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In the present paper the problem of optimal design of a rotationally
symmetric shell with immovable supports loaded by a uniform elevated
temperature is investigated. We look for the variable thickness and the
shape of the middle surface which lead to the maximal increment of the
temperature causing buckling of the wall of this shell. The concept of
the shell of uniform stability is applied.
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1. Introductory remarks

Usually, optimal design of structures under stability constraints considers
loadings controlled by a system of forces. However, in some practical engi-
neering applications, the loadings which are controlled by displacements, can
also occur. This type of problems is, for example, connected with structu-
res having immovable supports and undergoing thermal loading. Then, the
compressive forces, which occur due to elevated temperature, depend on the
geometry of the structure whereas in the classical optimization problem the
forces are independent of the structure.
Instability of shells has very often a local form and buckling does not de-

pend essentially on boundary conditions. This is particularly true in the case
of a nonuniform stress distribution and in the case of a ”nonuniform” geome-
try of a shell (variable curvatures, variable thickness). Then, the instability

1Full text of the paper presented at the International Congress Thermal Stresses ’99 in

Cracow
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can be determined by the stress state and the curvatures of the shell at indi-
vidual points, and the buckling is initiated at the weakest point (zone) of the
structure, called the dangerous point.
For a shell with a double positive curvature Shirshov (1962) transformed

the problem of global stability to a simpler problem of local stability of such
a structure. Using the linear theory of shell stability, applying the equations
given by Wlassow (1958) and assuming the sinusoidal deflection mode, Shir-
shov obtained a rather simple formula for the critical loading parameter q,
namely

q = 2
√
DEh

kϕ cos2 ϕ+ kθ sin2 ϕ
N θ cos2 ϕ+ 2S cosϕ sinϕ+Nϕ sin2 ϕ

(1.1)

where kθ and kϕ denote the circumferential and meridional curvatures, re-
spectively, D stands for the shell stiffness, E is the Young modulus, h is
the wall thickness of a shell and ϕ is a certain free parameter with respect to
which the loading parameter q should be minimized. In (1.1), the membrane
resultant stresses depend on q, namely: Nθ = qN θ, Nϕ = qNϕ, S = qS,
where S is the shearing resultant stress due to twisting. For the case S = 0
under consideration, the minimization of q with respect to ϕ leads to two so-
lutions: ϕ1 = 0, ϕ2 = π/2, and finally to very simple formulae for the critical
membrane resultant stresses, namely

Nϕcr =
E

√

3(1 − ν2)
h2

Rθ
Nθ cr =

E
√

3(1 − ν2)
h2

Rϕ
(1.2)

where ν is the Poisson ratio, Rθ and Rϕ stand for the radius of the circum-
ferential and meridional curvature, respectively. These resultant stresses are
assumed positive in compression. The critical value of loading is determined
by one of (1.2) whichever leads to the smaller value.
Axelrad (1985), using different governing stability equations obtained also

formulae (1.2) describing the critical membrane resultant stresses.
The optimization of shells with respect to their stability presents conside-

rable difficulties connected with very complex stability differential equations,
if both the middle surface and variable thickness are unknown. To avoid the-
se difficulties, a simplified local formulation of the stability condition may be
applied.
A local condition of shell stability was applied, for example, by Mazur-

kiewicz and Życzkowski (1966), and by Magnucki (1993) in the optimization
of cylindrical shells. A detailed survey of the shell optimization is available
in papers by Krużelecki and Życzkowski (1985), and Życzkowski (1992). The
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monograph by Gajewski and Życzkowski (1988) is devoted to structural opti-
mization under stability constraints.

The number of papers devoted to the optimal design of shells under stabili-
ty constraints is fairly large. However, most of them are confined to parametric
optimization or to optimal design of stiffening elements of cylindrical shell. Ve-
ry general computer programs PANDA and PANDA2, going this line, are due
to Bushnell (1983, 1987). On the other hand, the difficulties connected with
variational optimization with unknown both the middle surface and variable
thickness are substantial and, to avoid them, we employ the local stability
condition.

Making use of the hypothesis of the locality of buckling to the problem of
optimal design, Życzkowski and Krużelecki (1975) proposed a concept of the
shell of uniform stability which can be stated here as follows: if the condition
of local stability is satisfied in the form of equality not only at the dangerous
point but at any point of the shell, such a structure is called ”the shell of
uniform stability”. This concept was applied to optimization of cylindrical
shells by Życzkowski and Krużelecki (1975), Krużelecki and Życzkowski (1984),
Krużelecki (1988). The optimization based on the concept of uniform stability
was numerically verified by Krużelecki and Trzeciak (2000), who used the
BOSOR 4 Code, and relatively high accuracy of the solution was found.

