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The algebraic equations of elastic frames are obtained by imposing na-
tural constraints on the trial displacement fields. The obtained set of
equations describe deformations of trusses, frames made of both com-
pressible and incompressible bars, grillages of rigid joints as well as pin-
jointed grillages. A new form of the set of algebraic equations of frames
with a diagonal constitutive matrix is put forward. The presented ap-
proach is well-suited for educational purposes.
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1. Introduction

The present paper refers to the linear theory of frames, trusses and gril-
lages, the foundations of which were given to the present author by Professor
Zbigniew Kączkowski, in his courses on Structural Mechanics at the Faculty
of Civil Engineering, Warsaw University of Technology, in the academic year
1976/1977. Although a long period of time elapsed, just these lectures were
an inspiration of the present article.
The equilibrium equations of a frame are implied by the variational equili-

brium equation of an elastic body. It expresses equality of the work of unknown
stresses on trial strains and the work of given loadings on the trial displace-
ment field, the equality being valid for all kinematically admissible displace-
ment fields. Imposition of the plane cross-sections assumption results in the
variational equilibrium equation for a space frame; in particular one obtains
the equations for plane frames, trusses and grillages, depending on the geome-
try and loading. For a plane frame such an equation is given by Eq (2.3) given
below. Thus one variational equation describes the equilibrium of a skeletal
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structure. The aim of the present paper is construction of algebraic equations
following from the variational equation of equilibrium. A similar approach can
be found in Borkowski (1985). However, in this book the variational equations
are required independently for each bar and the stiffness matrix of the frame
is constructed by aggregation. In the approach presented here the stiffness
matrices for bars are not necessary. The aggregation assumes tacitly that the
bars cut out from a frame undergo the rules of equilibrium known from the
theory of solid body mechanics. These rules do not contradict the method
applied in the present paper but are not referred to. The aim is to find all
equations as a mere consequence of the variational equilibrium equation of the
frame. This is the only approach that makes it possible to find algebraic equ-
ilibrium equations of more complicated elastic systems in which some degrees
of freedom are neither displacements nor angles of rotation. This question is
probably better analysed in the plate theories than in the theories of skeletal
structures.

The algebraic systems obtained in the present paper are similar but not
identical with those reported by Kączkowski (1988, 1984). The definitions of
deformations of the frame coincide with those used in the natural approach of
Argyris (see Argyris et al., 1964; Argyris and Mlejnek, 1986; Borkowski, 1985).

Let us note that the article by Kączkowski (1984) was then dwarfed in the
second edition of the same book, see Kączkowski (1991), such that the readers
were deprived of the matrix natural formulation of the displacement method.
One of the aims of this paper is to retrieve this approach, stressing some of
its points important for the educational practice and indicate its application
in the optimum design of skeletal structures.

A passage from the variational equilibrium equation to the algebraic equ-
ilibrium equations can be performed by several methods, by choosing special
forms of the trial displacement fields. The rigid trial fields method (Sec. 2, (i))
is outlined only, since its applications are limited and its theory – subtle.
Nevertheless, just this method is taught to our students because of its reaso-
nable applications for plane frames with non-orthogonal and incompressible
bars. The elastic trial field method (Sec. 2, (ii)) is given here in greater deta-
il, emphasizing its links to the finite element method. Note, that the latter,
in the case of the bars being treated as finite elements and for the uniform
loading, provides incorrect moment distributions and requires the well-known
post processing.

The approach presented makes it possible for a uniform algebraic treatment
of statics of frames with compressible and incompressible bars. Moreover, the
analogy between the equations of frames of incompressible bars and equations
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of pin-jointed grillages is disclosed. The last section deals with rearranging the
algebraic system of space frames to the form characteristic for the trusses in
which the constitutive matrix is diagonal and the stiffness matrix assumes a
dyadic form.

