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The higher order Hamiltonian approach is utilized to elicit approximate solutions for two
nonlinear oscillation systems. Frequency-amplitude relationships and the model of buckling
of a column and mass-spring system are scrutinized in this paper. First, second and third
approximate solutions of examples are achieved, and the frequency responses of the systems
are verified by exact numerical solutions. According to the numerical results, we can conclude
that the Hamiltonian approach is an applicable method for solving the nonlinear equations,
and the accuracy of this method in the second and third approximates is very high and
reliable. The achieved results of this paper demonstrate that this method is powerful and
uncomplicated for solving of sophisticated nonlinear problems.
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1. Introduction

Since the nonlinear science has been emerged in real world uses, there is a cause for increasing
attention of scientists and engineers in analytical approaches for nonlinear problems (He, 2006).
Recently, many scientists have proposed and modified a lot of methods for solving nonlinear equ-
ations (Nayfeh and Mook, 1979). He (2002) have invented several non-perturbative approaches
such as energy balance method (EBM), variational approach (He, 2007), max-min approach (He,
2008b), Hamiltonian approach (He, 2010) and frequency amplitude formulation (He, 2008a). Ba-
sed on He’s methods, many researchers have evaluated diverse kinds of nonlinear problems. For
instance, D.D. Ganji et al. (2010) and S.S. Ganji et al. (2009) used energy balance method for
solving Van der Pol damped equations and relativistic oscillator. Momeni et al. (2011) and Ozis
and Yildirim (2007) employed EBM for solving the Duffing harmonic equation. Simiraly, a non-
linear oscillator with discontinuity was analyzed by D.D. Ganji et al. (2009) by means of this
approach. Also, Younesian et al. (2010a) analyzed the generalized Duffing equation by it. The
variational approach was applied for solving the relativistic oscillator (He, 2007), generalized
Duffing equation (Younesian et al., 2010a), oscillator with a fractional power (Younesian et al.,
2010b), Duffing harmonic oscillator (Askari et al., 2010). The frequency amplitude formulation
was incorporated by Cai and Wu (2009), Younesian et al. (2010a), Kalami et al. (2010), Ren et
al. (2009), Zhang et al. (2009) and Zhao (2009) for solving the relativistic harmonic oscillator,
generalized Duffing equation, autonomous conservative nonlinear oscillator, nonlinear oscillator
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with discontinuity, Schrödinger equation and nonlinear oscillator with an irrational force, respec-
tively. Moreover, the max-min approach was used for analyzing the relativistic oscillator (Shen
and Mo, 2009), buckling of a column (Ganji et al., 2011), two mass spring system (Ganji et al.,
2011), nonlinear oscillator with discontinuity (Zeng, 2009) and a nonlinear oscillation system of
motion of a rigid rod rocking back[(Ganji et al., 2010). In this paper, two kinds of systems with
the same form of nonlinear equation are analyzed. Figure 1 describes a model of buckling of a
column (Nayfeh and Mook, 1979). The vibration of this system was investigated by Ganji et al.
(2011) and Nayfeh and Mook (1979).

Fig. 1. Model of buckling of a column (Nayfeh and Mook, 1979)

Figure 2 shows the physical model of Duffing equation with a constant coefficient. This
system was examined by Mehdipour et al. (2010) by means of of the energy balance method.

Fig. 2. Physical model of Duffing equation (Rao, 2006)

In the present work, the Hamiltonian approach is used for solving the governing equations of
the above problems. This method was invented by J.H. He, and it has been used for evaluating a
large number of nonlinear problems. The nonlinear oscillator with a fractional power (Cveticanin,
2010), nonlinear oscillator with discontinuity (Yildrim et al., 2011c), nonlinear oscillator with
rational and irrational elastic forces (Yildrim et al., 2011a), nonlinear oscillations of a punctual
charge in the electric field of a charged ring (Yildrim et al., 2011b), nonlinear vibration of a rigid
rod rocking back Khan et al., 2010) have been solved by means of this potent and straightforward
method. Furthermore, Yilidrim et al. (2012) have demonstrated the relationship of this method
with the variational approach. The frequency-amplitude relationship is then obtained in an
analytical form. Also, the obtained frequency responses of the systems are compared with the
exact numerical solutions. In addition, the achieved results are compared with the results of the
max-min approach that were obtained by Ganji et al. (2011). Moreover, according to Yildirim
et al. (2012), it is stated that the variational approach leads to the same results for this systems
even for higher order approximations. Furthermore, results of several papers are developed to
obtain the frequency amplitude relationship of this system.
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2. Mathematical modeling