From the point of view of the stability the improvement of performance of
an initially cylindrical shell can be obtained by at least in three different ways.
The first one is connected with optimization of the wall thickness of a cylindri-
cal shell. Let us mention the papers by Hyman and Lucas (1971) (parametrical
optimization) and by Gajewski (1991) (multimodal optimization). The second
way deals with changing of the shape of an initially cylindrical shell – the
optimal shape of the middle surface is looked for. Only a few papers strictly
devoted to the problem under consideration are quoted here, namely by Bła-
chut (1987a,b) and Krużelecki (1997), Krużelecki and Trzeciak (1998), which
are devoted mainly to parametrical optimization.

The optimization of both the thickness and middle surface of a shell is the
most general optimization problem. Such problems were investigated by Życz-
kowski and Krużelecki (1975) (thin-walled tube under pure bending), Kruże-
lecki and Życzkowski (1984) (bending and torsion), Krużelecki (1988) (bending
and axial compression). They applied the concept of the shell of uniform sta-
bility. The same concept was used by Rysz and Życzkowski (1989) for the
optimization of a cylindrical shell under creep conditions. Also, the same con-
cept was applied to the optimization of shells with a double curvature by
Krużelecki and Trzeciak (2000) (elastic shell under hydrostatic pressure) and
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Krużelecki and Trzeciak (1999) (inelastic shell under hydrostatic pressure).
Most of the above-mentioned papers were confined to optimization of cy-

lindrical shells, not necessarily circular ones. The present work is devoted to
variational optimization of both shape functions of a shell with a double curva-
ture loaded by a uniform elevated temperature. The hypothesis of the locality
of buckling is utilised and the optimal structure is sought in the class of the
shells of uniform stability. Stiffening by ribs or frames will not be considered,
but the results obtained here may be regarded as an introductory step towards
the variational optimization of stiffened shells.

2. Assumptions

• The shell is elastic, isotropic, axisymmetrical, subject to an elevated
temperature without additional surface loadings.

• The shell of the length 2l0 is simply supported by axially immovable
supports at both ends.

• Loss of the stability is described by a local condition of the Shirshov
type. Following his idea, we restrict our considerations to doubly convex
shells. Additional strength condition will not be introduced.

• Prebuckling bending state is neglected – to satisfy this assumption we
introduce an additional constraint on the meridional slope.

• Neither ribs nor any kind of reinforcement will be taken into conside-
ration.

3. Formulation of the optimization problem

As the design objective we assume the maximization of the temperature

∆Tcr → max (3.1)

Both the thickness h = h(x) and variable shape described by the radius
R = R(x) serve as the design variables.
The right-hand part of the shell 0 ¬ x ¬ l, where x is the independent

variable measured along the axis of the shell, will be the only considered; the
left-hand side −l ¬ x ¬ 0 will be assumed symmetric.
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Such an optimization problem is stated under two equality constraints. It
is assumed that the optimal shell has the same volume of material (weight) as
the cylindrical reference shell with the wall thickness h0 and the radius R0

2πl0R0h0 = 2π

l0
∫

0

Rh
√

1 +R′2 dx (3.2)

and the internal capacity of the both containers is also the same

2πl0R20 = 2π

l0
∫

0

R2 dx (3.3)

where (·)′ = d/dx, R is the distance between the shell axis and the middle
surface, and h is the wall thickness of the optimal structure. Additionally, the
minimal value of the coordinate R is constrained by the lower bound

R(l0) = Rmin  Radm (3.4)

the slope of the meridian is limited by the upper bound

|R′| ¬ R′adm (3.5)

and our investigation is restricted to a doubly convex shell

R′′ ¬ 0 (3.6)

where Radm, R′adm are certain assumed values.
A uniform elevated temperature ∆T generates axial compressive force due

to the immovable supports.
For rotationally symmetrical shells the radii of curvature amount to

Rϕ = −

√

(1 +R′2)3

R′′
Rθ = R

√

1 +R′2 (3.7)

and hence, for the shell loaded by the compressive axial force Nx the mem-
brane meridional and circumferential resultants take the form

Nϕ = Nx

√
1 +R′2

2πR
Nθ = Nx

R′′

2π
√
1 +R′2

(3.8)

The meridional strain εϕ can be evaluated from Hooke’s law

εϕ =
1
E
(σϕ − νσθ) + α∆T (3.9)
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in which the stresses σ are expressed by the resultants N with changed signs.
After introducing Eq (3.8) the meridional strain assumes the form

εϕ = −
Nx
2πEh

(

√
1 +R′2

R
− νR′′√
1 +R′2

)

+ α∆T (3.10)

where α is the thermal expansion coefficient. The total elongation of the shell
in the axial direction is assumed to be zero. Since, we have

l0
∫

0

εϕ dx = 0 (3.11)

Substituting Eq (3.10) into Eq (3.11) we can evaluate the axial force

Nx =
2πEαl0∆T

l0
∫

0

1
h

(

√
1+R

′2

R
− νR′′√

1+R
′2

)

dx

(3.12)

