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The paper reports on current developments in gearbox dynamic model-
ling. It refers to Müller’s one-mass two-parameter (stiffness and dam-
ping) gearbox model with rectilinear vibration. The paper shows that
there is a need to develop a new model, which would incorporate tor-
sional vibration. The paper refers to the previous papers on gearbox
dynamic modelling published by the author in journals and conference
proceedings. In the present paper, the influence of the clutch damping
coefficient and one random parameter value from the three-parameter
error mode, and that of the interaction between error parameters on the
vibration generated by a gearbox system, is analyzed.
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1. Introduction

The modelling of gearbox dynamic behaviour belongs to the fundamental
problems of mechanical system modelling. The problem has been the subject
of many papers in Poland and abroad: Wang (1974), Mark (1978), Velex and
Maatar (1996), Smith (1998). The model presented by Müller in 1979 has
received a lot of attention in Poland. It was discussed, for example, by Ryś
(1977), Wilk (1981), and Dąbrowski (1992). The model is a two-parameter
(stiffness and damping) model in which the inertia of two wheels has been
reduced to one mass equivalent to a one-stage gearbox.

The author of the present paper has found that more sophisticated mo-
dels are needed to describe the gearbox dynamics properly; Bartelmus (1994,
2000). Mathematical modelling and computer simulation can be applied to
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gearbox dynamics to support diagnostic signal evaluation for diagnostic infe-
rence. This is the main aim of the present research. The computer simulation is
based on a mathematical model developed by Bartelmus (1994, 2000). General
information on gearing needed for the computer simulation of gearbox beha-
viour was given by Bartelmus (2000). Some results of computer simulations
supporting diagnostic inference were presented by Bartelmus (1996-1999). The
papers show that mathematical modelling and computer simulation enable the
detailed investigation of the dynamic properties of a gearing system. All the
basic factors such as: design, technology, operation and change of the gearing
system conditions which have a bearing on the vibration generated by a ge-
aring can be investigated. The causes of vibration in gearboxes are mainly the
tooth errors and vibration is an indication of them. The computer simulation
results are referred to the laboratory investigation results presented by Rettig
(1977) and to the field measurements reported by Penter (1991), Bartelmus
(1992), and Tuma et al. (1994).

As mentioned above, the vibration of a gearbox indicates that there are
tooth errors in it. The errors appear at the production stage. The nature of
the gear-wheel interaction is such that non-linear phenomena occur caused by
friction, intertooth backlash, impact-like intertooth forces and periodic chan-
ges in tooth stiffness. As a result, the intertooth forces may exceed the force
values, which follow from the gearbox system’s rated moment. Mathematical
description enabling to include these phenomena in the equation of motion is
given by Bartelmus (2000).

The intertooth forces increase dramatically under unstable conditions. A
one-stage gear system operates under resonance conditions and is unstable
when the gearbox system’s mesh frequency is equal to its natural frequency.
In such conditions, the intertooth forces are two times greater than the ra-
ted forces. The phenomenon of resonance has not been investigated fully for
gearbox systems.

Computer simulations reveal that conditions similar to the ones occurring
at resonance may result as errors (pitting, scuffing of teeth flanks and failure of
bearings) increase during the service of a gearbox system. In the present paper,
current developments in gearbox modelling are presented with reference to the
previous papers by the present author. It is shown that a flexible clutch and an
error mode random parameter have an influence on the gearbox stability (teeth
separation). An error mode is described by several parameters, i.e. maximum
error value, shape of error plot and random error fluctuation depth.
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2. Modelling of gearbox system

The Müller (1979) one-stage gearbox model is shown in Fig. 1.

Fig. 1. One-mass, two-parameter model of gearbox by Müller (1979), where
kz – gearing’s stiffness, lz – bearing’s stiffness, εα – tooth contact index,

Yb1 – input tooth contact ordinate, Yb3 – output tooth contact ordinate, pb – gear
base pitch, ∆p – gear base pitch error, Ybjgp – gear pitch error, v – pitch line

velocity, P – intertooth force

It is a two-parameter (stiffness and damping) model. The inertia of the two
gear-wheels is reduced to one mass. The motion of the mass is equivalent to the
relative motion of the two gear-wheels. The motion is caused by the relative
motion of springs (having different lengths) hitting the mass. The motion of
the springs with velocity v [m/s] is equivalent to the pitch-line velocity of the
wheels. As one can see in the model shown in Fig. 1, the motion of the mass has
no influence on the instant change of v as in actual gearboxes. This weakness of
the Müller (1979) model and lack of possibility of building multistage gearbox
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Fig. 2. Two-wheel, two-parameter model of gearbox

models made the author look for a new model. It is more convenient to use
a model with the rotary motion of the wheels and torsional vibration, and
thus to overcome the weakness of the Müller model. The simplest model of
this kind is shown in Fig. 2. The rotation equations of motion may be given
by statements according to the second Newton’s law of motion

