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The paper concerns stabilization of an elastic beam subjected to a time-
dependent axial forcing. The direct Liapunov method is proposed to
establish criteria for the almost sure stochastic stability of the unpertur-
bed (trivial) solution of the structure with closed-loop control. We con-
struct the Liapunov functional as a sum of the modified kinetic energy
and elastic energy of the structure. An influence of damping in the fi-
nite bonding layer is described by the effective retardation time of the
Voigt-Kelvin model. The distributed control is realized by the piezoelec-
tric sensor and actuator, with changing widths, glued to the upper and
lower beam surfaces, respectively. The paper is devoted to the stability
analysis of the closed-loop system described by the stochastic partial dif-
ferential equation without a finite-dimensional approach. The effective
stabilization conditions implying the almost sure stability are the main
results. A fluctuating axial force is modelled by the physically realizable
ergodic process. The rate velocity feedback is applied to stabilize the pa-
nel parametric vibrations. Calculations are performed for the Gaussian
process with given mean value and variance as well as for the harmonic
process with an amplitude A.
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1. Introduction

Piezoelectric materials show great advantages as sensors and actuators in
intelligent structures i.e. the structures with highly distributed actuators, sen-
sors, and processor networks. Piezoelectric sensors and actuators have been
applied successfully in the closed-loop control of beams (Bailey and Hubbard,
1985) and plates (Dimitriadis et al., 1991). A comprehensive static analysis
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of a piezoelectric actuator glued to a beam was given by Crawley and de-
Luis (1987). The relationship between the static strains (both in the structure
and actuator) and applied voltage across the piezoelectric was presented. A
dynamic model of a simply supported beam with piezoelectric actuators per-
fectly glued to both surfaces was developed by Jie Pan and Hansen (1991).
An extended dynamic model of beam, bonding layers, sensor and piezoactu-
ators with emphasis on active damping was considered by Tylikowski (1994).
Several authors (Tzou and Fu, 1992; Pourki, 1993; Tylikowski, 1995) analy-
sed the influence of the shape and segmentation of actuators on the structure
vibrations and the observability and controlability of the system. The direct
Liapunov method was applied to the stabilization problem of the beam sub-
jected to a wide-band axial time-dependent force (Tylikowski, 1995) and to a
panel flutter problem (parametric excitation) (Tylikowski, 1997).

The purpose of the present paper is to solve an active control problem of
beam parametric vibrations excited by the axial randomly fluctuating force.
The problem is solved using the concept of distributed piezoelectric sensors
and actuators with a sufficiently large value of velocity feedback. Real me-
chanical systems are subjected not only to nontrivial initial conditions but
also to permanently acting excitations increasing the structure energy and the
active vibration control should be modify in order to balance the energy sup-
plied by external parametric excitation. The bonding layer is modelled as the
Voigt-Kelvin viscoelastic material increasing a global passive damping of the
beam. The applicability of active vibration control is extended to cover distri-
buted systems with stochastic parametric excitation. The velocity feedback
is applied to stabilize the beam parametric vibrations. Applying the direct
Liapunov method the sufficient almost sure stability conditions for the beam
with closed-loop control are derived. Almost sure stability domains in terms
of the effective retardation time, feedback constant, force mean value and va-
riance are obtained. The fluctuating axial force is modelled by the physically
realizable ergodic process. The rate velocity feedback is applied to stabilize
the panel parametric vibrations. Calculations are performed for the Gaussian
and harmonic processes.

