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In the paper the problem of active damping of transverse vibration of a rec-
tangular viscoelastic laminated plate by piezoelectric elements with skewed
material axes is studied. The symmetric specially orthotropic and simply sup-
ported laminate is subjected to a harmonic excitation. The control system
consists of rectangular piezoelectric patches parallel to the plate edges, glued
to the upper and lower plate surface and working as the sensor and actu-
ator with a velocity feedback. The dynamic analysis is based on the classical
laminated plate theory and the static-coupling model with the assumption
of perfect bonding. Due to this model the interaction between the actuator
and the laminate can be approximated by the equivalent moments uniformly
distributed along the actuator edges. Considering the orthotropic electrome-
chanical properties of the piezoelectric material and two-dimensional piezo-
electric effect develops the analysis. The governing equations of the system
are formulated for a non-zero skew angle between the natural axes of the
piezoelectric material and the plate reference axes. The numerical results in
terms of the frequency response show the influence of applying the skewed
piezoelectric elements on the efficiency of active damping of transverse di-
splacements.
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1. Introduction

Piezoelectric materials like PZT (lead zirconate titanate) ceramics and
PVDF (polyvinylidene fluoride) films have become popular in the field of me-
chatronics and other engineering applications. The idea of using piezoelectric
elements as distributed sensors and actuators for control purposes of flexible
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structures has been studied and experimentally investigated by numerous re-
searches. Some works have been focused on piezoelectric actuation and active
damping of transverse vibrations of beams with bonded or embedded piezo-
electric elements. The analysis is commonly simplified by assuming a static
model of the interaction between the actuators and the main structure, and
by neglecting the effect of piezoelectric elements on the mass and stiffness of
the beam (cf Bailey and Hubbard, 1985; Clarc et al., 1991). Crawley and de
Luis (1987) developed the static coupling model by the presence of an elastic
bonding layer between the actuator and the beam. They showed that extre-
mely high stiffness of the bonding layer (perfect bonding) results in equivalent
concentrated moments acting at the actuator edges. The dynamic approach
involving the tangential inertia forces of the actuator was proposed by Jie
Pan et al. (1991). Tylikowski (1993) developed the dynamic coupling model
including the bonding layer with the finite shearing stiffness. This approach
was applied to active damping of beams (Pietrzakowski, 1997) and stabili-
sation of beam parametric vibrations (Tylikowski, 1999). The comparison of
the coupling models presented by Pietrzakowski (2000) shows that the static
approximation is quite good if the piezoelectric patches are sufficiently thin
and bonded by stiff glue layers.

The two-dimensional piezoelectric effect can be utilised for active control
of transverse vibrations of plates or shells. Basing on the classical laminated
plate theory, Lee (1990) formulated constitutive equations of piezoelectric la-
minates, i.e. laminated composites with piezoelectric plies working as sensors
and actuators. He also introduced the concept of modal damping by tailoring
effective electrodes covering the piezoelectric layers. Dimitriadis et al. (1991)
and Wang and Rogers (1991) confirmed that actuator patches perfectly bon-
ded to an isotropic or laminated plate generate resultant moments along the
actuator edges and indicated the possibility to control particular modes by
changing the pattern of piezoelectric patches. The steady-state response of
thin circular plates to excitation by actuators with annular and sectional sha-
pes was studied by Tylikowski (2000). The dynamic problems of cylindrical
shells controlled by active piezoelectric layers were considered by Baz and Chen
(2000). Other papers, such as by Tzou and Tzeng (1990) and Ha et al. (1992)
developed the finite element formulation for modelling the dynamic response
of controlled structures basing on the classical laminated plate theory or the
shear deformation theory, see Chandrashekhara and Agarval (1993) among
others.

This paper deals with active damping of transverse vibrations of a sim-
ply supported viscoelastic laminated plate by means of piezoelectric patches,
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which serve as a sensor and actuator. The control strategy is based on a velo-
city feedback with a constant gain. Both the plate and piezoelectric elements
are rectangular in shape and oriented parallel to each other. The piezoelectric
patches are perfectly bonded to the upper and lower surfaces and their influ-
ence on the global properties of the laminate is neglected. The governing equ-
ations of the system are obtained due to the classical laminated plate theory.
Assuming electromechanical orthotropy of the piezoelectric material develops
the model of two-dimensional actuating and sensing effect. It is also assumed
that the natural axes of the piezoelectric material are skewed with respect to
the laminate reference axes. Therefore, beside the bending moment resultants
acting at the actuator edges the twisting moment resultant occurs. The nu-
merical results in terms of the frequency response function show the influence
of applying the skewed piezoelectric elements on active damping efficiency.