I1pϕ̈1 =M1 − r1(F + Ft) +Mzt1
(2.1)

I2pϕ̈2 = r2(F + Ft)−M2 −Mzt2

To get closer to reality, a more sophisticated model is considered. The
model is shown in Fig. 3. The mathematical model of torsional vibration of
the system is given by the following equations

Isϕ̈1 =Ms(ϕ̇1)−M1 −M1t

I1pϕ̈2 =M1 +M1t − r1(F + Ft) +Mzt1
(2.2)

I2pϕ̈3 = r2(F + Ft)−M2 −Mzt2

Imϕ̈4 =M2 −Mr
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Fig. 3. System with one-stage gearbox

The values of forces and moments are given by

M1 = k1(ϕ1−ϕ2) M2 = k2(ϕ3−ϕ4) M1t = C1(ϕ̇1−ϕ̇2) (2.3)

Using the functions min and max one may write a formula for the inter-
tooth force

F = kz(pom, g)
(

max
(

A− lu + E(pom, a, e, r),

min
(

A+ lu + E(pom, a, e, r), 0
)

))

(2.4)

Ft = Cz(A′) A = r1ϕ2 − r2ϕ3

where
ϕ, ϕ̇, ϕ̈ – rotation angle, angular velocity, angular acceleration
Ms(ϕ̇) – electric motor driven moment characteristic
M1,M2 – moments of shaft stiffness
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Is, Im – moments of inertia for electric motor and driven ma-
chine

M1t – damping moment of clutch/coupler
C1 – damping coefficient of the coupler
F,Ft – stiffness and damping intertooth forces
k1, k2 – stiffness of shafts
Mzt1,Mzt2 – intertooth moment of friction, Mzti = Tρi, i = 1, 2
T – intertooth force of friction, Fig. 2
kz(pom, g) – gearing stiffness function
r1, r2 – gear base radii
lu – intertooth backlash
E(pom, a, e, r) – error mode function
pom, a, e, r – parameters of error function,

pom = frac(ϕ2z1/(2π)), where ”frac” denote fractio-
nal part

z1 – number of teeth in the pinion.

A full description of the model is given in Bartelmus (1994) and after
modification – in Bartelmus (2000).
For a given pair of teeth, the value of an error is random and it can be

denoted by
e(random) = [1− r(1− li)]e (2.5)

where
e – maximum error value
r – coefficient of error scope, scope (0− 1)
li – random value, scope (0− 1).

A symbolic description of an error characteristic (error mode) is E(a, e, r),
parameters of the error mode were described earlier above, a is given in Fig. 4b
and Fig. 4c, changes in the range (0− 1), and it indicates the position of the
maximum error value on the line of action. As an example, an error mode for
E(0.5, 10, 0.3) is given in Fig. 4b and for E(0.1, 10, 0.3) in Fig. 4c.
As it follows from the above discussion, gearing’s dynamic properties de-

pend on several factors. The factors may be divided, according to Bartelmus
(1992, 1998a), into:

• design factors

• technology factors

• operation factors

• change of condition factors.
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Fig. 4. (a) Stiffness function for gearing, (b) error function for error mode
E(0.5, 10, 0.3), (c) error function for error mode E(0.1, 10, 0.3)

Numerical solutions of the differential equations are obtained by means of
CSSP (Continuous System Simulation Program) developed by Siwicki (1992),
using the England procedure of integration. The procedure is a general pro-
cedure of the Runge-Kutta type and it assures the stability of integration,
even in the case of discontinuity, as well as it enables error estimation and the
automatic change of the integration step.