2. Plane elastic frames made of compressible bars

Deformation of a plane frame composed of e straight and prismatic bars
is determined by the axial displacement field u(x) and the deflection field
w(x), x being a coordinate measured along the neutral axes of the bars. Thus
0 ¬ x ¬ L, L being the sum of the lengths lK of the bars K = 1, ..., e. Let
EAK and EJK represent the axial and flexural stiffnesses of the Kth bar.
The bar-wise constant stiffness functions are denoted by EA(x) and EJ(x).
Assume that the frame is geometrically invariant and bar-wise subjected to
axial and transverse loadings of intensity px and pz, respectively. Here z
represents an axis perpendicular to x. The unknown axial force N and the
moment M are interrelated with the axial deformation ε(u) and a change of
the curvature κ(w) by

N = EAε(u) M = EJκ(w) (2.1)

Here ε(·) and κ(·) are treated as differential operators

ε(u) =
du

dx
κ(w) = −d

2w

dx2
(2.2)

The overbar (·) distinguishes the field that is unknown from any admissible
trial fields. For the sake of simplicity the displacement-type boundary con-
ditions are assumed to be homogeneous. Then the set V of kinematically
admissible fields (u,w) becomes a function space. This space consists of all
fields (u,w) preserving all given connections in the joints. The equilibrium
equation has the form

∫
[Nε(u) +Mκ(w)] dx =

∫
(pxu+ pzw) dx ∀(u,w) ∈ V (2.3)

and, if augmented with (2.1) , provides us with the problem formulation with
u, w as unknowns. This formulation of the equilibrium problem will be called
continuous. A rigorous definition of V is omitted here. In fact, formulation
(2.3) is flexible and admits a variety of definitions of the space V . For the
present purposes it is sufficient to require that both the integrals in (2.3) are
finite. To pass to an algebraic formulation at least two methods can be applied:
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(i) the rigid trial fields method

(ii) the elastic trial fields method

In method (i) the trial fields (u,w) are associated with rigid body motions
of a mechanism formed from the given frame by introducing hinges around
rigid joints. For such trial fields the second derivative in (2.2)2 should be
understood in a generalized meaning. Introduction of such piece-wise linear
functions into (2.3) gives algebraic equations involving the nodal quantities.
This method can be equally well applied in the case of incompressible bars, or,
in the presence of the constraints: ε(u) = 0, see Nowacki (1960). In method (ii)
the space V is composed of all admissible fields (u,w) caused by trial forces
applied to the nodes of the frame and associated with the degrees of freedom:
q1, q2, ..., qj , ..., qs. Thus V becomes an s-dimensional space Vs, s being
the number of degrees of freedom or displacements and angles of rotations of
nodes: q = (q1, ..., qs). In the case of hinges, the adjacent angles of rotation
should be included in (qj). Just this method will be discussed here.
Note first, that two numerations are necessary: one concerning the degrees

of freedom (qj), j = 1, ..., s and the other concerning the bars K = 1, ..., e.
The trial degrees of freedom are denoted by (qj) while the unknown degrees
of freedom are denoted by (qj). The local coordinate systems (x, z) are
attached to each bar thus defining its left and right ends and the direction of
a positive deflection w. The quantities with the index ∗(·) are referred to the
left end, while the sign (·)∗ indicates the right end of the bar. Let us stress
once again that the nodes are not numbered. The displacement fields (u,w)
for the Kth bar are denoted by uK(ξ), wK(ξ), ξ = x/lK , and are determined
by the left-end displacements (∗uK , ∗wK , ∗ϕK) and right-end displacements
(u∗K , w

∗

K , ϕ
∗

K), since, by assumption, the trial fields are associated with the
displacements of nodes (the span loading is absent by definition of Vs). The
shape functions are well-known polynomials of first and third order. The left
and right end displacements of the Kth bar can be expressed in terms of (qj)
as follows

∗uK =
s∑

j=1

∗A
(u)
Kjqj u∗K =

s∑

j=1

A
∗(u)
Kj qj

∗wK =
s∑

j=1

∗A
(w)
Kj qj w∗K =

s∑

j=1

A
∗(w)
Kj qj (2.4)

