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Within the framework of the linear elasticity with microlocal parameters
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1. Introduction

Considerable progress has been made with the modelling and analysis of
contact problems. Extensive accounts can be found in the books by Shtaerman
(1949), Galin (1953, 1980), Rvachev and Protsenko (1977), Gladwell (1980),
Johnson (1985), Mossakovskii et al. (1985), Goryacheva and Dobykhin (1988)
and in the recent proceedings by Raous et al. (1995). Willis (1966) and Hwu
and Fan (1998) made significant contributions to the development of research
for the contact of anisotropic bodies. Complete and new solutions to seve-
ral three-dimensional contact problems were presented in two monographs by
Fabrikant (1989, 1991).

This paper is devoted to the analysis of three-dimensional contact problems
for a periodic two-layered elastic half-space. It is a sequel of our earlier investi-
gations in the two-dimensional case (see Kaczyński and Matysiak, 1988, 1993).
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The study is based on the use of the homogenized model of the micro-
periodic two-layered composite, proposed by Woźniak (1987), Matysiak and
Woźniak (1988). In Section 2 we review briefly the governing equations of
this model in the three-dimensional case of the linear elasticity with micro-
local parameters. Due to close similarity to the fundamental equations for a
transversely isotropic elastic solid, the general solutions in terms of harmonic
potentials, well suited to contact problems, are constructed. Section 3 presents
a general elastostatic contact problem of indentation of the two-layered half-
space by a frictionless rigid smooth punch treated within the homogenized
model. According to the analysis, the well-known governing integral equation
of the elastic contact problem similar to that in the case of contact on a
transversely isotropic half-space is obtained. This fact may be utilised to yield
closed-form solutions following directly from those given, for example, by Fa-
brikant (1989). The complete solution in the case of a flat centrally loaded
circular punch is presented in Section 4.

2. Governing equations

We consider a three-dimensional static contact problem of a two-layered
microperiodic elastic half-space with a rigid smooth punch (see Fig. 1). Let
λl, µl be Lamé’s constants and δl be the thicknesses of the subsequent layers;
in the following, all the quantities (material constants, stresses, etc.) with
the index l or (l) are related to the layers denoted by l = 1 or l = 2. The
Cartesian coordinate system (x1, x2, x3) is devised with the x3-axis normal to
the layering and the x1x2-plane of boundary. Referring to this system, denote
at the point x = (x1, x2, x3) the displacement vector by u = [u1, u2, u3] and
the stresses by σ11, σ12, σ22, σ13, σ23, σ33.
To analyse the problem of a punch penetrating this layered body we ta-

ke into consideration the specific homogenization procedure called microlocal
modelling, proposed by Woźniak (1987) and then developed by Matysiak and
Woźniak (1988), applicable to a certain macro-homogeneous model of the tre-
ated body. We present only a brief outline of its governing equations.
The homogenized model of the layered body under study is characterised

by the shape function with the period δ = δ1 + δ2, defined as

h(x3) =






x3 −
δ1
2

for x3 ∈ 〈0, δ1〉
δ1 − ηx3
1− η −

δ1
2

for x3 ∈ 〈δ1, δ〉 η =
δ1
δ

(2.1)
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Fig. 1. Periodic two-layered half-space indented by a frictionless rigid punch

Note that the values of this function are small whereas the values of its
derivative

h′ =






1 if x belongs to the 1st layer

− η

1− η if x belongs to the 2nd layer

are not small even for very thin layers.

The following representations and approximations are postulated within
the elasticity with microlocal parameters1

ui = wi + h(x3)di ≈ wi

ui,α ≈ wi,α u
(l)
i,3 ≈ wi,3 + h′di

σ
(l)
αβ ≈ µl(wα,β + wβ,α) + δαβλl(wi,i + h′d3) (2.2)

1Indices i, j run over 1,2,3 while α, β, γ run over 1,2. They are related to the
Cartesian coordinates. The summation convention holds for both kinds of the afore-
mentioned indices.
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σ
(l)
α3 ≈ µl(wα,3 + w3,α + h′dα)

σ
(l)
33 ≈ (λl + 2µl)(w3,3 + h′d3) + λlwγ,γ

Here δαβ is the Kronecker delta, wi and di are unknown functions interpreted
as the macro-displacements and microlocal parameters, respectively.