3. Results of computer simulations

The results of computer simulations published by the author (Bartelmus,
1996-2000) have been compared with the results of rig investigations by Ret-
tig (1977) and field investigations by Penter (1991), Bartelmus (1992), Tuma
(1994). As mentioned above, the aim of the present paper was to study the in-
fluence of random intertooth errors on the vibration generated by the gearbox
system (Fig. 3) for different clutch damping coefficients: C1 = 0 and C1 > 0.
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Fig. 5. (a) Plot of Kd for error mode E(0.5, 12, 0.3), stiffness coefficient C1 = 0;
(b) plot of Kd for E(0.5, 15, 0.3), C1 = 0; (c) plot of Kd for E(0.5, 15, 0.3),
C1 = 1000; (d) plot of Kd for E(0.5, 20, 0.3), C1 = 1000; (e) plot of Kd for
E(0.5, 20, 0.15), C1 = 1000; (f) plot of Kd for E(0.1, 20, 0.3), C1 = 1000
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The random intertooth error is described by error mode E(a, e, r), where
e(random) is given by (2.5). Author’s previous studies on gearing dynamics
were for the error mode described by two parameters, E(a, e) and C1 = 0.
According to Bartelmus (1996), an increase in intertooth error e [µm] causes
a linear increase of dynamic factor Kd, but only to a certain value of e. At
this value, a nonlinear effect caused by unstable running (teeth separation) is
observed. Dynamic factor Kd is defined as a ratio of the current intertooth
force to the rated intertooth force. The value of e at which unstable running
(teeth separation effect) is observed depends also on the value of parame-
ter a in error mode E(a, e). The unstable running of a gearbox occurs when
Kd > 2. Also parameter r, which specifies the relative scope of the interto-
oth fluctuation, is connected with the instability. In conditions when the error
mode is given by E(0.5, 12, 0.3) and C1 = 0, the system shown in Fig. 3 runs
unstably (Kd = 1.8, Fig. 5a). If the error mode is changed to E(0.5, 15, 0.3)
and C1 = 0, the running of the gearbox system will be unstable, as shown in
Fig. 5b, for a constant rated rotation and a constant outer load. Fig. 5 shows
period (1) in which gear rotation increases from 0 to 107 rad/s. No external
load is applied to the gearbox system, the gearbox system is loaded only by
the inertia forces. In period (2) the gearbox system runs without any load.
In period (3) the outer load increases from 0 to the rated load. In period (4)
the gearbox system runs under a stable rated load. In the present paper, pe-
riod (4) of the gearbox system run is the focus of attention. Bearing in mind
that the damping clutch coefficient has an influence on the gearbox system
dynamics, the plot of Kd for a run at E(0.5, 15, 0.3) and Cs = 1000Nms will
be as the one shown in Fig. 5c. The plots for gearing conditions described by
E(0.5, 20, 0.3), E(0.5, 20, 0.15) and C1 = 1000Nms are shown in Fig. 5d and
Fig. 5e. The gearbox system runs then at slight instability: Kd = 2.4 and 2.3.
If parameter a is decreased from 0.5 to 0.1 at error mode E(0.1, 20, 0.15) and
C1 = 1000Nms, the plot of factor Kd is like the one shown in Fig. 5f, where
dynamic factor Kd = 4.7. If parameter e is further increased, the value of
the dynamic factor does not change.

4. Conclusions

The paper has shown a detailed analysis of a mutual influence of the error
mode parameters and influence of a clutch damping on a dynamic factor Kd,
which reveals the gearing condition. The error mode is described by three
parameters: a – shape parameter, e – maximum value of the error, r – scope
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of the error random change. The analysis proves that, in general conditions
of a gearing change (change of e and r), the linear increase of Kd does not
hold, as it is stated in Bartelmus (1992) (experiment on a real object) and
1996 (computer simulation experiment). In the experiment on a real object
and in the computer simulation experiment, only the value of e was taken
into consideration.
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Modelowanie dynamiki przekładni zębatych

Streszczenie

Praca przedstawia aktualny rozwój zagadnień związanych z modelowaniem dy-
namiki przekładni zębatych. Nawiązuje ona do jednomasowego, dwuparametrowego
(sztywność i tłumienie) modelu przekładni Müllera o ruchu prostoliniowym. Poka-
zuje potrzebę opracowania nowego modelu, który uwzględni drgania skrętne. Na-
wiązuje do wcześniejszych publikacji autora pracy na temat modelowania przekładni
publikowanych w czasopismach i materiałach konferencyjnych. W prezentowanej pra-
cy przedstawiono analizę wpływu tłumienia w sprzęgle, wpływ losowego parametru
w trójparametrowej funkcji błędu na drgania generowane przez przekładnię zębatą.
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