2. Statement of the problem and the governing relations

The considered system is a thin rectangular composite plate simply sup-
ported at the edges. The plate is symmetrically laminated and composed of
orthotropic layers the number or orientation of natural axes of which gives
the global orthotropic behaviour. Passive energy dissipation results from the
material viscoelasticity described by the Kelvin-Voigt rheological model. The
active damping is obtained by the control system consisting of piezoelectric
spatially distributed collocated sensors and actuators, which operate in a clo-
sed loop with a constant- gain velocity feedback. The piezoelectric rectangular
patches are fully electroded and perfectly bonded to the top and bottom plate
surfaces. The axes of the piezoelectric material properties 1, 2 are oriented at
the angle θ with respect to the plate co-ordinate axes x, y while the axis 3
(polling direction) coincides with the axis z defined as normal to the laminate
(see Fig. 1). Orthotropic electromechanical properties describe e.g. uniaxially
stretched PVDF films or other piezoelectric materials similarly fabricated.

The transverse motion of the plate is excited by a uniformly distributed
and harmonic disturbance of the intensity q0 acting on the full or a limited
surface.

2.1. Constitutive relations of the piezoelectric element

The coupled electromechanical behaviour of piezoelectric materials differs
depending upon the axis of the applied electric field or the axis of the stress or
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Fig. 1. Model of a laminated plate with the control device and a field of excitation

strain. The linear constitutive equations with respect to the principal material
axes can be expressed in a matrix notation as (Cady, 1964)

σ = c(E)ε− eE
(2.1)

D = e⊤ε+ ∈(ε) E

where
σ, ε – representation of the stress and strain, respectively
D – electric displacement
E – electric field intensity
c – stiffness matrix (symmetric)
∈ – permittivity matrix (diagonal)
e – piezoelectric stress/charge coefficient matrix.

The superscripts in brackets indicate the constant or vanishing field.
Governing relation (2.1)1 explains that the stress in the piezoelectric ma-

terial is proportional to both the applied strain and the applied electric field
(converse piezoelectric effect). According to Eq (2.1)2 the electric displace-
ment is proportional to both the applied strain (direct piezoelectric effect)
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and the applied electric field (dielectric effect). The permittivity in Eq (2.1)2
is measured at the constant strain condition.

In the considered piezoelectric patch the poling axis is the thickness or
3 axis, and the piezoelectric stress/charge coefficient matrix e is given by

e
⊤ =



0 0 0 0 e15 0
0 0 0 e24 0 0
e31 e32 e33 0 0 336


 (2.2)

where
e31, e32, e33 – piezoelectric stress constants in the 1, 2 and 3 axis,

respectively
e24, e15, e36 – piezoelectric shearing stress constants in the 2-3,

1-3 and 1-2 plane, respectively.

It should be noted that the piezoelectric shearing effect in the 1-2 plane is
induced by a non-zero skew angle between arbitrarily chosen axes for cutting
the element and the piezoelectric anisotropy axes.

Due to the control concept, the geometry and polarisation of the piezo-
electric elements, the applicable direction of an electric field is along the 3
axis (E1 = E2 = 0). For a sufficiently thin piezoelectric patch it is reasonable
to suppose a plane stress state. Therefore, constitutive equations (2.1) can be
rewritten in the two-dimensional version as follows



σ11
σ22
τ12


 = c



ε11
ε22
γ12


− E3



e31
e32
e36




(2.3)

D3 = [e31, e32, e36]



ε11
ε22
γ12


+ ∈33 E3

The stiffness matrix c for orthotropic materials (e.g. uniaxially stretched
PVDF films) in a plane stress state reduces to the form

c =



c11 c12 0
c12 c22 0
0 0 c66


 (2.4)

where the matrix components depend on elastic constants: the Young moduli
in the 1 and 2 directions Ep11 and E

p
22, the shear modulus G

p
12, the Poisson
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ratio νp12, and are given by the well known relations

c11 =
Ep11

1− νp12ν
p
21

c22 =
Ep22

1− νp12ν
p
21

c66 = G
p
12

c12 =
νp12E

p
22

1− νp12ν
p
21

ν21 =
νp12E

p
22

Ep11

(2.5)