In this section, we consider a column as shown in Fig. 1. The mass m moves in the horizontal
direction only. Using this model that represents the column, we demonstrate how one can study
its static stability by determining the nature of the singular point at x = 0 of the dynamic
equations (Nayfeh and Mook, 1979; Ganji et al., 2011). Avoiding the weight of springs and
columns, the governing equation for motion of m is (Nayfeh and Mook, 1979)

mü+
(
k1 −

2P

l

)
u+
(
k3 −

P

l3

)
u3 + . . . = 0 (2.1)

where the spring force is given by

FSpring = k1u+ k3u
3 + . . . (2.2)

This equation can be put in the general form

ü+ α1u+ α3u
3 + . . . = 0 (2.3)

Also, the g overning equation for the model shown in Fig. 2 is obtained as

ü+
K1
m
u+

K2
2mh2

u3 = 0 (2.4)

3. Solution procedure

Consider the following equation which describes the well known Duffing equation

ü+ α1u+ α3u
3 = 0 u(0) = A u̇(0) = 0 (3.1)

where for the first system

α1 =
1

m

(
k1 −

2P

l

)
α3 =

1

m

(
k3 −

p

l3

)
(3.2)

and for the second one

α1 =
K1
m

α2 =
K2
2mh2

(3.3)

Based on the first order of the Hamiltonian approach introduced by He (2010), a solution for
Eq. (3.1) is assumed as

u = A cosωt (3.4)

with satisfying the initial conditions. Its Hamiltonian can be easily obtained, which reads

H =
1

2
u̇2 +

α1
2
u2 +

α3
2
u4 (3.5)

Integrating Eq. (3.6) with respect to time from 0 to T/4, we have

H̃(u) =

T/4∫

0

(1
2
u̇2 +

α1
2
u2 +

α3
2
u4
)
dt (3.6)
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Substituting Eq. (3.4) into Eq. (3.6), leads to

H̃(u) =

T/4∫

0

(1
2
A2ω2 sin2 ωt+

α1
2
A2 cos2 ωt+

α3
4
A4 cos4 ωt

)
dt

=

π/2∫

0

(1
2
A2ω sin2 ωt+

α1
2ω
A2 cos2 ωt+

α3
4ω
A4 cos4 ωt

)
dt

=
π

8
A2ω +

α1π

8ω
A2 +

α3π

64ω
A4

(3.7)

Setting

∂

∂A

(
∂H̃

∂ 1ω

)
=
π

4
Aω2 +

α1π

4
A+
4α3π

16
A3 = 0 (3.8)

and consequently, the obtained frequency equals to

ω =

√
α1 +

3

4
α3A2 (3.9)

The energy balance method (Mehdipour et al., 2010), varioational approach (Yildirim et al.,
2012), harmonic balance method (Yildirim et al., 2012) and the max-min (Ganji et al., 2011)
approach the same to result for this problem.

3.1. Second order Hamiltonian approach

In order to improve the accuracy of this approach, the following periodic solution is considered
(Yildirim et al., 2011c; Durmaz et al., 2010)

u = a cosωt+ b cos 3ωt (3.10)

where the initial condition is

A = a+ b (3.11)

Substituting Eq. (3.11) into Eq. (3.6), we obtain

H̃(u) =

T/4∫

0

[1
2
(aω sinωt+ 3bω sin 3ωt)2 +

1

2
α1(a cosωt+ b cos 3ωt)

2

+
1

4
α3(a cos ωt+ b cos 3ωt)

4
]
dt =

π/2∫

0

[1
2
ω(a sin t+ 3b sin 3t)2

+
1

2ω
α1(a cos t+ b cos 3t)

2 +
1

4ω
α3(a cos t+ b cos 3t)

4
]
dt

=
π

8
ω(a2 + 9b2) +

π

8ω
α1(a

2 + b2) +
π

64ω
α3(3a

4 + 4a3b+ 12a2b2 + 3b4)

(3.12)