∗ϕK =
s∑

j=1

∗A
(ϕ)
Kjqj ϕ∗K =

s∑

j=1

A
∗(ϕ)
Kj qj
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The strains (2.2) associated with the trial fields uK , wK are

εK =
∆K
lK

κK =
∗χK
lK

∗f(ξ) +
χ∗K
lK

f∗(ξ) (2.5)

where
∗f(ξ) = 4− 6ξ f∗(ξ) = 2− 6ξ (2.6)

and the following quantities represent the deformations of the frame

∆K = u∗K − ∗uK ∗χK = ∗ϕK − ψK χ∗K = ϕ
∗

K − ψK (2.7)

and ψK = (w∗K − ∗wK)/lK represents the slope of the Kth bar. The linear
relations between the deformations (2.7) and the degrees of freedom (qj) are
represented by

∆K =
s∑

j=1

BKjqj
∗χK =

s∑

j=1

∗βKjqj χ∗K =
s∑

j=1

β∗Kjqj (2.8)

or
∆ = Bq ∗χ = ∗βq χ∗ = β∗q (2.9)

The geometrical matrices B,∗β, β∗ are determined by the allocation matri-
ces involved in (2.4). Method (ii) consists in taking (u,w) ∈ Vs, which makes
the left-hand side of (2.3) algebraic with respect to the effective internal forces
in the bars

∫
[Nε(u) +Mκ(w)] dx =

e∑

K=1

(NK∆K + ∗MK∗χK +M
∗

Kχ
∗

K) (2.10)

where

NK =
1∫

0

NK(ξ) dξ ∗MK =
1∫

0

∗f(ξ)MK(ξ) dξ

(2.11)

M
∗

K =
1∫

0

f∗(ξ)MK(ξ) dξ

Substitution of (2.8) into (2.10) gives
∫
[Nε(u) +Mκ(w)] dx = q⊤[B⊤N + (∗β)⊤∗M + (β∗)⊤M∗] (2.12)
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where N = (NK), ∗M = (∗MK),M
∗ = (M∗K). By expressing (u,w) in terms

of (∗uK , u∗K ,
∗wK , w

∗

K ,
∗ϕK , ϕ

∗

K) and, by (2.4), in terms of (qj), one rearranges
the linear form at the right-hand side of (2.3) to the form q⊤Q. The effective
loads can be defined rigorously, but we neglect these definitions, since each
Qj has a clear physical meaning: Qj represents the work of (px, pz) on the
deformation mode from Vs such that qi = δij .
By equating the right-hand side of (2.12) to q⊤Q and taking q as the

basis vectors of Vs one finds s equations that can then be put in the following
matrix form

B
⊤N + (∗β)⊤∗M + (β∗)⊤M

∗
= Q (2.13)

Since the Kth bar can be loaded within its span, the axial force and the
bending moment are decomposed as follows

NK(ξ) =
EAK
lK

∆K +NoK(ξ)
(2.14)

MK(ξ) =
EJK
lK
[∗f(ξ)∗χK + f

∗(ξ)χ∗K ] +M
o
K(ξ)

where NoK , M
o
K are the internal forces caused by the loading applied to the

Kth bar and measured in the frame in which all degrees of freedom are kept
zero qj = 0. This frame is called kinematically determined or KD frame. Note
that

1∫

0

NoK(ξ) dξ = 0
1∫

0

∗f(ξ)MoK(ξ) dξ = 0

(2.15)
1∫

0

f∗(ξ)MoK(ξ) dξ = 0

The first of these equations means that the elongation of the Kth bar of the
KD frame vanishes. The equations (2.15)2,3 mean that the angles of rotations
of both the ends of this bar in the KD frame vanish. Substitution of (2.14)
into (2.11) gives the constitutive equations for the frame

NK =
EAK
lK

∆K
∗MK =

2EJK
lK
(2∗χK + χ

∗

K)
(2.16)

M
∗

K =
2EJK
lK
(∗χK + 2χ

∗

K)
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We note that ∗MK and M
∗

K represent the left- and right-end moments
of the Kth bar subjected to the given displacements at its ends. Thus, the
well-known slope deflection equations are recovered. Let us stress once again
that the loading applied to the bars has no influence on the result of (2.12)
and (2.16). The notion of ”primary moments” is redundant here.
Let D and E be e× e diagonal matrices with diagonal components equal