Following the special homogenization procedure (cf Woźniak, 1987), we
arrive at the governing equations and constitutive relations of a certain macro-
homogeneous medium (the homogenized model), given (after eliminating the
microlocal parameters and in the absence of the body forces) in terms of the
macro-displacements wi as follows (see Kaczyński, 1993)

1

2
(c11 + c12)wγ,γα +

1

2
(c11 − c12)wα,γγ + c44wα,33 + (c13 + c44)w3,3α = 0

(c13 + c44)wγ,γ3 + c44w3,γγ + c33w3,33 = 0

σα3 = c44(wα,3 + w3,α) σ33 = c13wα,α + c33w3,3 (2.3)

σ
(l)
12 = µl(w1,2 + w2,1)

σ
(l)
11 = d

(l)
11w1,1 + d

(l)
12w2,2 + d

(l)
13w3,3

σ
(l)
22 = d

(l)
12w1,1 + d

(l)
11w2,2 + d

(l)
13w3,3

Positive coefficients appearing in the above equations are given in the Ap-
pendix. They depend on the material and geometrical characteristics of the
subsequent layers. It is noteworthy that the condition of perfect bonding be-
tween the layers (the continuity of the stress vector at the interfaces) is sa-
tisfied. We also observe that setting λ1 = λ2 ≡ λ, µ1 = µ2 ≡ µ entails
c11 = c33 = λ+ 2µ, c12 = c13 = λ, c44 = µ and the well-known equations of
the elasticity for a homogeneous isotropic body with Lamé’s constants λ, µ
are recovered.

The general solutions to governing equations (2.3) in terms of three har-
monic poten- tials have become possible due to close similarity to the displace-
ment and stress-displacement relations for a transversely isotropic solid (see,
for example, Kassir and Sih, 1975). According to the results obtained by Ka-
czyński (1993), the form of the potential representations is dependent on the
material constants of the layers and is given below in two cases2.

2The constants ti, mα are defined in Appendix.
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Case 1: µ1 6= µ2

The displacement field can be expressed through the three potentials
ϕ̂i(x1, x2, zi), in which zi = tix3, such that

∇2ϕ̂i ≡
( ∂2

∂x21
+
∂2

∂x22
+
∂2

∂z2i

)
ϕ̂i ∀i ∈ {1, 2, 3}

as follows

w1 = (ϕ̂1 + ϕ̂2),1 − ϕ̂3,2 w2 = (ϕ̂1 + ϕ̂2),2 + ϕ̂3,1
(2.4)

w3 = m1t1
∂ϕ̂1
∂z1
+m2t2

∂ϕ̂2
∂z2

From stress-displacement relations (2.3), the stresses σ3i can be expres-
sed as

σ31 = c44
[
(1 +m1)t1

∂ϕ̂1
∂z1
+ (1 +m2)t2

∂ϕ̂2
∂z2

]

,1
− t3

∂2ϕ̂3
∂z3∂x2

σ32 = c44
[
(1 +m1)t1

∂ϕ̂1
∂z1
+ (1 +m2)t2

∂ϕ̂2
∂z2

]

,2
+ t3

∂2ϕ̂3
∂z3∂x1

(2.5)

σ33 = c44
[
(1 +m1)

∂2ϕ̂1
∂z21
+ (1 +m2)

∂2ϕ̂2
∂z22

]

Formulas for the remaining stresses σ
(l)
αβ are not of immediate interest and

have been omitted.

Case 2: µ1 = µ2 ≡ µ, λ1 6= λ2

Here, the displacement equations take the classical form

(B + µ)wj,ji + µwi,jj = 0 (2.6)

provided

B =
λ1λ2 + 2µ[ηλ1 + (1− η)λ2]
(1− η)λ1 + ηλ2 + 2µ

(2.7)

and the representation in terms of the three harmonic functions ϕi(x1, x2, x3)
(satisfying ∇2ϕi ≡ ϕi,jj = 0 ∀ i ∈ {1, 2, 3}) is given as follows
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w1 = (ϕ1 + x3ϕ2),1 − ϕ3,2 w2 = (ϕ1 + x3ϕ2),2 + ϕ3,1

w3 = ϕ1,3 + x3ϕ2,3 −
B + 3µ

B + µ
ϕ2

σ31 = 2µ
[
ϕ1,3 −

µ

B + µ
ϕ2 + x3ϕ2,3

]

,1
− µϕ3,23 (2.8)

σ32 = 2µ
[
ϕ1,3 −

µ

B + µ
ϕ2 + x3ϕ2,3

]

,2
+ µϕ3,13

σ33 = 2µ
[
ϕ1,33 −

B + 2µ

B + µ
ϕ2,3 + x3ϕ2,33

]

Putting in the above case λ1 = λ2 ≡ λ implies B = λ, passing to the
known representation for the homogeneous isotropic body with the Lamé con-
stants λ, µ.