In the analysed case the piezoelectric element natural axes 1, 2 are not
coincident with the plate axes x, y. Constitutive relations Eqs (2.3) transfor-
med to the reference axes of the plate, and after replacing the piezoelectric
stress/charge coefficients e by the strain/charge coefficient matrix d accor-
ding to the relation e = cd, can be written as



σx
σy
τxy


 = c



εx
εy
γxy


− E3T−1c



d31
d32
d36




(2.6)

D3 = [d31, d32, d36]cT
−⊤



εx
εy
γxy


+ ∈33 E3

where

c – stiffness matrix of the piezoelectric material with respect to the plate
reference axes

c = T−1cT−⊤ (2.7)

T – transformation matrix

T =



m2 n2 2mn
n2 m2 −2mn
−mn mn m2 − n2


 (2.8)

with m = cos θ, n = sin θ, where θ denotes the skew angle between the plate
axes and the natural axes of the piezoelectric material.

2.2. Constitutive equations of the laminate

The displacement field of the considered thin laminated plate is approxi-
mated due to the Kirchhoff hypothesis and given by

u = u0 − zw,x v = v0 − zw,y w = w0 (2.9)
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where
u, v,w – displacement components in the x, y and z directions,

respectively
u0, v0, w0 – in-plane and transverse displacements of the midplane

point, respectively.

The constitutive equations are formulated for midplane symmetric lamina-
tes, which are composed of n orthotropic layers and show specially orthotropic
behaviour. The above statements yield the following relations that describe the
uncoupled stretching and bending effects (cf Whitney, 1987)

N = Aε0 M = Dκ (2.10)

where
N – stress resultant, N⊤ = [Nx, Ny, Nxy]

M – moment resultant, M⊤ = [Mx,My,Mxy]
ε0 – midplane strain, ε⊤0 = [εx, εy, εxy]
κ – midplane curvature, κ⊤ = [κx, κy, κxy]
A,D – laminate in-plane stiffness matrix and bending stiffness

matrix, respectively

(Aij ,Dij) =
n∑

k=1

c
(k)
ij (1, z

2) dz i, j = 1, 2, 6 (2.11)

and c
(k)
ij is the stiffness matrix component for the kth layer with respect to

the laminate reference axes.
Viscoelastic properties of the laminate are approximated by the Kelvin-

Voigt model. Therefore, the stiffness moduli of the orthotropic layer can be
expressed as the following functions of the differential operator

Ẽii = Eii
(
1 + µii

∂

∂t

)
(i = 1, 2) G̃12 = G12

(
1 + µ12

∂

∂t

)
(2.12)

where µii and µ12 denote the retardation times for tension/compression and
in-plane shear, respectively. It should be noticed, that this simple rheologi-
cal model with the constant and independent of the frequency parameters
is acceptable for the limited group of composite materials demonstrating a
relatively week passive damping effect (cf Schultz et al., 1969).

2.3. Actuator equation

The analysis concerns only a stretching/compressing effect of the activa-
ted piezoelectric actuator and its influence on the dynamic behaviour of the
system. The tangential forces produced by the actuator are transmitted to
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the main structure by stresses and moments. Since the actuator patch is thin
comparing with the plate, the stresses are imposed to be uniformly distribu-
ted in the actuator cross-section. Due to the perfect bonding assumption and
the static coupling model (mass of the actuator is neglected) the moment re-
sultants acting along the actuator edges can be approximated by the simple
formula (cf Lee, 1990)



mx
my
mxy


 =



σx
σy
τxy


 taz0a (2.13)

where
z0a – distance of the actuator from the laminate midplane,

z0a = (ta + tl)/2
ta – actuator thickness
tl – total laminate thickness.