(2EJK/lK) and (EAK/lK), respectively. Substitution of (2.8) into (2.16) and
– further – into (2.13) gives

Kq = Q (2.17)

with the stiffness matrix given by

K = B⊤EB+2
{
(∗β)⊤D∗β+

1
2

[
(∗β)⊤Dβ∗+

(
(∗β)⊤Dβ∗

)⊤]+(β∗)⊤Dβ∗
}
(2.18)

A frame is statically determined, if N , ∗M , M
∗
can be found from (2.13).

This is possible if 3e = s. Then also q can be determined from (2.8) knowing
(∆, ∗χ,χ∗).
If s > 3e a frame is kinematically variant. The statical quantities can be

found provided that Q is orthogonal to the admissible rigid body motions.
Theory of such frames is exposed in Kuznetsov (1991).

3. Plane trusses

The equations for trusses follow by neglecting the moments and stiffnesses
EJ/l. We have

B
⊤N = Q N = E∆ ∆ = Bq (3.1)

and K = B⊤EB. A detailed discussion of (3.1) can be found in Borkowski
(1985). The equations of space trusses look the same.
Let us define the P th row of B by bP . Since the matrix E is diagonal

the components of the stiffness matrix has a special form

Kij =
e∑

P=1

EAP
lP
(bP )i(bP )j (3.2)

Let us recall the dyadic product a ⊗ b of two vectors: a and b; its
components are given by a⊗ b = {aibj}. Hence

K =
e∑

P=1

K
(P )

K
(P ) =

EAP
lP
bP ⊗ bP (3.3)
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Due to the dyadic form of the expression for K for trusses some theorems
on the optimum design assume a special form, see Achtziger (1997).

4. Plane frames made of incompressible bars

The constraints ε(u) = 0 reduce the space V to a subspace U and
rearrange variational equilibrium equation (2.3) to the form

∫
Mκ(w) dx =

∫
(pxu+ pzw) dx ∀(u,w) ∈ U (4.1)

Once again both methods (i) and (ii), the Section 2, can be applied. Me-
thod (i) is taught to our students although its theory requires generalized
functions. Here u and w are taken from the space larger than Co × C1, see
Nowacki (1960) and Kączkowski (1988). Consequently, not the theory itself
but rather its algorithm is taught. Method (ii) is much more lucid, but is not
taught at all, since it is usually dwarfed and squeezed by purely computational
algorithms. Method (ii) consists in shrinking the space U to an s-dimensional
subspace Us composed of the fields (u,w) associated with moving the no-
des under the constraints ε(u) = 0. The possible and independent degrees
of freedom are still denoted by (qj). Some of them represent sways of the
frame, so they are not connected with the nodes but are global kinematical
characteristics. Here ∗uK = u∗K = uK with u = A(u)q. Thus two equations
(2.4)1,2 are reduced to one. Relation (2.5)2 holds. Equation (2.10) assumes the
form ∫

Mκ(w) dx = q⊤[(∗β)⊤∗M + (β∗)⊤M
∗
] (4.2)

and the equilibrium equation (2.13) reduces to

(∗β)⊤∗M + (β∗)⊤M
∗
= Q (4.3)

Here (Qj) assume a new meaning, associated with the new meaning of
(qj). The constitutive equations

∗M = D(2∗χ+ χ∗) M
∗
= D(∗χ+ 2χ∗) (4.4)

remain homogeneous, the ”primary moments” do not occur. Together with
(2.9) specified for the unknown quantities, equations (4.3), (4.4) form a com-
plete system of algebraic equations. It leads to (2.17). The stiffness matrix is
given by (2.18) with the first term omitted.
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A frame is statically determined if ∗MK and M
∗

K can be found by solving
Eq (4.3). To recover the axial forces NK one should recall Eq (2.13) and try
to solve it with respect to N .
Equations (4.3), (4.4), (2.9)2,3 can be easily programmed by using any sym-

bolic computation package. The sparse matrices ∗β, β∗ are formed automati-
cally upon writing the equations linking the deformations with displacements,
cf (2.9)2,3.