3. Frictionless contact problem

Consider the general problem of indentation of the two-layered periodic
half-space by a frictionless smooth rigid punch. Let S is the known contact
area (see Fig. 1). Within the framework of the homogenized model presented
in Section 2 we can formulate the following mixed conditions on the entire
plane x3 = 0, denoted by Z

w3(x1, x2, 0) = ω(x1, x2) ∀(x1, x2) ∈ S
σ33(x1, x2, 0) = 0 ∀(x1, x2) ∈ Z − S
σ31(x1, x2, 0) = σ32(x1, x2, 0) = 0 ∀(x1, x2) ∈ Z

(3.1)

where ω(x1, x2) is a known function that describes the profile of the punch.
We now proceed to construct the potential functions well suited to the abo-

ve mixed boundary conditions. This will be done by using the same potential
representation as in Kaczyński (1993), for the corresponding crack problem
with symmetric loading.

Case 1: µ1 6= µ2

The potentials are expressed in terms of a single harmonic function
f̂(x1, x2, x3) (i.e. ∇2f̂ ≡ f̂,jj = 0) as follows
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ϕ̂1(x1, x2, z1) = −
1

t1(1 +m1)
f̂(x1, x2, z1)

ϕ̂2(x1, x2, z2) =
1

t2(1 +m2)
f̂(x1, x2, z2) (3.2)

ϕ̂3 ≡ 0

Substitution Eqs (3.2) into Eqs (2.4) and making use of Eqs (2.3) yields the
following representations of the displacements wi and stresses σ3i in terms
of the potential f̂

wα(x1, x2, x3) =
2∑

k=1

(−1)k
tk(1 +mk)

f̂,α(x1, x2, zk)

w3(x1, x2, x3) =
m2
1 +m2

∂

∂z2
f̂(x1, x2, z2)−

m1
1 +m1

∂

∂z1
f̂(x1, x2, z1)

(3.3)

σ3α(x1, x2, x3) = c44
[ ∂
∂z2
f̂(x1, x2, z2)−

∂

∂z1
f̂(x1, x2, z1)

]

σ33(x1, x2, x3) = c44
[ 1
t2

∂2

∂z22
f̂(x1, x2, z2)−

1

t1

∂2

∂z21
f̂(x1, x2, z1)

]

The remaining stresses (discontinuous on the interfaces) are found to be

σ
(l)
11 (x1, x2, x3) =

2∑

k=1

(−1)k
tk(1 +mk)

·

·
[
d
(l)
11 f̂,11(x1, x2, zk) + d

(l)
22 f̂,22(x1, x2, zk) + d

(l)
13mkf̂,33(x1, x2, zk)

]

σ
(l)
22 (x1, x2, x3) =

2∑

k=1

(−1)k
tk(1 +mk)

· (3.4)

·
[
d
(l)
12 f̂,11(x1, x2, zk) + d

(l)
11 f̂,22(x1, x2, zk) + d

(l)
13mkf̂,33(x1, x2, zk)

]

σ
(l)
12 (x1, x2, x3) = 2µl

2∑

k=1

(−1)k
tk(1 +mk)

f̂,12(x1, x2, zk)

It easily follows from Eqs (3.3) that on the boundary x3 = 0 (then z1 =
z2 = 0, ∂f̂(x1, x2, zα)/∂zα = ∂f̂(x1, x2, x3)/∂x3) the third condition in (3.1)
σ3α = 0 is satisfied. In addition, in view of Eqs (3.3), the components of the
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displacement and stress that act along the x3-axis on the surface x3 = 0
+

take the form

w3(x1, x2, 0) =
( m2
1 +m2

− m1
1 +m1

)[
f̂,3(x1, x2, x3)

]

x3=0
(3.5)

σ33(x1, x2, 0) = c44
( 1
t2
− 1
t1

)[
f̂,33(x1, x2, x3)

]

x3=0

The above relations reduce the contact problem given by Eqs (3.1) to the
classical mixed problem (cf Sneddon, 1966) for finding the harmonic func-
tion f̂ in the half-space x3  0, which vanishes at infinity and satisfies the
boundary conditions

[
f̂,3(x1, x2, x3)

]

x3=0
=
(1 +m1)(1 +m2)

m2 −m1
ω(x1, x2) ∀(x1, x2) ∈ S

[
f̂,33(x1, x2, x3)

