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One of the most intriguing problems in railway mechanics is the mo-
deling of contact between a rail and wheel. On the one hand, in the
contact zone the friction forces are determined – which are essential
for the behavior of railway vehicles as multibody systems, see Kalker
(1990), True (1993). On the other hand, the power extended by those
frictional forces on the surfaces in contact leads to abrasion of particles
and thus to wear phenomena, see Brommundt (1996), Frischmuth (1996),
Langemann (1999).
The aim of this paper is to present recent results on the coupling between
motion of a railway vehicle and evolution of contact surfaces due to wear.
We concentrate on a wheel with initially perfect geometry, which changes
due to frictional power dissipation during rolling on a perfect track.
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1. Motion

Typically, vehicles are described as multibody systems – we include embs
(Elastic Multi Body Systems) in this notion. Positions of all masses which con-
stitute the system under consideration are defined in terms of a finite number
of coordinates y (or sometimes p = p(t)). Those coordinates may be (pre-
ferably) independent, in that case their number – the dimension of y – is
referred to as degrees of freedom. Otherwise constraints may be imposed, e.g.
in the case of so-called kinematically closed loops. In the first case the temporal
changes of y are governed by ordinary differential equations of second order
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where the temporal derivatives are denoted by the dot. The mass matrix m

represents the mass distribution within the described system, the function f

comprises all (generalized) forces acting on the system. The function u is
introduced to allow for a control motion, e.g. imposing a desired speed on the
center of mass.
A constrained system can be transformed, in principle, into such a setting

using Lagrange formalism. However, from a numerical point of view this is
rather not desirable. A direct approach to a differential-algebraic system
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ÿ(t) = f
(

t, y(t), ẏ(t), λ, u
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leads to more efficient algorithms, see Gear et al. (1985), Hairer and Wanner
(1991), Simeon et al. (1991), Arnold and Frischmuth (1998).
For a rigid railway wheel, for instance, we have six degrees of freedom.

However, assuming that the wheel is in continuous contact with a rigid rail,
the vertical shift (elevation) of the mass center can be skipped. Similarly, for
a rigid wheelset with both wheels in contact with rails the roll angle φ can be
evaluated for a given lateral shift y and yaw angle ψ.
In both cases rather complicated geometrical calculations are required to

obtain the redundant position variables from the degrees of freedom. To speed
up the calculations, especially for simulations in real time, one prefers to do
those calculations off-line during preprocessing, see Arnold and Frischmuth
(1998). Of course, this works best if the bodies involved have symmetries and
do not change with time.
If the elasticity of the bodies in contact cannot be neglected then the

constraints are not adequate, in which case we have equations of motion of
the form (1.1). If we allow for temporary separation of the contact couple we
may have to switch between different descriptions.
The above amounts to the fact that the modeling of motion of a railway

vehicle is quite a complicated task. There exists a number of successful simula-
tion packages where the mentioned problems have been appropriately simpli-
fied and solved. It is worthwhile to mention that depending on the motivation
some rather simple models proved most interesting, see e.g. Kaas-Petersen
(1986), True (1993).
For the purpose of studying wear phenomena it is obvious that we need to

be able to cover relatively long time intervals. This excludes too complicated
models. On the other hand, we need some minimum spatial resolution, thus a
certain level of complication cannot be avoided.
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2. Contact

Most important for the mbs models introduced in the previous section is
certainly the definition of the force function f , and in the case of constraints
also of the function g. For ideal constraints, in the case of the formulation
(1.2)1, we have constraint forces in the normal direction to the constraint
manifold (of unknown intensity, determined by Lagrange multipliers λ). In the
presence of friction tangential forces depend on normal forces, i.e. on λ.

Moreover, the forces depend on such details of the contact geometry as the
curvatures of the surfaces in the contact zone. This dependence is complicated
enough for reasonably smooth surfaces which have contact in exactly one spot.
In railway mechanics, unfortunately, we have to face multiple contact and high
derivatives.

Typically, the determination of contact forces is carried out in several steps.
First, the geometrical contact point is determined. This is done in a purely
geometric way, given the actual geometry of the contact partners and their
positions in terms of mbs coordinates. For unworn profiles this dependence
is well studied and available e.g. in the form of tables. Second, the so-called
normal problem is solved.

3. Wear

For this paper we assume that, given the multibody position vector y(t)
and the generalized velocities ẏ(t), we are able to calculate the distributions
of wear-relevant factors over the contact surfaces. The most frequently used
wear model assumes the removed mass to be proportional to the dissipated
energy. All we need in this case is local slip and tangential stresses in the
contact region. Their scalar product, multiplied by the wear coefficient β, is
the local speed of surface retreat.