5. Grillages of rigid joints

Let GCK represent the torsional stiffness of the Kth bar and φ(x) mean
an angle of rotation of a cross-section around the bar axis. The moment, the
change of the curvature, the deflection and the bending stiffness of the Kth
bar are still denoted by M , κ, w, EJ , respectively. The joints are assumed
to be rigid, capable of resisting both bending and torsion. Some bars can be
simply supported on other bars, but at least one connection is assumed to be
rigid. The loading is vertical. The torsional moment is denoted by m and the
torsional deformation by τ(φ).
The variational equation of equilibrium has the form

∫
[mτ(φ) +Mκ(w)] dx =

∫
pzw dx ∀(φ,w) ∈W (5.1)

where W represents the space of kinematically admissible angles of torsion φ
and deflections w. Displacements of supports are excluded. The constitutive
relations read

m = GCτ(φ) M = EJκ(w) (5.2)

where τ(φ) = dφ/dx; note that τ(φ) = ε(φ). To make problems (5.1) and (5.2)
algebraic we apply method (ii) of Section 2. Thus W is shrinked to Ws, an
s dimensional subspace generated by admissible, virtual loads concentrated in
the joints. The loads are admissible if they can be equilibrated by the grillage.
Thus, the field φ is bar-wise linear and w is bar-wise a polynomial of third
order. The torsional deformation τ is bar-wise constant

τK =
θK
lK

θK = φ∗K − ∗φK (5.3)

Consequently ∫
mτ(φ) dx =

e∑

K=1

mKθK (5.4)
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and
mK =

GCK
lK

θK (5.5)

There exist coefficients (ßKj) such that

θK =
s∑

j=1

ßKjqj (5.6)

which rearranges (5.4) to the form
∫

mτ(φ) dx = q⊤(ß⊤m) (5.7)

and, by a relation similar to (4.2), one finds the equilibrium equation in the
matrix form

ß⊤m+ (∗β)⊤∗M + (β∗)⊤M
∗
= Q (5.8)

Let G be a diagonal matrix of the components (GCK/lK). The constitutive
equations can be put in the form

m = Gθ ∗M = D(2∗χ+ χ∗) M
∗
= D(∗χ+ 2χ∗) (5.9)

The equation for q has the form of Eq (2.17) with the stiffness matrix K
given by (2.18), where E and B should be replaced by G and ß, respectively.

6. Pin jointed grillages

Let us assume that the only interaction between the bars of a grillage is
vertical and the only common degree of freedom of the bars connected in a
joint is the deflection of this joint. Consequently, bending does not cause tor-
sion. Since the load is vertical as before, the torsion is absent. By neglecting
the torsion in the equations (5.8),(5.9) one arrives at the algebraic system of
the same form as that describing the bending of plane frames made of incom-
pressible bars (Eqs (4.3), (4.4), (2.9)2,3). We omit here obvious consequences
of this analogy.

7. Space frames

We omit the continuum formulation of the general frame equilibrium pro-
blem. Let us pass to the algebraic formulation within method (ii) of Section 2.
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The local coordinate system (x, y, z) is attached to all bars, x representing
their neutral axes. The quantities1

∗MK , M
∗

K ,
∗χK , χ

∗

K ,
∗βKj, β

∗

Kj , EJ
(M)
K ,DM (7.1)

concern the bending in the plane (x, z), while their counterparts for the
bending in the (x, y) plane are denoted by

∗LK , L
∗

K ,
∗̺K , ̺

∗

K ,
∗ηKj, η

∗

Kj, EJ
(L)
K , DL (7.2)

The equilibrium equations comprise the elastic deformations in both the planes

B
⊤N + ß⊤m+ (∗β)⊤∗M + (β∗)⊤M ∗ + (∗η)⊤∗L+ (η∗)⊤L∗ = Q (7.3)