]

x3=0
= 0 ∀(x1, x2) ∈ Z − S

(3.6)

Case 2: µ1 = µ2 ≡ µ, λ1 6= λ2

The solution to Eqs (2.6) in terms of one harmonic function f with the
assumption that the boundary x3 = 0 is free from tangential stresses is
achieved by taking in Eqs (2.8)

ϕ1 =
µ

B + µ
f ϕ2 = f,3 ϕ3 = 0 (3.7)

Then it follows from Eqs (2.8) that the displacement and stress components
are

wα =
µ

B + µ
f,α + x3f,3α w3 = −

B + 2µ

B + µ
f,3 + x3f,33

σ3α = 2µx3f,α33 σ33 = 2µ(−f,33 + x3f,333)

σ
(l)
11 = 2µ(D

(l)
11 f,11 +D

(l)
12f,22 + x3f,113) (3.8)

σ
(l)
22 = 2µ(D

(l)
12 f,11 +D

(l)
11f,22 + x3f,223)

σ
(l)
12 = 2µl

( µ

B + µ
f,12 + x3f,123

)
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where

D
(l)
11 = 1 +

2µ(λ1 −B)
(B + µ)(λ1 + 2µ)

D
(l)
12 =

λ1
B + µ

(
1 +
λ1 −B
λ1 + 2µ

)
(3.9)

The following expressions are found on the plane x3 = 0

w3 = −
B + 2µ

B + µ
f,3 σ33 = −2µf,33 (3.10)

Application of conditions (3.1) yields a similar problem to that appearing in
Eqs (3.6) in finding the harmonic function f

[
f̂,3(x1, x2, x3)

]

x3=0
= −B + 2µ
B + µ

ω(x1, x2) ∀(x1, x2) ∈ S
[
f̂,33(x1, x2, x3)

]

x3=0
= 0 ∀(x1, x2) ∈ Z − S

(3.11)

The mixed boundary-value problems for the harmonic functions f̂ in Ca-
se 1 and f in Case 2 can be reduced to integral equations by using the re-
presentations of their first x3-derivatives through the potentials of the simple
layer, namely

f̂,3(x1, x2, x3) =

∫ ∫

S

σ̂0(x, y) dxdy√
(x1 − x)2 + (x2 − y)2 + x23

(3.12)

f,3(x1, x2, x3) =

∫ ∫

S

σ0(x, y) dxdy√
(x1 − x)2 + (x2 − y)2 + x23

where the unknown functions σ̂0 and σ0 will be determined from the well-
known properties of these potentials

f̂,33
∣∣∣
x3=0
=

{ −2πσ̂0(x1, x2) ∀(x1, x2) ∈ S
0 ∀(x1, x2) ∈ Z − S

(3.13)

f,33
∣∣∣
x3=0
=

{ −2πσ0(x1, x2) ∀(x1, x2) ∈ S
0 ∀(x1, x2) ∈ Z − S

Notice that the second condition in Eqs (3.6) and (3.11) is satisfied and the
first one gives, in view of Eqs (3.5) and (3.10), the equations for σ̂0 and σ0

t1t2
c44(t1 − t2)

σ33(x1, x2, 0) = −2πσ̂0(x1, x2) Case 1

− 1
2µ
σ33(x1, x2, 0) = −2πσ0(x1, x2) Case 2

(3.14)
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Hence, denoting the normal contact traction σ33(x1, x2, 0) ≡ p3(x1, x2) on S,
we obtain (see Appendix)

σ̂0(x1, x2) =
t1t2
2πt−c44

p3(x1, x2) Case 1

σ0(x1, x2) =
1

4πµ
p3(x1, x2) Case 2

(3.15)

Substitution of Eqs (3.15) in Eqs (3.12) leads to the potentials expressed by
p3(x1, x2) (unknown function) as follows

f̂,3(x1, x2, x3) =
t1t2
2πt−c44

∫ ∫

S

p3(x, y) dxdy√
(x1 − x)2 + (x2 − y)2 + x23

Case 1

f,3(x1, x2, x3) =
1

4πµ

∫ ∫

S

p3(x, y) dxdy√
(x1 − x)2 + (x2 − y)2 + x23

Case 2

(3.16)
Finally, satisfaction of the first conditions in Eqs (3.6) and (3.11) yields the

governing integral equation of the considered contact problem for a two-layered
periodic half-space