2. Dynamics equation

A continuous mechanical system (beam or plate under cylindrical bending)
uni-axially loaded in the middle plane by time-dependent force S = Sy + S(t)
is considered. The dynamics equation of structure motion includes both an
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piezoelectric sensors

) “and actuators beam
So+5S(1) I ] So+S()
— ] 7 | S—

Fig. 1. Beam bonded with piezoelectric layers

internal passive damping due to viscoelastic properties and an active damping.
Finite thickness piezoelectric patches are mounted on the opposite sides of the
structure. It is assumed that the transverse motion dominates the in-plane
plate vibrations. The sensing and actuating effects of piezoelectric layers are
used to extract mechanical energy and as a final result to stabilize both the free
vibrations due to initial disturbances and the parametric vibrations excited
by the time-dependent axial force. We assume a negligible stiffness of the
sensor in comparison with that of the structure and reduce the influence of
the piezoelectric actuator on the structure to shear forces in the bonding layers
distributed over the structure surface.
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Fig. 2. Geometry of the beam element with bonding layers and piezoelements

Let us consider two opposite phase piezoelectric elements bonded by a
finite-thickness bonding layer to an elastic beam. The beam is described by
the Bernoulli-Euler theory. In order to derive the dynamic equations the
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beam element shown in Fig.2 is examined. Under the assumption of pure
one-dimengsipnal shear in the bonding layer treated as the Voigt-Kelvin ma-
terial, pure extensional strains in the piezoactuators and negligible inertia of
the piezoactuator and bonding layer, the equations have the form

N. —br=20
e (2.1)

pbtbb’w,ti = T,a: - <SO + S(t>)w,zm

where
w - transverse beam displacement
upe ~— axial piezoactuator displacement
T - axial coordinate
4 ~ beam length
A - plezoelectric layer cross-section, A = iy.b
pp — beam density.

The axial force in piezoelectrics IVy, interlayer shear stress 7, and beam
transverse force T and bending moment M can be found from the classical
formulae

Npe = AEpeupe z

G iy 1)
r= E[ ve + W + o (tpe , + 5””“”
(2.2)
M = "Eb‘]b(w,zw + /\bw,z$t>
T= —Ebe(w,IIz + /\bw,zzzt) + t,b7
where
ty -  beam thickness
b —  beam constant width
By -  beam Young modulus
J - cross-sectional moment of inertia
o, Ay — retardation times of bonding layer and beam, respectively.

Using Eqgs (2.2) the dynamics equations of beam motion can be written in
the form
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— for z € (z,z9)

Gb t,, f
~Bpetipe 1y + 7, [tpe + S + o(pe , + gwm)] =0 oy

Pbtbbw,tt + Ebe(w,zzxz + /\bw,;czxxt) +

bt + (i + S]] (S0 50) e =0

— for z € (0,21) U (z2,%)
pbtbbw,tt + Ebe(w,zzzz + )‘bw,zzzzt) + <SO + S(t))w,zz =0 (2'4)

We assume the simply supported boundary conditions imposed on the solution
of Eq (2.4) at £ =0 and z = £, continuity of deflection, slope, curvature and
transverse force for z = z;, and z = .

In view of Eq (2.2)4 the conditions corresponding to the continuity of
transverse forces can be written down as

Ebew,zzz(zl_) = Ebew,zxz(fET) - tbbT(fEfr) (2 5)

Ebew,zza:(-Z';) = Ebew,xxz(Z'Q_) - tbbT(zg)

The piezoelectric displacement should satisfy the free edge conditions for
zy and 9, which can be written in the form

Upe , = A (2.6)

The dynamics equations with zero initial conditions, and unactivated actu-
ators have a trivial solution, which corresponds to an undeflected structure
equilibrium.

Vibration damping of the visco-elastic beam with parametric excitation
can be examined by differentiating the total energy of the beam with piezo-
elements (Tylikowski, 1995). The rate of energy extraction indicates that for
the sufficiently large gain factor it is possible to stabilize parametric vibra-
tions. However, the result does not provide effective quantitive estimation of
the minimal active damping coefficients stabilizing the parametric vibrations.