Setting

∂

∂a

(
∂H̃

∂ 1ω

)
= −
π

4
aω2 +

π

4
α1a+

π

64
α3(12a

3 + 12a2b+ 24ab2) = 0

∂

∂b

(
∂H̃

∂ 1ω

)
= −
18πb

8
ω2 +

π

4
α1b+

π

64
α3(4a

3 + 24a2b+ 24ab2) = 0

(3.13)
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After some mathematical simplifications, it is achieved that

a = 0.95714A b = 0.04289A (3.14)

and the frequency-amplitude relationship can be written as

ωSHA =
√
α1 + 0.7205α3A2 (3.15)

3.2. Third order Hamiltonian approach

Consider the following periodic equation as the response to Eq. (3.1)

u = a cosωt+ b cos 3ωt + c cos 5ωt (3.16)

where

A = a+ b+ c (3.17)

Substituting Eq. (22) into Eq. (3.6), we obtain

H̃(u) =

T/4∫

0

[1
2
(aω sinωt+ 3bω sin 3ωt+ 5bω sin 5ωt)2

+
1

2
α1(a cos ωt+ b cos 3ωt + c cos 5ωt)

2 +
1

4
α3(a cosωt+ b cos 3ωt + c cos 5ωt)

4
]
dt

=

π/2∫

0

[1
2
ω(a sin t+ 3b sin 3t+ 5c cos ωt)2 +

1

2ω
α1(a cos t+ cos 3t+ 5c cos t)

2

+
1

4ω
α3(a cos t+ b cos 3t+ 5c cos ωt)

4
]
dt =

π

8
ω(a2 + 9b2 + 25c2) +

π

8ω
α1(a

2 + b2 + c2)

+
π

64ω
α3(3a

4 + 3b4 + 3c4 + 12b2c2 + 12ab2c+ 12a2bc+ 4a3b+ 12a2c2 + 12a2b2)

(3.18)

Setting

∂

∂a

(
∂H̃

∂ 1ω

)
= −
π

4
aω2 +

π

4
α1a+

π

64
α3(12a

3 + 12a2b+ 12b2c+ 24ab2 + 24abc+ 24ac2) = 0

∂

∂b

(
∂H̃

∂ 1ω

)
= −
18πb

8
ω2 +

π

4
α1b+

π

64
α3(4b

3 + 24bc2 + 24abc + 12a2b+ 4a3 + 24a2b) = 0

(3.19)
∂

∂c

(
∂H̃

∂ 1ω

)
= −
50πc

8
ω2 +

π

4
α1c+

π

64
α3(12c

3 + 24b2c+ 12ab2 + 12a2b+ 24a2c) = 0

Then, after some simplifications, we obtain

a = 0.955091A b = 0.0430519A c = 0.0018569A (3.20)

Finally, the natural frequency of the system equals to

ωTHA =
√
α1 + 0.7178α3A2 (3.21)
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4. Discussion and numerical results

The presented solution procedures are used to obtain frequency responses. Variations of the
natural frequencies are illustrated in Figs. 3 and 4 for Example 1. The frequency responses are
tabulated for some special cases. According to Table 1, it was demonstrated that when the order
of the proposed method increases, higher agreement and more accurate results are obtained.
The time history obtained for the initial condition is illustrated in Fig. 5. It is seen that in the
time domain, a very excellent correlation is still preserved.

Fig. 3. The frequency ratio (nonlinear/linear) with respect to initial amplitudes for Example 1;

K1 = 500, K3 = 500, m = 50, p = 150, l = 10

Fig. 4. The frequency ratio (nonlinear/linear) with respect to initial amplitudes for Example 1;
K1 = 10, K3 = 5, m = 1, p = 1, l = 1

Table 1. Comparison of approximate and exact frequencies for Example 1.

(m, l, p) (k1, k3) A ωFHA ωSHA ωTHA ωExact

(1,1,1) (10,5) 1 3.2015 3.1877 3.1861 3.1861

(10,10,10) (10,50) 10 19.3816 18.9985 18.9539 18.9528

(50,25,40) (30,100) 20 24.5052 24.0202 23.9636 23.9623

(100,50,150) (70,20) 100 38.7357 37.9687 37.8793 37.8772

(1000,500,1000) (500,500) 1 0.9332 0.9253 0.92444 0.92442

For Example 2, the numerical results are obtained, and in Table 2 frequency responses of
the system are given and analyzed for some special cases. To show and prove the accuracy of
these analytical methods, comparisons of analytical and exact results for the practical cases are
presented in Fig. 6.
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Fig. 5. Time history of dynamic responses (A = 1, M = 1, P = 1, L = 1, K1 = 10, K3 = 5)