Direct numerical time integration of this quantity, for each point of the
involved surfaces, in order to obtain the current positions of the worn sur-
faces, fails for the obvious reason that integration time is too long and the
integrand too oscillating. A frequently used technique is to amplify the real
wear coefficient (by several orders), and shorten the integration time in the
same way. This approach was criticized by Langemann (1999). Here we fol-
low a different route. We postulate an evolution problem for the wear surface
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under consideration of the general form

ẋ(t, σ) = F(t, σ, x(t, ·))~n(t, σ) (3.1)

where
σ – surface parameter
~n – outer normal and −F is the wear speed.

The latter may depend on time and position on the surface, but the most
essential is the dependence on the actual surface as a whole.

In the previous work we have made efforts to express this dependence, at
least approximately, in an analytic way. Simulations with a nonlinear regu-
larized inverse diffusion equation have led to instabilities of the wear process
similar to the observed behavior. In this paper, however, we want to evaluate
F by numerical simulation of a multibody system described by (1.1). Roughly
speaking, the evaluation of F consists in calculating the integral mean values
over time of the local wear for a mbs with frozen geometry. It turns out that
– for the systems we studied – such mean values converged to unique limits,
depending on the control motion (e.g. speed) and actual geometry x(t, ·), but
independent of the initial values assumed for the degrees of freedom y in (1.1).
This unique limit is assumed to be the postulated wear speed −F

(

t, ·, x(t, ·)
)

.
Efforts to give analytical representations of such a mapping

x(t, ·)→ ẋn(t, ·) (3.2)

acting essentially from a function space defined on the surface to itself, re-
mained restricted to very simple setups, cf Brommundt (1996), Langemann
(1999).

Numerical evaluation of F depends ’only’ on our ability to describe the
geometry and forces for worn surfaces represented by x(t, ·), to integrate
equations of motion (1.1) and to integrate along the factors determining the
wear.

The remaining part is now the integration of evolution equation (3.1).
Doing this by Euler’s explicit method is much like the naive algorithms based
on amplification factors. This factor is the ratio between simulation time and
step size of Euler’s method. However, given formulation (3.1) we have now the
choice of the whole wealth of known integration methods. In particular, we
get a much better control of artificial oscillations.
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4. Numerical study

In the case of railway mechanics typically force and, if any, constraint
functions are given in the form of hundreds of lines of a source code. This makes
analytical considerations extremely difficult, the more so as useful properties
are not to be expected.

In this paper our main interest is focused on the numerical integration of
wear equation (3.1). To do this we choose a dynamical model that is reasonably
realistic, but on the other hand simple enough to allow quick and reliable
integration of the auxiliary problems. We base this single wheelset model on
the work by True (1993) but introduce some modifications in order to get
feedback from the geometrical changes in the profiles.

For the wear part, we choose the simplest possible law, assuming the loss
of mass proportional to the dissipated frictional energy.

We review now briefly the important ingredients of the dynamical model,
stressing the modifications that come with time-dependent profiles.

To start with, let us have a look at the standard rail and wheel profiles
(UIC 60/S1002), cf Fig. 1, as they are being met in Europe on new tracks,
respectively vehicles. Each of the profiles is defined piecewise, second derivati-
ves suffer jumps where the pieces meet. The rail profile is concave, the wheel
profile has changing signs of curvature. Most important, the distance between
the rail and wheel, which depends on their relative displacement, is essentially
non-convex. In general, it has lots of local minima. Gravity causes, as long as
it dominates the dynamical forces, the minimum of the distance function to be
zero, the contact forces are applied at the spot where this minimum is assu-
med. Hence, obviously, the distance function, and its minimizer are essential
constituents of the problem formulation (1.1), respectively (1.2).

Fig. 1. Rail and wheel profiles
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By design, for all reasonable lateral and angular displacements, there sho-
uld be a reasonably large region where the rail and wheel profiles come close
to each other, cf Fig. 1. Otherwise the stresses would exceed the yield stress.
Zooming in shows, cf Fig. 2, that for chosen position coordinates, there is a
unique minimizer at −2 cm from the origin in the lateral wheel surface di-
rection. This point xc is called the point of geometrical contact. Under load,
however, there is an elastic approach between the rail and wheel of the order
10−4m. The bottom of the graph of the actual distance function is flat for a
patch of an extension of the order 10−2m. Obviously, the geometric contact
point xc will not be exactly in the center of such a patch.