If the parametric excitation is a realizable ergodic stochastic process the
dynamics equation should be understood as a partial differential equation with
a random parameter.
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3. Dynamics equation with distributed feedback

Consider the Bernoulli-Euler beam axially loaded by a time-dependent
force with piezoelectric layers mounted on each of the two opposite sides of
the beam. The piezoelectric layers are assumed to be bonded on the beam
surfaces and the mechanical properties of the bonding material are represented
by the effective retardation time A of the beam treated as a laminated one
(Jones, 1975). The effective retardation time is a linear function of both the
beam and bonding layer retardation times. It is assumed that the transverse
motion dominates axial vibrations of the beam. The thicknesses of actuator
and sensor are denoted by t, and t,, respectively. The sensing and actuating
effects of piezoelectric layers are used to stabilize both the free vibrations due
to initial disturbances and the parametric vibrations excited by the axial force.
Assuming a negligible stiffness of the sensor in comparison with that of the
beam and reducing the influence of the piezoelectric actuator on the beam to a
bending moment M distributed along the beam, Eq (2.3), for the beam with
distributed sensor and actuator layers can be rewritten in the form, z € (0, )

Pbtbw,tt + EbJ(w,zzz:c + /\bw,zzzzt) + (SO + S(t)) W gz + M,:m: =0 (3-1)

Using the constitutive equation of piezoelectric materials and integrating over
the sensor area define the total charge

£
t t
Q= —d,B, 0Tt /bs(ac)w,ﬂc de (3.2)
0
where
ds — sensor piezoelectric constant
by - sensor width
E; - sensor Young modulus.
Using the standard equation for capacitance the voltage V, produced by
the sensor is
d Ey(ty +t5) /
= bs( i
Vs T oemAl )W 27 (3.3)

where €33 represents the permittivity of sensor material. Using the velocity
feedback control (Balas, 1979) the voltage applied to the actuator is

dVs

Vo= Ko

(3.4)
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The control bending moment can be expressed by the actuator stress oy,
moment arm tp + t,, and cross section area t,b(z) of the actuator in the

following way
tb + ta

M = UataTba(z) (35)
Introducing the feedback gain factor K, the control moment is related with
the time derivative of beam curvature as follows

Ka(tb + tS)(tb + ta)tsdsdaEsEa

M =
de3z A

L
ba(z) / bo(2)w sz dz (3.6)
0

In dimensionless variables: the time t — th p%%, the coordinate z — z/¢

and the displacement w — w/{ Eq (3.1) becomes
w g + (fO + f(t))w,zz + W prrs + )\w,zzzzt + Mg = 0 z € (07 1) (3-7)

where the reduced axial load is given by

fo+ £(2) = % (S0 +5(t4 /ﬁg’—;)]

and the bending moment produced by the piezoelectric actuator is as follows

1
m = 2ﬁaXa /Xsw,zzt dz (38)
0

The internal (passive) damping coefficient A and the active damping coeffi-
cient [, are given, respectively

Ap?
2+/pbty EyJ
Ka(ty +ta)(ty + ta)
8633As

A=

t
Ba — 2dsd EsEy

1
£/ pbty EyJ

The functions xs(z) = bs(zf) and x.(z) = by(zf) denote the sensor and
actuator widths, respectively, in the range 2 € (0,1). In the case when the
bending moment is equal to zero at the beam ends, the beam can be treated
as simply supported. Thus, we assume that the beam transverse displacement
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satisfies the following boundary conditions

w(0,t) =w(l,t) =0
(3.9)

w,zz(oat) = w,zz(l, t) =0

Eq (3.7) with zero initial conditions w(z,0) = w¢(z,0) = 0 has possess a
trivial solution w(x,t) = 0, which corresponds to an undeflected beam axis.