For elevated temperatures the membrane resultant Nϕ is positive (com-
pressive), whereas Nθ is negative (tensile), see Eq (3.8). Hence, the critical
loading is determined by Nϕ. Introducing safety the factor against buckling j,
Nϕ = Nϕ cr/j and ∆T = ∆Tcr/j, and utilizing Eq (1.2), (3.8) and (3.12) we
have

∆Tcr
j

√

3(1− ν2) αl0(1 +R
′2) = h2

l0
∫

0

1
h

(

√
1 +R′2

R
− νR′′√
1 +R′2

)

dx (3.13)

It results from Eq (3.13) that the variable thickness h of the shell of uniform
stability is described by

h = h1
√

1 +R′2 (3.14)

where h1 is the wall thickness for x = 0.
We formulate the problem of optimization as a classical problem of calculus

of variations employing the Lagrangian multiplier method. To maximize the
critical elevated temperature ∆Tcr the integral in Eq (3.13) should be maximal
under the conditions of constant integrals in Eqs (3.2) and (3.3).
The Lagrangian function can be written as

L =
h1
R
− νh1

R′′

1 +R′2
+ Λ1h1R(1 +R

′2) + Λ2R2 (3.15)

where Λ1 and Λ2 are the Lagrangian multipliers. This function is linear
with respect to R′′. In such a case the Euler-Lagrange equation, usually of
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the fourth order, is reduced to a second-order equation (Appendix, Eq (A.3)).
Now, we are going to prove that the Poisson ratio ν will not appear in this
equation. Indeed, the function F1 in (A.1) is here of the form

F1 = −
νh1
1 +R′2

(3.16)

where all the derivatives of this function shown in (A.3) vanish

∂F1
∂R
=

∂2F1
∂x∂R′

=
∂2F1
∂R∂R′

=
∂2F1
∂x∂R

=
∂2F1
∂R2

=
∂2F1
∂x2
= 0

and F1 is absent in the final equation. A simple explanation of this fact looks
as follows: the integral containing ν may readily be evaluated

l0
∫

0

νh1R
′′

1 +R′2
dx =

R′
l
∫

0

νh1dψ

1 + ψ2
= νh1 arctanR′l (3.17)

where the new variable of integration ψ is equal to R′, which implies that
R′′dx = dψ, and R′l denotes the slope at the simply supported end of the
shell. Hence, this integral does not depend on the integration path, that is
on the function R = R(x), and obviously, it cannot appear in the Euler-
Lagrange equation. This is an important statement since we proved that the
optimal shape does not depend directly on ν. It depends only via Lagrangian
multipliers. The profit of the optimization depends on ν.
The Euler-Lagrange equation (A.3) takes finally the form

r′′ = − l20
R20

1
2λ1r3

{

1−
[

λ1
(

1− R20
l20
r
′2
)

+ 2λ2r
]

r2
}

(3.18)

where the dimensionless variables and dimensionless Lagrangian multipliers
are introduced as follows

ξ =
x

l0
r =

R

R0
λ1 = Λ1h1R0 λ2 = Λ2R20

(3.19)

and the primes denote now the differentiation with respect to ξ. The boundary
condition for Eq (3.18), ensuring ”smooth” shape, can be written as follows:
r′(0) = 0. Eqs (3.2), (3.3) and (3.13) can be rewritten in the dimensionless
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form

h1
h0

1
∫

0

r
(

1 +
R20
l20
r
′2
)

dξ = 1

1
∫

0

r2 dξ = 1 (3.20)

∆Tcr
j

√

3(1− ν2) α = h0
R0

h1
h0

1
∫

0

{1
r
+ ν
1−
[

λ1
(

1− R
2

0

l2
0

r
′2
)

+ 2λ2r
]

r2

2λ1r3
(

1 + R
2

0

l2
0

r′2
)

}

dξ

4. Numerical results

Calculations were performed for various parameters describing the length
of the shell, namely for l0/R0 = 1, 4/3, 2, 4, under the inequality constraints
(Eqs (3.4), (3.5) and (3.6)): r(1)  0, −r′(1) ¬ l0/R0 (the slope is smaller
than 45◦), r′′ ¬ 0, and for the Poisson ratio ν = 0, 0.5.
Differential Eq (3.18) is integrated numerically using the Runge-Kutta me-