Fig. 2. Distance function

We have to stress that the point of contact and related quantities can be
expressed in terms of the surface parameters σ of the wheel or railhead, or in
coordinates of the 3D physical space. In the plots we indicate by the subscripts
r, w or ws whether we refer to the rail, wheel or wheelset. The meaning of
x and y depends on the context, e.g. y2 is the generalized mbs coordinate of
the rolling wheelset, yr is the lateral parameter of the railhead frame.
The point of geometrical contact is determined by the generalized coor-

dinates defining the position of the wheel in the system of the railhead. For
symmetry reasons the lateral displacement, roll and yaw angles alone define
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the contact point and the vertical displacement (compliance neglected), cf Ar-
nold and Netter (1998). For frozen yaw angle the dependence is depicted in
Fig. 3. Note the step regions in the plot which correspond to the jumps of
the contact point, e.g. from the tread to flange. This very unpleasant effect is
absent in the case of conical wheels. While numerically attractive, especially
for the dae-approach, this case is far too unrealistic for a serious study of we-
ar. In fact, the lack of the flange leads to large lateral displacements so that
the dissipated energy would spread over a region much wider than the actual
wheel is.
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Fig. 3. Point of geometrical contact

Note that for each yaw angle ψ we get a different dependence. Moreover,
like the location of the global minimum this characteristic depends in a sensiti-
ve way on the underlying profiles. Usually, these geometric data are calculated
during preprocessing and interpolated at running time. For wear calculations,
however, the procedure has to be repeated at each time step of the integration
of (3.1).

For a wheelset with a rigid axle the permanent contact to rails, see Fig. 4,
introduces a constraint, which eliminates the roll angle φ from the equations.
In fact, shifting the wheelset to the left or right lifts the corresponding wheel
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Fig. 4. Wheelset on rails
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Fig. 5. Roll angle of wheelset
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Fig. 6. Vertical displacement

up. Thus we get a dependence of the roll angle (Fig. 5) and the center of mass
(Fig. 6) on the lateral shift y and yaw angle ψ of the rigid wheelset.

Multiplied by the axle load, this gives potential of the conservative forces
acting on the wheelset. We have a stabilizing effect like for the motion in a
half-pipe. However, the width of this half-pipe is finite, there is no extension
of this potential beyond the interval [−0.07, 0.06]. For proper exploitation the
trajectories should mostly stay within the flat bottom of the slide, cf Meinke
(2000).

The most delicate part of the dynamical model, however, is the calculation
of frictional forces. In terms of multibody system coordinates we have the load
and rigid body slip as the input quantities. It turns out that locally, within
the contact patch, the slip velocity is very inhomogeneous. The patch splits
into a stick and slip region the size of which is essential for the calculation
of the resultant tangential force, which is needed for time-integration of the
mbs-coordinates. This interference of a finer scale of resolution is usually tre-
ated with a level of accuracy dictated by the computational goals. There are
reasonable algebraic approximations (Vermeulen Johnson), one step discreti-
zed methods (Fastsim) or full numerical solutions (Contact), cf Kalker (1990),
Kik and piotrowski (1996). Our choice follows the method by True (1993), but
with the input variables taken from the actual worn profiles instead of the
frozen values of the original model.
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Fig. 7. Normal stress in contact region

−0.01 −0.005 0 0.005 0.01

−0.01

−0.005

0

0.005

0.01

y
r
 [m]

x r [m
]

Fig. 8. Tangential stress in contact region



Contact, motion and wear in railway mechanics 517

In the first step, we calculate the distribution of the normal stress p (pres-
sure), see Fig. 7, following Hertz’s theory, see Hertz (1982). Thus we disregard
the tangential stresses and the known fact that the distance function is assu-
med to be quadratic in Hertz’s theory. Obviously, a quadratic approximation
is not valid in a domain big enough for the given order of normal loads and
hence elastic approaches, cf Fig. 2 again. However, better results come at a
much higher numerical cost, so for our present purpose we accept the error in
the normal component.

In the consequent step, on the basis of the obtained normal stress and
without any feedback, the local slip velocity and tangential stresses are appro-
ximated. A sample result is presented in Fig. 8. Only in a part of the patch
we have slip, and thus, full contribution of µp to the tangential forces q.
For a very high rigid body slip the whole patch becomes the slip region, then
we have saturation and the friction force becomes µP with load L. For a
moderate slip we get just a fraction of that limit value. For quick calculations
a spline approximation to the full solution has to suffice.

