative energy gain of an ele-
mental surface bounding the domain of interest,

e blackbody emissive power e,(1') of the same surface,

e radiative heat source ¢/ being the net radiative energy gain of an ele-
mental volume of the medium,

e blackbody emissive power of the medium ey(7™),

where T, T™ are the temperatures of the bounding surface and medium,
respectively. The equations contain two material properties: €, being the
emissivity of the surface and @, the absorption coeflicient of the medium.
Let r,stand for the current point placed on the walls bounding the medium,
r’ denote the current point placed within the medium and p stand for the
observation point. The transmissivity 7(r,p) is defined as a fraction of the
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energy emitted at r that reaches p. Transmissivity can be calculated {rom
the relationship

r(r,p) = exp[— /a(r') dL,(r") (2.1)

Ly

with integration carried out along the line linking r and p. Another important
function, radiosity is defined as the net flux of radiative energy leaving an
infinitesimal surface. Radiosity is a sum of the emitted and reflected energy
and is a linear combination of the blackbody emissive power and the radiative
heat flux & = ey + ¢"(L — €)/e. Using this notation the set of equations
describing radiative heat transfer in emitting-absorbing media can be written
as

7' (p)+ (p)eslT(p) = €lp) /b(r)r(w)fx’(w) asir) +

+e(p) [ alr)es [T (¥ )71 p) (', p) AV (r)

o
(2.2)
G(p) + el T (p)] = / bir)r(r,pIE, (r,p) dS(r) +
+alp) [ alr )l (1)l ) Kol p) dV(r')
v
where the kernel functions are defined as
K(r,p) = €08 §r 05 Gy o) = — 2
7|r — p|? w|r’ — p|?
(2.3)
B _ cos b, P _ 1
]i,,.(T,p) - 71"7‘/ _p|2 ]‘0(T 1p) - 7_(_|7,/ _ p|2

where ¢, ¢, are the angles made by the line connecting the current and
observation points and the normal at r and p, respectively. Symbol |r — p
stands for the distance between the r and p.

The surface integrals appearing in the above equations are associated with
the radiation of the walls bounding the enclosure under consideration. The
volume integrals are due to the radiation of the emitting-absorbing medium
filling the enclosure. When using spectral material properties, spectral black-
body emissive power and fluxes, Eqs (2.2) are valid for a selected wavelength.
The same equations can be written for a given spectral band or tle entire
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spectrum. For the sake of simplicity only the last situation will be addressed
in the present paper. The approach has been also tested successfully for the
band model, Biatecki (1993).

BEM can be regarded as a variant of the zoning approach. The main
drawback of the classic version of the powerful zonal technique lies in the
excessive computing times. Another difficulty is due to the poor accuracy of
calculations of the entries of the final matrix. It will be shown how using BEM
these difficulties can be eliminated.

2.2. Acceleration of the computations

Hottel’s method (Hottel and Sarofim, 1973) can be interpreted as a Galer-
kin technique of discretization of the governing equations, Biatecki (1993). The
classic zonal technique uses interpolating and weighting functions constant wi-
thin surface and volume zones and vanishing outside these zones. Several FEM
procedures described in the literature (cf Razzaque et al., 1983) can be seen
as a generalization of the Galerkin technique with interpolation and weighting
functions being locally based polynomials of higher order.

2.2.1. Avoiding volume inilegration

dL,Py

Fig. 1. Elemental volume in the spherical coordinate system

Entries of the system matrices in the zonal methods are expressed in terms
of line, surface and volume integrals. The bottleneck of these approaches is
the discretization of volume integrals. BEM offers a possibility of avoiding
this step by converting the volume integral into equivalent, iterated surface
integral from a line integral. The idea is to carry out the integration over the
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entire volume in a spherical system of coordinates. This is accomplished by
first integrating along the line of sight (radius) and then integrating the result
over the projected infinitesimal surface area of the bounding surface. These
operations make use of the obvious relationship (cf Fig.1)

dS5(r)cos ¢, dVvi(r')

dL,,(r") d2 = dL,,(r") i p|2‘ = P (2.4)

The resulting form of Egs (2.2) is then

q"(p)+ e(p)es[T /b T(r,p)K(r.p) dS(r) +

+€(p>/{ / alr)es[T™ (r)]7 (v, p) dLyp(r’ )} IS (. p) dS(7)

S Loy

¢(p) + da(p)es[T™ (p)] = alp) / b(r)r(r,p) K, (r, p) dS(r) +

..5'

—|—(L(p)/{ / a(r e [T (r")]7 (7, p) (/,L,p('r’)}]x}(r,p) dS(r)

S Loy

Although the integrals arising in classic and BEM formulations are of the
same dimensionality, BEM discretization is much cheaper. This aspect of
numerical implementation will be discussed later.