Table 2. Comparison of approximate and exact frequencies for Example 2

(h,m) (k1, k2) A ωFHA ωSHA ωTHA ωExact

(1,1) (10,5) 1 3.44601 3.4353 3.4340 3.4340

(1,10) (10,50) 1 1.6955 1.6737 1.6712 1.6711

(10,10) (30,100) 2 1.7748 1.7731 1.77297 1.77296

(1,100) (70,20) 5 1.6046 1.5815 1.5789 1.5788

Fig. 6. Time history of dynamic responses (A = 1, m = 1, h = 1, K1 = 10, K2 = 5)

Table 3 reveals the achieved frequency-amplitude relationship for the objective problem
of this paper. The results of diverse kinds of approaches are illustrated in this Table using
corresponding references.

5. Conclusion

In this paper, two dynamic systems were considered, where in both cases the governing equation
was expressed as the Duffing equation. The Hamiltonian approach was then applied in three
orders to find the approximate periodic solution of this equation. The accuracy of solution pro-
cedures was evaluated by comparing the obtained results with the exact ones in time histories
and tables. The effects of nonlinear parameters and initial amplitudes on the natural frequency
were also illustrated in two figures. It was proved that as the order of the proposed approach
increases, higher agreement and more accurate results are obtained. Indeed, it can be conclu-
ded that the higher order Hamiltonian approach is a valid and strong method in evaluating
conservative nonlinear oscillatory systems even for large amplitudes and strong nonlinearity.
Furthermore, according to Ganji et al. (2011), the max-min approach and the Hamiltonian ap-
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Table 3. Obtained frequency-amplitude relationship from related references

Approach Frequency-amplitude relationship

Energy balance method (Younesian et
al., 2010a), max-min (Ganji et al.,
2011); approach, frequency-amplitude
formulation (Younesian et al., 2010a);
homotopy perturbation (Younesian et
al., 2011); harmonic balance method
(Brléndez et al., 2011)

Example 1: ω =

√(
k1 −

2p

l

)
+
3

4

(
k3 −

p

l3

)
A2

Example 2: ω =

√
k1
m
+
3

8

k2
mh2
A2

Modified energy balance method Example 1: ω =

√(
k1 −

2p

l

)
+
7

10

(
k3 −

p

l3

)
A2

(Younesian et al., 2011)

Example 2: ω =

√
k1
m
+
7

20

k2
mh2
A2

Simple approach (Ren and He, 2009) Example 1: ω =

√(
k1 −

2p

l

)
+
7

9

(
k3 −

p

l3

)
A2

Example 2: ω =

√
k1
m
+
7

18

k2
mh2
A2

proach have the same results for this problem in the first approximation. In addition, basing
on Yildirim et al. (2012), we can state that the variational approach can lead to similar results
for this problem even for a higher order of the approximation. Besides, the harmonic balance
method gives the same result for the objective systems (Beléndez et al., 2011). Moreover, results
of lots of other papers were developed for the systems considered in this paper, and they are
listed in Table 3.
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Zastosowanie metody Hamiltona wyższego rzędu w zagadnieniu drgań układów

nieliniowych

Streszczenie

W pracy przedstawiono zastosowanie metody Hamiltona wyższego rzędu do wyznaczania przybliżo-
nych rozwiązań analitycznych dla dwóch nieliniowych układów drgających. Szczegółowej analizie poddano
charakterystyki amplitudowo-częstościowe modelu ściskanej belki oraz dyskretnego układu sprężysto-
inercyjnego. Otrzymano przybliżone rozwiązania pierwszego, drugiego i trzeciego rzędu, a odpowiedzi
częstościowe układów porównano z dokładnymi rezultatami symulacji numerycznych. Na ich podstawie
oceniono, że metoda Hamiltona jest stosowalna dla układów nieliniowych, a przybliżenia drugiego i trzecie-
go rzędu stanowią rozwiązania analityczne o wysokiej dokładności. Uzyskane w pracy wyniki przekonują,
że zaproponowana metoda jest prostym i jednocześnie bardzo skutecznym narzędziem rozwiązywania
nieliniowych problemów układów mechanicznych o dużym stopniu złożoności.
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