thod starting from the point ξ = 0, r(0) = r0 and satisfying the boundary
condition. The starting values of r0, h1/h0 and the Lagrangian multipliers
λ1 and λ2 are the unknowns. For the assumed value of r0, the Lagrangian
multipliers λ1 and λ2 are chosen to satisfy constraint (3.20)2. For such para-
meters the dimensionless thickness h1/h0 is evaluated from Eq (3.20)1. Such
a procedure is repeated to obtain the maximal critical elevated temperature
∆Tcr defined by Eq (3.20)3. It occurs that for short shells (l0/R0 = 1, 4/3)
and ν = 0 the optimization leads to a cylindrical shell with constant thick-
ness whereas for ν = 0.5 both the short and long shells are not cylindrical
structures. It also turns out that for l0/R0 = 2 the inequality constraint ens-
suring the convexity of the optimal shell r′′(1) = 0 as well as the inequality
constraint limiting the slope of the meridian (−r′(1) = 2) are active. For the
shell with l0/R0 = 4 only the convexity constraint is the active one.
In Fig. 1 the radius in terms of the longitudinal coordinate for the shells

of uniform stability are presented for choosen l0/R0 and ν = 0.5. The appro-
priate variable thicknesses are plotted in Fig. 2.
In Fig. 3 the final shapes of the optimal shells are presented for l0/R0 = 1

and l0/R0 = 4. It occurs that the profit of the optimization, measured by the
temperature ratio of the critical temperature increment ∆Tcr for the optimal
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Fig. 1. Radius in terms of longitudinal coordinate, ν = 0.5

Fig. 2. Thickness of therms of longitudinal coordinate, ν = 0.5

Fig. 3. Final shapes of optimal shells, ν = 0.5
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shell to such an increment ∆T ccr for the cylindrical reference shell, clearly
depends on the length of the shell, namely for long shells the profit is higher
than for short ones (Fig. 4) and also depends on ν. On the other hand, it does
not depend on the thickness parameter h0/R0.

Fig. 4. Profit of optimization vs. length of shell

5. Discussion of the obtained results

The results presented in this paper are based on the concept of the shell
of uniform stability. These results can be considered satisfactory but they do
not have to constitute the absolute optimum. Such a global optimum may be
obtained using the full shell stability equations.
It should be stressed that in a similar case of the optimization, namely

when the loading is controlled by the axial force, the optimization leads to a
cylindrical shell of constant thickness and no profit is obtained. In the problem
under consideration such a profit reaches several dozen per cent.
The optimal solutions based on the concept of the shell of uniform stabi-

lity are limited in the case of very long shells by the additional condition of
global buckling of the shells treated as columns. For long shells both types of
the stability conditions should be satisfied and the optimal structure can be
considered as a shell of equal stability. In this case, buckling mode interaction
may occur; a more detailed analysis of this interaction is difficult, but the
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simplest practical way to take it into consideration is to raise accordingly the
safety factor j.

A. On functionals depending linearly on the second derivative

Usually, the Euler-Lagrange equation for functionals depending on the se-
cond derivative of the unknown function is of the fourth order. However, if
this dependence is linear, then the reduction to a second-order equation takes
place.
Consider a functional depending linearly on the second derivative:

J =
b
∫

a

[y′′F1(x, y, y′) + F2(x, y, y′)] dx (A.1)

The second term obviously leads to a second-order equation but for the
sake of uniform notation we retain it in the analysis. The Euler-Lagrange
equation for (A.1) takes first the form

y′′
∂F1
∂y
+
∂F2
∂y
− d

dx

(

y′′
∂F1
∂y′
+
∂F2
∂y′

)

+
d2F1
dx2
= 0 (A.2)

The vanishing of yIV in Eq (A.2) is seen immediately: it might appear
just in the last term, but F1 does not depend on y′′ and hence yIV is absent.
The third derivative y′′′ appears in (A.2) twice: in the third term we obtain
−y′′′∂F1/∂y′ and in the last term using the chain rule of differentiation we find
y′′′∂F1/∂y

′. Hence, these expressions cancel each other. Finally, we obtain the
following second-order equation

(

2
∂F1
∂y
+

∂2F1
∂x∂y′

+
∂2F1
∂y∂y′

y′ − ∂2F2
∂y′2

)

y′′ +
(

2
∂2F1
∂x∂y

+
∂2F1
∂y2

y′ − ∂2F2
∂y∂y′

)

y′ +

(A.3)

+
∂2F1
∂x2
+
∂F2
∂y
− ∂2F2
∂x∂y′

= 0

This equation is linear with respect to y′′ since neither F1 nor F2 depend
on this derivative.
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Optymalne kształtowanie powłok obrotowo symetrycznych z uwagi na

stateczność pod działaniem obciążeń termicznych

Streszczenie

W pracy rozważano zagadnienie optymalnego kształtowania obrotowo symetrycz-
nej powłoki na nieprzesuwnych podporach obciążonej równomiernym polem tempera-
tur. Poszukiwano takiej zmiennej grubości ścianki i kształtu powierzchni środkowej,
które prowadzą do maksymalnej temperatury powodującej wyboczenie ścianki powło-
ki. Wykorzystano koncepcję powłoki równomiernej stateczności.
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