222 Avoiding mulliple miegrals

The Galerkin technique requires double integration over surface and vo-
lume zones. Thus, to calculate the entries of the matrices, standard zoning
methods require expensive integration in four, five or six dimensions. The
time of matrix generation can be considerably reduced when, instead of the
Galerkin technique, another weighted residual approach, namely, the collo-
cation method, is used. The weighting function here is the Dirac function
distribution. The disadvantage of this approach is, that contrary to the Ga-
lerkin discretization, the resulting matrices are nonsymmetric. As the savings
in computer times are much greater than the gains due to the symmetry of the
final matrix of the Galerkin formulation, collocation is more frequently used.

2.3. Discertization of mtegrals

The first step of the discretization of the integral equations is subdivision
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of the surface bounding the domain under consideration into a set of surface
elements. This is analogous to the standard FEM approach. Additionally,
the entire volume of the medium is subdivided into volume cells. It should be
stressed that the volume mesh is completely independent of the surface mesh.
Thus, it is possible to use fine surface elements next to coarse volume cells.
This feature might be useful in practical computations.

2.3.1. Line integrals

The governing integral equations contain two types of line integrals: one is
the transmissivity, Eq (2.1). The second is the due to the internal integration
arising in Eqs (2.5) is defined as

I, = /a(r')eb[Tm(r')]T(r'_,p) AL, y(r") (2.6)
Lrp

Assuming that the temperature and the absorption coefficient within each
volume cell is constant, both line integrals can be evaluated analytically. Let
d; denote the length of the line of sight within a single cell and a; and 7"
stand for the absorption coefficient and temperature of the medium filling this
cell, respectively. Then, the transmissivity can be calculated analytically as

Lrp

Jy=1(r,p) = T(1, L)) = exp(—z a1d1> (2.7)
=1

where I, is the number of cells intersected by a ray travelling from r to p.
The second integral can be also expressed in terms of the same quantities

as
Lp
Jar ) e(T/M)ATUL+1,1,) (2.8)
=1
where
A, — self absorption, 4; =1 — exp(—a;d;)
7~ transmissivity from the border of the I/th element to p placed

on the bounding surface, and

Ly

Fl+ L) =exp(— Y amdy)
m=l+1



APPLICATION OF BEM IN RADIATION 357

2.8.2. Surface inlegrals

The final set of equations has the form

Aey(T) + Bg" + Cey(T™) = 0
(2.9)

q, +Dey(T)+ Eq" + Fer,(T™) =0

where A through F are known matrices depending on geometry and material
properies, vectors e,(71'), e,(T™ ) store the values of blackbody emissive powers
at points located on the walls and within the medium, respectively. Vector ¢"
contains the nodal values of the radiative heat flux whereas the entries of the
gq), vector are the values of the radiative heat sources at points located within
the medium.

With the values of the line integration known, the entries of the matrices
A through F can be expressed as integrals over single surface elements. These
integrals are evaluated using standard FEM and BEM approach, i.e. approxi-
mating both the geometry and distribution of the functions by locally based
polynomials (shape functions). The next step of this procedure is the trans-
formation of the arbitrary shaped surface elements into unit squares. Finally,
the integrals over these squares are evaluated using Gaussian quadratures. It
should be noted that to discretize the volume integral the following values
should be known:

e Lengths of ray intercepted by the limits of the volume cells. These qu-
antities are already determined when discretizing the integral associated
with surface radiation

e The values of the kernel function, shape function and Jacobian at the
Gaussian nodes. Also these quantities are found when discretizing the
first integral.

Thus, the discretization of the volume integral, being the most time consu-
ming step of zoning approaches, is in BEM carried out as a by-product of the
discretization of the surface integral. The time of discetization of the volume
integral is therefore practically negligible.

2.4. Accuracy of integration

The entries of the matrices resulting from all kinds of zoning discretization
are expressed in integrals of the kernel function. This function is proportional
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to the squared inverse of the distance between the source and observation
points. Standard quadratures are based on polynomial interpolation. Thus,
by their nature, the quadratures cannot approximate very steep functions
arising when the observation point is located close to the surface element over
which the integration is carried out. Poor accuracy of determining the entries
of the final set of equations has been reported in the heat radiation literature
(Larsen and Howell, 1986; Vercammen and Fromment, 1980). To overcome
this difficulty, some authors suggest using least square smoothing (Larsen and
Howell, 1986; Vercammen and Fromment, 1980). As the integration error is
not randomly distributed, this does not seem to be a proper methodology.