The constitutive equations read

N = E∆ ∗M = DM (2∗χ+ χ∗) ∗L = DL(2∗̺+ ̺∗)

m = Gθ M∗ = DM (∗χ+ 2χ∗) L∗ = DL(∗̺+ 2̺∗)
(7.4)

Let us introduce aggregate quantities

ǫ = col [∆,θ, ∗χ,χ∗, ∗̺,̺∗]
(7.5)

ℵ = col [B,ß, ∗β,β∗, ∗η,η∗]

The deformations depend on the displacements (qj) by

ǫ = ℵq (7.6)

Substitution of (7.6) into (7.4) and (7.3) gives (2.7) with the stiffness matrix
of the form

K = B⊤EB+ ß⊤Gß+

+2
{
(∗β)⊤DM ∗β +

1
2

[
(∗β)⊤DMβ∗ +

(
(∗β)⊤DMβ∗

)⊤]
+ (β∗)⊤DMβ∗

}
+
(7.7)

+2
{
(∗η)⊤DL∗η +

1
2

[
(∗η)⊤DLη∗ +

(
(∗η)⊤DLη∗

)⊤]
+ (η∗)⊤DLη∗

}

1The overbars are omitted in this section since the trial fields do not appear
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Let us introduce the aggregate matrices

ς = col [N ,m, ∗M ,M∗, ∗L,L∗]

(7.8)

Ξ =




E ... ... ... ... ...
... G ... ... ... ...
... ... 2DM DM ... ...
... ... DM 2DM ... ...
... ... ... ... 2DL DL

... ... ... ... DL 2DL




Note that constitutive equations (7.4) are equivalent to ς = Ξǫ and equ-
ilibrium equation (7.3) assumes the form ℵ⊤ς = Q. By (7.6) one finds the
stiffness matrix in the form K = ℵ⊤Ξℵ.
The aggregated description can be rearranged to a form in which the ma-

trix Ξ is diagonal. To this end we decompose the bending deformations and
bending moments as follows

∗χ = χs + χa χ∗ = χs − χa
∗M =M s +Ma M∗ =M s −Ma
∗̺ = ̺s + ̺a ̺∗ = ̺s − ̺a
∗L = Ls +La L∗ = Ls −La

(7.9)

where
χs = βsq χa = βaq

̺s = ηsq ̺a = ηaq
(7.10)

and
∗β = βs + βa β∗ = βs − βa
∗η = ηs + ηa η∗ = ηs − ηa

(7.11)

Constitutive relations (7.4) assume diagonal forms

N = E∆ m = Gθ

M s = 3DMχs Ma = DMχa

Ls = 3DL̺s La = DL̺a

(7.12)

The quantities (Ms)K , (Ls)K are proportional to shear forces in the Kth bar
and the quantities (Ma)K , (La)K represent the moments in the mid-span of
the Kth bar. Equilibrium equation (7.3) changes its form. It reads now

B
⊤N + ß⊤m+ 2

[
(βs)

⊤M s + (βa)
⊤Ma + (ηs)

⊤Ls + (ηa)
⊤La
]
= Q (7.13)
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and we see that the factor 2 appears, which makes the above equation less
clear than the original one (7.3). Substitution of (7.12) into (7.13) gives the
stiffness matrix of the form

K = B⊤EB+ ß⊤Gß+
(7.14)

+2
[
(βa)

⊤
DMβa + (ηa)

⊤
DLηa

]
+ 6
[
(βs)

⊤
DMβs + (ηs)

⊤
DLηs]

composed of six terms describing the energies of: tension/compression, torsion,
pure bending in both the planes and slope in both the planes. The coupled
terms present in (7.7) disappeared. There is no coupling between the states of
bending and sway.
To put governing equations (7.10), (7.12), (7.13) in an aggregate form we

introduce new matrices

ς̃ = col [N ,m,
√
2M s,

√
2Ls,
√
2Ma,

√
2La]

ǫ̃ = col [∆,θ,
√
2χs,
√
2̺s,
√
2χa,
√
2̺a]