Substituting the stress matrix from governing relation (2.6)1, the moment
resultant matrix becomes



mx
my
mxy


 =
(
c



εx
εy
γxy


− E3T−1c



d31
d32
d36



)
taz
0
a (2.14)

The strains components εx, εy and γxy can be formulated by considering
pure tension or compression of the plate as a result of the actuator electrical
activation. For the perfectly glued piezoelectric patch the equilibrium condition
of the stress resultants in the actuator and the plate cross-sections gives the
relation 


εx
εy
γxy


 =
(
tadac+ dlA

)−1
daT

−1
c



d31
d32
d36


 taE3 (2.15)

where da and dl are the actuator and plate dimension matrices, respectively

da = diag
[
x2 − x1, y2 − y1,

1

2
(x2 − x1 + y2 − y1)

]

dl = diag
[
a, b,
1

2
(a+ b)

]

with
xi, yi – actuator co-ordinates, i = 1, 2
a, b – midplane dimensions of the plate.
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In the above equation it is assumed that the average deformation along
the plate cross-section is uniform.
Using Eq (2.14) in conjunction with Eq (2.15), the actuator pattern func-

tion and the electric field relation E3 = V (t)/ta yields



mx
my
mxy


 =



C1
C2
C6


 z0aλ(x, y)V (t) (2.16)

where Ci (i = 1, 2, 6) are the actuator constants defined as



C1
C2
C6


 =
[
tac
(
tadac+ dlA

)−1
da − 1

]
T
−1
c



d31
d32
d36


 (2.17)

where λ(x, y) is the actuator pattern function, which for rectangular actu-
ators, is

λ(x, y) = [H(x− x1)−H(x− x2)][H(y − y1)−H(y − y2)] (2.18)

with H(x) being the Heaviside step function.
Equation (2.16) determines the resultant moment generated by the actu-

ator along its edges in relation to the applied voltage V (t) and the electro-
mechanical and geometric parameters of the system (Eq (2.17)), and is called
the actuator equation.

2.4. Sensor equation

Mechanical deformation of the piezoelectric sensor generates an electric
displacement due to the direct piezoelectric effect described by constitutive
equation Eq (2.1)2 or Eq (2.6)2. The closed circuit charge Q stored on the
surface electrodes is given by the integral over the effective surface electrode
S and can only be a time-function

Q =

∫

S

D3 ds (2.19)

Substituting Eq (2.6)2 into Eq (2.19), after setting E3 = 0 the general form
of the sensor equation is obtained

Q = [d31, d32, d36] cT
−⊤

∫

S

ε ds (2.20)
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In the case when the sensor patch is perfectly glued to the plate, the strains
ε in Eq (2.20) are given by the relation

ε =



εx

εy

γxy


 =




ε0x

ε0y

γ0xy


+ z

0
s



κx

κy

κxy


 (2.21)

where
z0s – distance of the sensor from the laminate midplane,

z0s = (ts + tl)/2
ts – sensor thickness.

Taking into account only the bending effect (ε0x = ε
0
y = ε

0
xy) and combining

Eq (2.20) with the strain-displacement relations due to the linear elasticity, and
after using the standard equation for capacitance, the voltage Vs(t) produced
by the sensor is as follows

Vs(t) = −
z0s ts
∈33 S

[d31, d32, d36]cT
−⊤

a∫

0

b∫

0



w,xx
w,yy
2w,xy


λs(x, y) dxdy (2.22)

where
∈33 – dielectric permittivity of the piezoelectric material
λs(x, y) – effective electrode pattern.

The comma followed by an index denotes partial differentiation with re-
spect to the co-ordinate associated with the index.

If the entire piezoelectric patch is covered by electrodes on both sides the
function λs(x, y) serves as the collocated sensor/actuator pattern λ(x, y) (Eq
(2.18)) and the effective surface electrode is S = (x2 − x1)(y2 − y1).

2.5. Equation of motion and solution

In the considered case of symmetrically laminated, specially orthotropic
plates which are excited by the external loading q(x, y, t) the transverse mo-
tion w(x, y, t) controlled by the piezoelectric device can be described by the
following equation

D11w,xxxx + 2(D12 + 2D66)w,xxyy +D22w,yyyy + ρtlw,tt = q(x, y, t)− p(x, y, t)
(2.23)

where
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Dij – elements of the complex stiffness matrix for the lami-
nate viscoelastic material determined from Eq (2.11)
combined with Eq (2.12), (i, j = 1, 2, 6)

ρ – equivalent density, ρ = t−1l
∑N
k=1 ρktk

q(x, y, t) – external loading distribution
p(x, y, t) – loading produced by the control system.