Now we have – at least in a very abbreviated way – described the major
contributions to the wheelset model being sensitive to geometric changes of
the wheel profiles. Let us assume given initial conditions for all free position
variables and their time-derivatives. As the control motion we assume a pre-
scribed longitudinal position of the center of mass (or of the end of a spring
pulling the center of mass) of the wheelset. Then we have a well-posed initial
value problem for the system (1.1). For a reasonable load, prescribed travel
speed and initial conditions the solution exists for all the time (stays in the
half-pipe). Stationary solutions are unstable above the so-called critical speed,
solutions with flange contact are shown in Fig. 9. and Fig. 10, cf Frischmuth et
al. (1996). For certain speeds chaos may be observed, cf Kaas-Petersen (1986).

In terms of multibody variables, given those solutions, we can calculate the
dissipated power. In order to study wear, we need again the higher resolution
of the local distribution within the contact patch. The scalar product of the
local slip velocity and tangential stress gives the local surface intensity of the
power dissipation.

Obviously, this is a highly concentrated and quickly varying quantity. For-
tunately, it turns out that taking an integral mean value over integration time
tends very fast to a constant limit distribution, under given constant condi-
tions. Within this paper, we assume that the wheel stays round. For out of
round wheels we refer the Reader to works by Frischmuth (1996, 1997), Fri-
schmuth and Langemann (1998). In this case all we need is the curve along
the profile giving the average dissipated power per unit length and unit time,
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Fig. 9. Hunting wheelset

Fig. 10. Yaw angle versus lateral displacement
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cf Chudzikiewicz (2000), Frischmuth (2000). Multiplied by the constant wear
factor β this is equivalent to the prescribed normal speed −F at which the
profile is abrased.
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Fig. 11. Power of dissipated energy

Now, eventually, we have full description of the numerical evaluation of the
wear speed −F , i.e. the operator on the right-hand side of evolution equation
(3.1) for the wheel geometry.

The integration time of (3.1) turns out to be sensitive, even in a 1D case, to
the profile, having assumed symmetry of the wheel. Usually, explicit difference
methods tend to oscillations which are easy to understand: abrasion of the
material in the contact region leads to increasing of the distance function,
hence the contact region is going to move away. Too large time steps together
with too fine resolution of the profile geometry leads to alternating phases
of the abrasion in the neighboring regions. For stable and fast methods for
solving (3.1) we refer to Sethian (1996).

Fig. 11 presents the power dissipation over the lifetime of the wheel. The
change in the wheel profile is not really visible, it is still of the order of the
elastic approach. Nonetheless, given the steep dependence of the contact point
on the profile data, this leads to clear variation of the contact conditions during
the wear process. In particular, due to wear of initially exposed spots, the wear
eventually reaches places that are not initially in contact whatever the mbs
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positions. The actual wear can be approximated from the data presented in
Fig. 11 by integrating along the time axis, multiplying with the constant β and
modifying the profile in the normal direction to the reference configuration.

5. Conclusions

Railway mechanics is a very wide field of research, the problem of rail-
wheel contact is just one of many of its aspects, but certainly one of the most
complicated. It cannot be uncoupled from other sub-problems, like models of
the track, the subgrade, the whole vehicle. In this paper we assumed fargoing
simplifications in order to concentrate on the numerical strategy for solving
the surface evolution. Other important effects remain unaccounted for, e.g.
plastic deformations, damage below the surface, vibrations, cf Bogacz and
Dżula (1993). Our main point is that wear should be modeled as an evolution
problem, and appropriate numerical methods should be used to calculate time
dependence of the surfaces exposed to abrasive wear.
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gleichungen und singuläre Mannigfaltigkeiten in der dynamischen Simulation
von Rad-Schiene-Systemen, in: Hoffmann, Jäger, Lohmann, Schunck (Edit.),
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Kontakt, ruch i zużycie w mechanice kolejowej

Streszczenie

Jednym z najbardziej ciekawych zagadnień mechaniki kolejowej jest modelowa-
nie kontaktu między kołem a szyną. Z jednej strony w strefie kontaktu określone
są siły tarcia – które są istotne dla zachowania pojazdów kolejowych jako układów
wielu ciał, patrz Kalker (1990), True (1993). Z drugiej strony zaś moc dyssypowana
przez siły tarcia na powierzchniach kontaktowych prowadzi do usuwania cząsteczek
i tym samym do zjawisk zniszczenia, patrz Brommundt (1996), Frischmuth (1996),
Langemann (1999).
Celem niniejszej pracy jest prezentacja aktualnych wyników na temat sprzężenia

między ruchem pojazdu kolejowego a ewolucją powierzchni kontaktu wskutek zużycia.
Dla ustalenia uwagi rozpatrujemy koło o początkowo idealnej geometrii, która zmienia
się pod wpływem mocy sił tarcia dyssypowanej podczas toczenia po perfekcyjnym
torze.
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