4. Almost sure stability analysis

The purpose of the present paper is to derive the criteria for solving the
following problem: will the deviations of beam axis from the unperturbed state
(trivial solution) be sufficiently small, in some mathematical sense in the case
when the axial force is the stochastic process. The beam buckles dynamically
when the axial force becomes so large that the beam with closed-loop control
does not oscillate (vibrations of beam with closed-loop control do not decay)
and a new increasing mode of oscillations occurs. To estimate a perturbed
solution of Eq (3.7) it is necessary to introduce a measure of distance || - ||
before the solution with nontrivial initial conditions and the trivial one. The
most common stability definition used in continuum mechanics, states that an
equilibrium state is stable whenever in the motion following any sufficiently
small initial disturbances the displacement w and the velocity w; are ar-
bitrarily small everywhere for ¢ > 0. In order to investigate the behavior of
the solutions of stochastic equations a modification of the Liapunov stability
definition is needed. The equilibrium state of Eq (3.7) is said to be almost sure
stochastically stable (Kozin, 1972), if

P{Jim (-, 1) =0} =1 (41)

In the present paper the direct Liapunov method is proposed to establish the
criteria for the almost sure stability of the unperturbed (trivial) solution of
the structure with closed-loop control.

The crucial point of the Liapunov method is construction of a suitable
functional, which is positive-definite along any motion of the beam with closed-
loop control. We construct the Liapunov functional as a sum of the modified
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kinetic energy and the elastic energy of the beam

V=

NN

1
/ (W% + 200 0 gy + 2N+ Wy — fowd) da (4.2)
0

If the classical condition for the static buckling is fulfilled, functional (4.2)
satisfies the desired positive-definiteness condition, and the measure of distance
between the perturbed solution and the trivial one can be chosen as the square
root of the functional || - || = V/2.

If trajectories of the processes are physically realizable the clasical calculus
is applied to calculation of the time-derivative of Eq (4.2)

1
dv
= - / [~ A2y = M2y + Ao+ f(1)) 0%, +
0 (4.3)
+w,2zz - f(t)w,tw,zz - m,zz(w,t + /\w,zzzz)] dz
Let us focus our attention on the following particular shapes of piezoelectric
elements. The sensor and actuator are described by the sine function with

diffrent maximurn widths by, b,, respectively
xs(z) = bgsinmz Xo(z) = by sinmz (4.4)
The beam motion can be expanded into the following sine Fourier series
o0
wlz,t) = Z T,(t)sinnrz (4.5)
n=1

satisfying the boundary conditions (3.9). We are now in a position to calcu-
late the spatial integral involved in the bending moment (3.8) with the shape
functions (4.4). We rewrite the time-derivative (4.3) of the functional in the
form

|4
v _ —2AV +2U (4.6)
dt
where the auxiliary functional U is as follows
1
U = /[_/\w?zzt - /\w,?zzzz + /\(fO + f(t))w?zzz + w?zz +
0
— [ ww e — YT sinmz(w ; + AW z225) + (4.7)
+ /\(wi + 20W W g2z + 2A2w?HII + w?u — fow?z)} dz
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The gain factor < is calculated from Eq (3.8) substituting Eq (4.4).
Due to the orthogonality of sinnmrz we have

o0 o0
=3 Vu U= U (4.8)
n=1 n=1
and we can study the associated problem
Up < xnVa (4.9)
which implies
av
U< xV —r S200- 0V (4.10)

Inequality (4.10) is equivalent to the solution of quadratic inequalities for
n =1,2,..., where §;; is the Kronecker delta

[/\(mr)4 + (xn = A) + 81| T2 +

+ 2000 = N(m)* = F(O)(m)? + dymtSua| T +
(4.11)

+{Aur [ 2~ fo-f®)] +
0t = N [2X()° + (1) = fo] }(nm)* T2 > 0

Calculating the maximum of x, we solve the almost sure stability problem
for a class of ergodic processes in the following form

A > (maxxa(t)) (4.12)

where (-) denotes an operator of mathematical expectation.

Inequalities (4.11) and (4.12) offer us a possibility to obtain minimal ef-
fective retardation times implying the almost sure asymptotic stability, called
critical retardation times. A domain where the retardation times are greater
than the critical ratardation times is called the stability region. The stability
regions as functions of constant component of the axial force Fy, axial loading
variance o2, effective retardation time X, and gain factor -~ are calculated
numerically. Flrst, discrete values of the force f are chosen and Eq (4.11) is
solved.