The loading p(x, y, t) is determined by the resultant moments generated
along the actuator edges and is given in the form

p(x, y, t) = mx,xx +my,yy + 2mxy,xy (2.24)

After substituting the moment components from Eq (2.14) and differentiating
the pattern functions, the actuator loading can be expressed as

p(x, y, t) =
{
C1[H(y − y1)−H(y − y2)][δ

′(x− x1)− δ
′(x− x2)] +

+C2[H(x− x1)−H(x− x2)][δ
′(y − y1)− δ

′(y − y2)] + (2.25)

+2C6[δ(x− x1)− δ(x− x2)][δ(y − y1)− δ(y − y2)]
}
z0aV (t)

where δ(x) and δ′(x) are the Dirac delta function and its first derivative,
respectively.

Due to the simple control strategy the actuator and the sensor are electri-
cally coupled with a velocity feedback. Therefore, the voltage applied to the
actuator is proportional to the time derivative of the voltage induced by the
sensor (Eq (2.22))

V (t) = kd
dVs(t)

dt
(2.26)

where kd is the gain factor of the controller.

Finally, the loading produced by the piezoelectric control system is given by
Eq (2.25) in conjunction with the sensor voltage signal, Eq (2.22), transformed
according to the control function, Eq (2.26).

The dynamic analysis concerns the steady-state behaviour of the plate.
Therefore, the external loading is assumed to be a uniformly distributed and
harmonic in time single frequency function of the intensity q0

q(x, y, t) = q0λq(x, y) exp(iωt) (2.27)

where λq(x, y) defines the field of the external disturbance

λq(x, y) = [H(x− xq1)−H(x− xq2)][H(y − yq1)−H(y − yq2)] (2.28)
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On the above assumption the response of the uncontrolled as well as con-
trolled system can be predicted as harmonic with the same frequency as the
excitation

w(x, y, t) =W (x, y) exp(iωt) (2.29)

By solving governing equation (2.23) with the boundary conditions related
to the simply supported edges the transverse displacements of the plate are
obtained and expressed in terms of frequency characteristics.

3. Results

Calculations are performed for the simply supported, cross-ply laminate
of dimensions a = b = 0.4m and the total thickness tl = 1.5mm, composed
of five graphite-epoxy layers with the stacking sequence [0◦/90◦/0◦/90◦/0◦]
and the equivalent mass density ρ = 1600 kg/m3. A relatively small isotropic
internal damping is applied (retardation times µ11 = µ22 = µ12 = 10

−5 s).
The control system consists of the PVDF-polymer sensor and actuator bon-
ded symmetrically to both sides of the laminate. Their location and the mid-
plane dimensions are determined by the co-ordinates x1 = y1 = 0.1m and
x2 = y2 = 0.2m. The thickness of the piezoelecric patches is ta = ts = 0.4mm.
The stiffness parameters of the graphite-epoxy material are as those used by
Ha et al. (1992): E11 = 15 · 10

10 Pa, E22 = 9 · 10
9 Pa, G12 = 7.1 · 10

9 Pa,
ν12 = 0.3. The piezoelectric patches PVDF with the following electromecha-
nical parameters are used (Atochem Sensors, INC. – Technical Notes, 1987):
Ep11 = E

p
22 = 2·10

9 Pa, νp12 = 0.3, d31 = 2.3·10
−11 m/V, d32 = 0.3·10

−11 m/V,
d36 = 0. Computations are carried out for a harmonic load of the intensity
q0 = 1N/m

2.

In the first case the external load is uniformly distributed on the surface
limited by xq1 = yq1 = 0.2m and xq2 = yq2 = 0.3m. The amplitude-
frequency characteristic referring to the uncontrolled vibration calculated at
the piezoelectric patch field point x = y = 0.1m is shown in Fig. 2.