(7.15)

Ξ̃ = diag(E,G, 3DM , 3DL,DM ,DL)

ℵ̃ = col [B,ß,
√
2βs,
√
2ηs,
√
2βa,
√
2ηa]

to obtain
ℵ̃
⊤

ς̃ = Q ς̃ = Ξ̃ǫ̃ ǫ̃ = ℵ̃q (7.16)

with K = ℵ̃
⊤

Ξ̃ℵ̃. Since Ξ̃ is diagonal system (7.16) is similar to that for
trusses, (3.1).
Let the P th rows of the matrices B, ß,

√
2βs,

√
2βa,

√
2ηs,
√
2ηa be

denoted by bP , ♭P , d
(s)
P , d

(a)
P , h

(s)
P , h

(a)
P , respectively. The matrix K is de-

composed as a sum of e matrices K(P ) for bars, the stiffness matrix for the
P th bar being given by the formula

K
(P ) =

EAP
lP
bP ⊗ bP +

GCP
lP
♭P ⊗ ♭P +

(7.17)

+
2EJ (M)P
lP

(d(a)P ⊗ d
(a)
P + 3d

(s)
P ⊗ d

(s)
P ) +

2EJ (L)P
lP
(h(a)P ⊗ h

(a)
P + 3h

(s)
P ⊗ h

(s)
P )

The above form of the stiffness matrix is helpful in computing the sensitivities
of spatial frames and in proving the theorems on their optimum design.
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8. Final remarks

Method (ii) of Section 2 has the following features:

• It requires two numerations: of the degrees of freedom and of bars. Nodal
numeration is redundant.

• The method does not require the approximation of the unknown fields
of the displacements and stress resultants.

• The deformations measures of a frame are defined in a natural manner.

• In the case of a static loading the constitutive relations turn out to be
homogeneous.

• The effective stress resultants are defined as integrals over the neutral
axes of bars, see Eqs (2.11). The conditions of the equilibrium of nodes
are satisfied but are not required to form the equilibrium equations. They
follow from the global consideration in a manner common to both the
cases: of compressible and incompressible bars.

• The algebraic equations derived differ from that reported by Kączkowski
(1984) for plane frames. The differences are the following:

– the static unknowns are grouped differently, which has made it
possible here to report the formula for the stiffness matrix in
form (2.18)

– the equilibrium equations are derived here in a variationally consi-
stent manner. No reference to the laws of rigid body mechanics is
made. The Clebsch theorem is built-in in the method and does not
require explanations

– a proof is given of the constitutive relations being homogeneous

– the matrix B is formed by the method (ii), Section 2, and not by
method (i), like in the article by Kączkowski.

• In the case of elementary frame problems method (ii), Section 2 is very
easy to algorithmize for both the cases of compressible and incompres-
sible bars. The algorithm is especially short in the case of plane trusses.
Any symbolic computation package is very helpful. Note that the matrix
B can be formed from the equation ∆ = Bq by using the genmatrix
command of MAPLE. The analysis of frames and grillages is a little
longer. The hitherto educational experiences are encouraging.
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• As to the best author’s knowledge equations (7.16) with the diagonal
stiffness matrix K (Eq (7.17)) have not been reported in the literature.
Note that the equations of Borkowski (1985, Appendix A) have a dif-
ferent form and concern a single bar. Similar equations for trusses are
reported by Achtziger (1997), but no generalization to frames can be
found.
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O algebraicznych równaniach sprężystych kratownic, ram i rusztów

Streszczenie

Algebraiczne równania ram sprężystych otrzymano na drodze nałożenia natural-
nych więzów na próbne pola przemieszczeń. Znaleziony układ równań opisuje od-
kształcenia kratownic, ram wykonanych z prętów ściśliwych bądź nieściśliwych, rusz-
tów o węzłach sztywnych oraz rusztów przegubowych. Wyprowadzono nową postać
równań algebraicznych z diagonalną macierzą konstytutywną. Przedstawione podej-
ście dobrze pasuje do celów dydaktycznych.
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