−H
∫ ∫

S

p3(x, y) dxdy√
(x1 − x)2 + (x2 − y)2

= ω(x1, x2) (3.17)

where H is the same constant as used by Fabrikant (1989) in study of contact
on a transversely isotropic half-space, here taking on the values

H =






t1t2
2πc44t−

m1 −m2
(1 +m1)(1 +m2)

=
t+
√
c11c33

2π(c11c33 − c213)
Case 1

1

4πµ

B + 2µ

B + µ
Case 2

(3.18)

Once the contact stresses p3(x1, x2) are known from the solution of the
above integral equation, the complete displacement and stress fields can be
written down using Eqs (3.3), (3.4) in Case 1 and Eqs (3.8) in Case 2 with
the main potentials f̂ and f , determined from Eqs (3.16) by integrating with
respect to x3

f̂(x1, x2, x3) =

=
t1t2
2πt−c44

∫ ∫

S

ln
[√
(x1 − x)2 + (x2 − y)2 + x23 + x3

]
p3(x, y) dxdy
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f(x1, x2, x3) = (3.19)

=
1

4πµ

∫ ∫

S

ln
[√
(x1 − x)2 + (x2 − y)2 + x23 + x3

]
p3(x, y) dxdy

Integral equation (3.17) has been widely known, but its solution presents
considerable difficulties. However, marked progress has been made by Fabri-
kant (1989, 1991) in obtaining exact and complete solutions to various contact
problems (in elementary functions) for a circular punch of any polynomial pro-
file. Owing to the same governing equation (3.17), these solutions will be used
for solving the corresponding problems of contact on a periodic two-layered
half-space within the framework of the elasticity with microlocal parameters,
presented in Section 2. For the sake of simplicity, the results will be presented
for the simplest case of indentation by a flat punch in the next section.

4. Example: flat centrally loaded circular punch

Consider the case when a flat rigid circular punch of the radius a is pressed
against a two-layered periodic elastic half-space x3  0 by the centrally
applied normal force P . This problem is characterised by mixed boundary
conditions (3.1) with the contact area S = {(x1, x2) : ρ2 ≡ x21 + x22 ¬ a2}
and the punch settlement ω(x1, x2) = const ≡ ω0 > 0.
Several methods of solving axisymmetric punch problems were reported

in the literature (see for example a review by Barber, 1992). A wide range of
new investigations in the field of contact problems related to a transversely
isotropic body and directed to obtain complete solutions has been carried
out by Fabrikant (1989, 1991). At present, by making use of his results, we
present the exact solution of the posed problem within the framework of the
homogenized model.

The solution to governing integral equation (3.17) gives the contact stresses

p3(x1, x2) = σ3(x1, x2, 0) = −
ω0

π2H
√
a2 − x21 − x22

(4.1)

The total force P is related with the punch settlement ω0 by the rela-
tionship

P = −
∫ ∫

S

p3(x1, x2) dx1dx2 =
2ω0a

πH
(4.2)
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Now we substitute Eq. (4.1) into Eqs (3.16) in order to find the main poten-
tial functions giving a complete solution. The method of Fabrikant yields the
results in elementary functions as follows (for Case 1 and Case 2, respectively)

f̂(x1, x2, x3) = −
t1t2ω0
π2Ht−c44

[
x3 arcsin

a

l2
−
√
a2 − l21 + a ln(l2 +

√
l22 − ρ2)

]

f(x1, x2, x3) = −
ω0
2π2Hµ

[
x3 arcsin

a

l2
−
√
a2 − l21 + a ln(l2 +

√
l22 − ρ2)

]

where in his notation

l1 ≡ l1(a, ρ, x3) =
1

2

[√
(ρ+ a)2 + x23 −

√
(ρ− a)2 + x23

]

(4.3)

l2 ≡ l2(a, ρ, x3) =
1

2

[√
(ρ+ a)2 + x23 +

√
(ρ− a)2 + x23

]

Appropriate differentiation of the above potentials (see Appendix 5 in the
book by Fabrikant, 1991) and then making use of Eqs (3.3) in Case 1 and Eqs
(3.8) in Case 2 give the complete displacement and stress field in the following
concise form:

Case 1

wα =
2ω0axα
πρ2

2∑

k=1

1

tk(mk − 1)
[
1−

√
a2 − l21k
a

]

w3 =
2ω0
π

2∑

k=1

mk
mk − 1

arcsin
a

l2k
(4.4)

σ3α =
ω0t1t2xα
π2Ht−ρ

2∑

k=1

(−1)2
l1k
√
a2 − l21k

l2k(l
2
2k − l21k)

σ33 =
ω0t1t2
π2Ht−

2∑

k=1

(−1)2
√
a2 − l21k

tk(l
2
2k − l21k)

Here the notations l1k and l2k for k = 1, 2 are understood as l1(a, ρ, zk)

and l2(a, ρ, zk), respectively. The evaluation of σ
(l)
αβ is not given because of

the complexity.