Then the largest value x corresponding to the given value of force is deter-
mined and the expectation is calculated numerically integrating the product
of x by the probability density function of loading. This is made for various
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values of parameters by choosing the variance and varying the retardation
time until inequality (4.12) is satisfied. Numerical calculations are performed
for the Gaussian process with the mean Fj and variance o2 and for the
harmonic process with an amplitude A. In order to compare both processes
the variance of harmonic process o2 = A2?/2 is used. The almost sure stability
region of the beam axially loaded by the zero mean Gaussian process is shown
in Fig.3.
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Fig. 3. Stability regions of beam for the zero mean Gaussian force
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Fig. 4. Details of stability regions

It is seen that the stability regions enlarge as the gain factor increases.
Details of the stability regions for smaller values of che variance are shown
in Fig.4. The influence of the feedback gain factor is much more pronaunced
for small values of force variance. Fig.5 compares the stability regions for
the beam with the zero mean force loaded by the Gaussian and harmonic
processes, respectively. It is visible that the influence of the class of excitation
is not substantial. Fig.6 shows the critical variance versus the retardation time
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for the beam loaded by the constant force close to the static buckling load 2.
The increase of critical variances is much more slower in comparison to the
zero mean loading.
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Fig. 5. Comparison of stability regions for the Gaussian and harmonic loadings
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Fig. 6. Influence of constant compresive force on stability regions for the Gaussian
loading

It is necessary to emphasise that the results are obtained just for the
sinusoidal shapes of distributed sensor and actuator.

5. Conclusions

By means of the direct Liapunov method the active stabilization of a vi-
brating beam with distributed piezoelectric sensor, actuator, and the velocity
feedback has been studied. The elastic beam is simply supported and subject to
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a compressive axial force randomly fluctuating. Without any passive damping
and control, the beam motion is unstable due to the parametric excitation.

The stabilization of stochastic parametric vibrations needs sufficiently large
active damping coefficient proportional to the gain factor. Admissible variances
of loading depend strongly on the feedback gain factor. The stability regions
do not change qualitatively when going from the Gaussian process to the
harmonic one, but the Gaussian loading needs smaller critical retardation time
than the harmonic loading.

For no axial force, this is the case of free vibration due to the nontrivial
initial conditions. As long as the active or passive damping is present, the
system is stable and oscillations decay.
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Stabilizacja drgan parametrycznych belki za pomoca rozlozonych
elementéw piezoelektrycznych

Streszczenie

Praca dotyczy stabilizacji belki sprezystej poddanej dzialaniu sity Sciskajacej za-
leznej od czasu. Warunek prawie pewnej statecznosci stochastycznej wyprowadzono za
pomocy bezposredniej metody Lapunowa. Jako funkcjonal Lapunowa przyjeto sume
zmodyfikowanej energii kinetycznej i energii potencjalnej belki. Ttumienie w warstwie
laczacej elementy piezoelektryczne z belka opisano efektywnym wspéiczynnikiem tiu-
mienia modelu Voigta-Kelvina. Sterowanie jest realizowane za pomocg rozlozonych
piezoelektrycznych elementéw pomiarowych i wykonawczych o zmiennej szerokoéci
przyklejonych do powierzchni belki. Zasadniczym celem pracy jest analiza stabilnogci
uktadu cigglego ze sprzezeniem zwrotnym opisanym réwnaniem o pochodnych czgst-
kowych. Gléwnym wynikiem sa efektywne warunki stabilizacji zapewniajace prawie
pewng stabilnosé stochastyczna belki. Zmienna sila modelowana jest jako fizycznie
realizowalny stochastyczny proces ergodyczny. Predko$ciowe sprzezenie zwrotne za-
pewnia stabilizacje drgaii parametrycznych. Obliczenia sg przeprowadzone dla pro-
cesu Gaussowskiego o danej éredniej i wariancji oraz procesu harmonicznego o danej
amplitudzie.
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