The same loss of accuracy arises when calculating the entries of BEM ma-
trices for heat conduction, elastostatics etc. BEM literature describes several
efficient techniques of handling this problem known as the quadrature ol a ne-
arly singulur function. As the asymptotic behaviour of the integrands in BEM
applied to potential and structural problems is the same as that of the heat
radiation kernel function, these methods can be used without any modification
in radiation codes.

The method used in this paper is based on a priori asymptotic error for-
mula originally developed by Lachat and Watson (1977). The technique has
been further improved by Bialecki et al. (1994). The relative error ¢ of the
integration can be expressed in terms of the number of Gaussian nodes Gy
placed along the local coordinate ¢, minimum distance L., between the
element and source point and the length D¢ of the element in ¢ direction.
The formula reads

: ! 26
2(2G£+1)-{&}266§5 (2.10)

(2G) 4L,

Similar equation holds for the second local coordinate defined over the ele-
ment. Eq (2.10) enables one to find the minimum number of Gaussian nodes
that keeps the integration error below the prescribed threshold. It should be
stressed that there are two self adaptive strategies of increasing the accuracy
of integration: increasing the number of Gaussian nodes and subdividing the
element into subelements. The first approach is less efficient in the case the
refative distance between the source point and the element is less than 0.25.
When using this adaptive integration, the accuracy of matrix generation

is limited solely by the precision of the computer arithmetic. Therefore there
is no need to use any smoothing procedures to satisfy the summation relation
of the matrix entries. Numerical tests show that using single precision and 32
bit real number representation, the total error in the summation relation can
be held below 1E-7. It should be stressed that the aforementioned technique
is not restricted to the collocation method. The self adapting quadratures are
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also applicable to any zoning method including FEM and standard Hottel’s
approach.

2.5. Numerical example

A temperature field in a small test combustion chamber has been measured,
Nadziakiewicz (1989). The resulting radiative heat fluxes are depicted in Fig.2.
The results were obtained using 522 surface elements and 800 volume cells.
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Fig. 2. Radiative heat fluxes in kW/m? on a wall of a combustion chamber

3. Coupled radiation, conduction and convection

Another area of BEM is application the situation when a heat conducting
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body contains radiating enclosures or cavities. In this case, the boundary con-
ditions on concave boundaries contain the radiative heat flux, being a solution
of an integral equation. Such boundary conditions are non local and require
a special treatment.

The problem analysed here is a case of steady state heat conduction and
transparent medium filling the radiating enclosures and cavities. The applica-
tion of BEM to the solution of such problems will be described for the special
case when the conductive portion of the analysis is carried out using BEM.
The coupling between radiation and conduction can also be modelled when
the conduction in the solid is solved by other numerical techniques, e.g. FIEM.

3.1. Heat conduction

Discretization of the steady state heat conduction problem yields a set of
algebraic equations of the form

HT = Gq + Zq" (3.1)

where H, G, Z stand for matrices of constant, known coefficients. Vectors
T, q, ¢" contain nodal values of temperatures, conductive and radiative heat
fluxes, respectively. Owing to BIEM discretization used. all these nodal values
are placed solely on the boundary of the body.

3.2. Heat radiation

Radiative heat analysis of the energy exchange for the special case of trans-
parent medium and gray walls gives a set of equation linking the radiative heat
fluxes and fourth powers of the temperature

Aey(T7) + Bq" {3.2)

where €,(77) is a vector containing the blackbody emissive powers (fourth
powers of temperature) at the nodes placed on the radiating, concave boun-
daries. The matrices A and B are defined as in the case of emitting medium
taking the absorption coeffcient a = 0.
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3.3. Coupling condition

The coupling of the equations of radiation and convection is enforced by the
boundary condition on the radiating boundary. In more realistic problems. the
heat transported to the boundary by conduction within the body is removed
by both radiation and convection. This can be written as

qg=hT"=Tr}+q" (3.3)
where
h — convectlve heat transfer coefficient
Ty - temperature of the fluid filling the enclosure (cavity).