Case 2

wα =
2ω0xα
πρ

B + µ

B + 2µ

[
− µ

B + µ

a−
√
a2 − l21
ρ

+
x3l1

√
l22 − a2

l2(l22 − l21)
]
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w3 =
2ω0
π

[
arcsin

a

l2
+
B + µ

B + 2µ

x3

√
a2 − l21

l2(l22 − l21)
]

(4.5)

σ3α = −
ω0µxαx3(B + µ)

π(B + 2µ)

√
a2 − l21(3l22 + l21 − 4a2)

(l22 − l21)3

σ33 =
ω0µ(B + µ)

π(B + 2µ)

{
−

√
a2 − l21
l22 − l21

+
x23[l
4
1 + a

2(ρ2 − 2a2 − 2x23)]√
a2 − l21(l22 − l21)3

It is of interest to record the normal displacement and stress distribution
of the boundary x3 = 0. Taking into account that

l1
∣∣∣
x3=0
= l1k

∣∣∣
x3=0
= min(a, ρ)

l2
∣∣∣
x3=0
= l2k

∣∣∣
x3=0
= max(a, ρ)

one obtains

w3(x1, x2, 0) =






ω0 if x21 + x
2
2 ¬ a2

2ω0
π
arcsin

a
√
x21 + x

2
2

if x21 + x
2
2 > a

2

(4.6)

σ33(x1, x2, 0) =






− ω0

π2H
√
a2 − x21 − x22

if x21 + x
2
2 < a

2

0 if x21 + x
2
2 > a

2

with H defined by Eqs (3.18). Assuming λ1 = λ2 ≡ λ in Case 2 we obtain the
well-known solution of the contact problem under study for a homogeneous
isotropic elastic half-space with Lame’s constants λ and µ.

5. Conclusion

The three-dimensional contact problem for a periodic two-layered half-
space has been investigated within the homogenized model with microlocal
parameters. The governing integral equation of this problem turns out to ha-
ve the classical form well known from the consideration of the corresponding
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problem of an arbitrary frictionless rigid punch pressed against a transversely
isotropic elastic half-space. Hence, complete solutions to several punch pro-
blems, which were included in Fabrikant (1989, 1991), may be extended and
adopted in the case of contact on the laminar half-space under study.

A. Appendix

• Denoting by η = δ1/δ, bl = λl + 2µl (l = 1, 2), b = (1 − η)b1 + ηb2,
the positive coefficients in governing equations (2.3) are given by the
following formulae

c11 = c33 +
4η(1 − η)(µ1 − µ2)(λ1 − λ2 + µ1 − µ2)

b

c13 =
(1− η)λ2b1 + ηλ1b2

b
c33 =

b1b2
b

c12 =
λ1λ2 + 2[ηµ2 + (1− η)µ1][ηλ1 + (1− η)λ2]

b

c44 =
µ1µ2

ηµ2 + (1− η)µ1
d
(l)
13 =

λlc33
bl

d
(l)
11 =

4µl(λl + µl) + λlc13
bl

d
(l)
12 =

2µlλl + λlc13
bl

• The constants appearing in Eqs (2.4) and (2.5) are given as follows

t1 =
1

2
(t+ − t−) t2 =

1

2
(t+ + t−)

t3 =

√
ηµ1 + (1− η)µ2

c44
mα =

c11t
−2
α − c44
c13 + c44

∀α ∈ {1, 2}

where

t± =

√
(A± ± 2c44)A∓
c33c44

A± =
√
c11c33 ± c13

Note that t1t2 =
√
c11/c33, m1m2 = 1.
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O trójwymiarowych zagadnieniach kontaktowych dla periodycznej

dwuwarstwowej półprzestrzeni sprężystej

Streszczenie

W ramach liniowej teorii sprężystości z parametrami mikrolokalnymi zbadano kon-
taktowe zagadnienia przestrzenne dotyczące wciskania stempla w periodycznie dwu-
warstwową półprzestrzeń sprężystą. Efektywne wyniki uzyskano dzięki podobieństwu
rządzących równań modelu zhomogenizowanego półprzestrzeni z równaniami dla ciała
sprężystego z poprzeczną izotropią.
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