All resonance picks can be observed within the frequency range. They
occur at the frequencies corresponding with the natural modes ω11 = 293.8,
ω12 = 624, ω21 = 971, ω22 = 1175, ω13 = 1257, ω23 = 1673, ω31 = 2130,
ω32 = 2280, ω33 = 2645 s

−1. Due to the applied internal damping the intensity
of energy dissipation increases with the frequency so the amplitudes of higher
modes are reduced significantly.
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Fig. 2. Uncontrolled dynamic response in a wide range of harmonic excitation

Fig. 3. Effects of variations in the skew angle on the active damping efficiency
(external loading over the limited area)
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In Figure 3 the dynamic responses of the actively damped plate are pre-
sented. To predict the influence of the skew angle between the piezoelectric
element natural axes and the plate reference axes the calculations are perfor-
med for the following values of the angle θ = 0◦, 30◦, 60◦ and 90◦. It can
be noticed that the resonance amplitudes depend on the orientation of the
piezoelectric material axes. With changing the skew angle the controllability
of some modes grows while the other become poorly damped. Therefore, the
modal damping efficiency can be improved by adapting the proper skew angle.
It is possible especially for PVDF films, which can be cut out in arbitrarily
chosen directions. Of course, the observed effect is strongly coupled with the
laminated plate geometry and the global stiffness properties.

Fig. 4. Effects of variations in the skew angle on the active damping efficiency
(external loading over the entire plate)

The above observations are confirmed by the frequency characteristics re-
lated to the excitation applied over the entire laminate, see Fig. 4. The location
of the piezoelectric patches is the same as previously. In this case only sym-
metrical modes in relation to the plate axes are generated. The skew angles
θ = 30◦ and 60◦ effect in suppression of m = 3, n = 1 vibration modes. The
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angle θ = 90◦ results in a significant reduction of both the m = 3, n = 1 and
m = 1, n = 3 modes.

4. Conclusions

The dynamic model of a laminated plate with a collocated piezoelectric
sensor/actuator system is introduced and discussed. The aim of the control
system is active reduction of transverse vibrations. The voltage generated by
the sensor is applied to the actuator following the control concept based on
a constant-gain velocity feedback. Both the plate and piezoelectric elements
are rectangular and oriented parallel to each other. The piezoelectric patches
are perfectly bonded to the upper and lower surfaces of the main structure.
Their influence on the global properties of the laminate is neglected. The or-
thotropic electromechanical properties of the piezoelectric material combined
with two-dimensional piezoelectric effect develops the analysis. The governing
equations of the system are formulated for a non-zero skew angle between the
natural axes of the piezoelectric material and the plate reference axes. The
theoretical analysis and presented numerical examples are focused on the in-
fluence of the skew angle on the efficiency of active damping corresponding to
the harmonic excitation. The orientation of the piezoelectric element princi-
pal axes significantly effects the frequency response of transverse vibration by
changing the controllability of particular modes. Therefore, the skewed pie-
zoelectric sensors/actuators may be used in a segmented control system to
improve the effectiveness of the modal damping of laminated structures.
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Dowolnie zorientowane elementy piezoelektryczne w aktywnym tłumieniu

drgań płyt laminowanych

Streszczenie

Praca dotyczy aktywnego tłumienia poprzecznych drgań lepkosprężystej, lami-
nowanej płyty za pomocą rozłożonych elementów piezoelektrycznych o dowolnie zo-
rientowanych kierunkach właściwości materiałowych. Rozpatrzono prostokątną pły-
tę, swobodnie podpartą na brzegach, zbudowaną z symetrycznie ułożonych warstw
ortotropowych i poddaną harmonicznemu wymuszeniu siłowemu. Układ sterowania
stanowią prostokątne, piezoelektryczne elementy – pomiarowy (sensor) i wykonawczy
(aktuator), umieszczone po obu stronach płyty, pracujące w pętli z prędkościowym
sprzężeniem zwrotnym. Analizę dynamiczną oparto na klasycznej teorii płyt lami-
nowanych i założeniu idealnego połączenia bezmasowych elementów piezoelektrycz-
nych (model statyczny) z płytą. Zgodnie z przyjętym modelem oddziaływanie aktu-
atora sprowadzono do momentów równomiernie rozłożonych wzdłuż jego krawędzi.
W przedstawionej analizie uwzględniono ortotropowe właściwości materiału senso-
ra i aktuatora oraz dwukierunkowy efekt piezoelektryczny. Równania ruchu układu
zostały sformułowane w przypadku dowolnie zorientowanych, w stosunku do osi pły-
ty, głównych kierunków właściwości materiału piezoelektrycznego. Wyniki obliczeń
przedstawiono w formie charakterystyk amplitudowo-częstotliwościowych ilustrując
wpływ orientacji osi materiałowych na skuteczność aktywnej redukcji drgań.
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