3.4. Solution strategy

Substitution of all prescribed boundary values at the non-radiating boun-
daries and Eq (3.3) into Eq (3.2) yields a set of equations having a form

Ke=f+2q (3.4)

where the square matrix Kis composed of these columns of H and G matrices
that correspond to the unknown conductive fluxes and temperatures. Vector
z contains these fluxes and temperatures. Vector f contains products of
values prescribed in the boundary conditions and appropriate columns of H
and G matrices.

Eq (3.4) can be solved for z using the standard Gaussian elimination.
During the elimination, columns of the matrix Z are treated as multiple
right-hand side vectors. The result of the elimination can be written in the

form
z=fo+2cq (3.5)

where the subscript G denotes the result of Gaussian elimination.

From all equations forming Eq (3.5) those solved with respect to the tem-
peratures at the radiating boundary are then sorted out. This subset can be
written as

T = fa+1q (3.6)
where the subscript 7 is attached to the equations solved with respect to
temperatures at radiating boundaries.

Solution of Eq (3.2) with respect to radiative heat fluxes can be achieved
using the standard Gaussian elimination. Substitution of the result of the
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elimination into Eq (3.6) yields a set of equations containing solely unknown
temperatures at radiating boundaries. Only this set needs to be solved itera-
tively. The Newton Raphson solver has proved to be a very efficient tool in
accomplishing this task. Once the temperatures are calculated. the remaining
unknows can be readily determined by multiplication of the matrices gene-
rated at previous steps of elimination and appropriate vectors ol unknowns.
The details of this procedure can be found in Bialecki [2] where also the case
of nonlinear material properties i1s discussed. The technique has been used
to solve a simple problem of rectangular cavity open to the environment and
formed by a heat conducting solid.

3.5. Numerical example

The heat conducting rectangular body with rectangular cavity whose walls
irradiate themselves and are open to radiating environment has been consi-
dered. The stady state, 3D temperature field has been calculated. The heat
conductivity was assumed temperature dependent.

4. Conclusions

Although BEM itself is a numerical technique of discretization of integral
equations, it has been used so far to solve problems ruled by differential equ-
ations. The heat radiation, a phenomenon governed by integral equations is a
promissing area of BEM application. The technique is a variant of the zoning
method, developed 40 years ago by Hottel. In comparison with this classical
approach and their recent modifications, BEM offers much shorter times of
matrix generation, being the bottleneck of all zoning approaches. It has been
shown that BEM does not require volume integration and multiple integrals.
Moreover, the accuracy of matrix calculation can be maintained arbitrary high
level.

BEM is also a powerful tool in solving coupled conduction-radiation pro-
blems. The configuration coefficients arising in such problems can be cheaply
and exactly evaluated using single integration and adaptive quadratures. Pro-
blems of this type, when solved by FEM, require different numerical techniques
applied to the conductive and radiative portion of analysis. Using BEM in so-
lving both problems simplifies the coding and makes the solution procedure
consistent.
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Fig. 3. Temperature field of a solid with self irradiating cavity
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Zastosowanie metody elementéw brzegowych do rozwiazywania
zagadnlert promieniowania ciepla

Streszczenie

Rozpatrzono dwa zastosowania metody elementow bl/egowych (MEB) w zaga-
dnieniach promieniowania ciepla: transmisja promieniowania w osrodku optycznie
czynnym 1 przewodzenia ciepla w cialach zawierajacych promieniujace wneki  Czas
obliczen przy zastosowaniu MEB jest krétszy niz w klasyczne] metodzie strefowe)
Hottela. W MEB unika sie catkowania po objetosci, czyli najbardziej czasochlonnego
etapu metody Hottela. Dodatkowo, w miejsce calek wielokrotnych obliczanych w me-
todzie strefowej, w MEB oblicza sie calki jednokrotne. W artykule zaprezento-
wano ogdlna, adaptacyjna kwadrature do obliczen calek po elementach lezacych blis-
ko punktu obserwacji. Przedstawiono takze oryginalng procedure sprzegania za-
dan promieniowania we wnekach 1 przewodzenia w $ciankach tworzacych te wneke,
Oba problemy czastkowe rozwiazywane sa metoda elementéw brzegowych. Przed
rozpoczeciem procesu iteracyjnego rozwiazywania réwnan bilansu clepla, elimino-
wane sa limowe niewiadome. Wykorzystuje przy tym technike statycznej kondensacji.
Procedura taka prowadzi do znacznego skrécenia czasu obliczen. Artykul zawiera
przyklady numeryczne.
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