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The present paper deals with investigations of a stochastic model of
the Duffing oscillator operating continuously. The standard theory of
the optimal stochastic control described in Fleming and Richel (1975) is
presented, as well as the application of these concept to the perturba-
tion control techniques suggested by Suhardio et al. (1992). The method
presented in this paper is, therefore, a generalization of the method of
the development of nonlinear control units into a series, as described
for Duffing’s deterministic oscillator involving stochastic systems deri-
ved by the author and applied in his master thesis (Nowoświat, 1999).
Detailed analysis and numerical calculations have been done using the
Runge-Kutta procedures.
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1. Introduction

The problem of optimal control of stochastic parametrically and externally
excited nonlinear systems was recently studied by Beaman (1984), Yoshida
(1984), Young and Chang (1988). By the combined use of Gaussian statistical
linearization and linear quadratic Gaussian (LQG) theory a suboptimal linear
Beaman (1984), Yoshida (1984) or nonlinear Young and Chang (1988) state
feedback controller is synthesized. At the same time, a perturbation technique
was applied to the determination of optimal control in the deterministic model
of nonlinear Duffing’s oscillator in Spencer et al. (1966), Suhardio et al. (1992).
The effect of higher-order feedback corrections based upon series expansions
of the optimal cost function and the optimal control function in the Hamilton-
Jacobi-Bellman approach were shown. The application of the perturbation
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method to the determination of optimal control of a nonlinear discrete-time
system was given in Shefer and Breakwell (1987).
The study of optimal control of nonlinear stochastic systems has been given

considerable attention in recent years. In involved stochastic systems which
are described by the Itô stochastic differential equations with the Gaussian
parametric and external noise excitations.
The success obtained due to the applied approach indicates that it is advi-

sable to include external excitations in the Duffing deterministic oscillator. It
has been achieved by adding a model of the external constraint to the classi-
cal formulation of Duffing’s oscillator. In effect, it led to analysis of stochastic
differential equations known in the literature as the Itô equations. These equ-
ations are the most popular mathematical means used when considering this
problem. This work contains only theoretical considerations involving exa-
mination of dynamic systems. The mentioned considerations, as well as the
obtained results can be applied to technology, e.g. while analysing suspension
systems of wheeled vehicles as well as other problems related with Duffing’s
oscillator.
This paper is concerned with the study of a stochastic continuous time

model of Duffing’s oscillator. Using the concepts of standard methods of sto-
chastic optimal control, see e.g. Fleming and Richel (1975), and combining
them with the concept by Suhardio et al. (1992) on the application of a per-
turbation technique to the control problems, we derive results on the optimal
control of Duffing’s oscillator under parametric and external excitations. Then,
a second-order stochastic parametrically and externally excited Duffing’s ty-
pe system is selected to illustrate the application of the ’development into a
series’ technique to the optimal control of nonlinear stochastic systems and to
compare the procedure with the other methods.

2. Perturbation method for a non linear Duffing’s oscillator

Consider a nonlinear stochastic model of a dynamic system described by
the Itô vector differential equation

dx(t) = [f(x, t) + Bu] dt +
M
∑

k=0

Gk dξk (2.1)

where
x – state vector, x = [x1, ..., xn]⊤

u – controlling vector, u = [u1, ..., un]⊤



Optimal control of a Duffing oscillator... 437

B – matrix with constant elements with the dimensions n× l,
B = [Bij]

Gk – deterministic vectors, Gk = [G
1
k, ..., G

n
k ]
⊤

ξk – independent standard Wiener processes.

Let us assume nonlinear vector functions f : Rn → Rn in the form of
polynomials

f i(x) =
n
∑

j=1

Aijx
j +

n
∑

j,k=1

Aijkx
jk + ... (2.2)

where Aij , A
i
jk, ... are constant coefficients and x

jk = xjxk, and xjkl = xjxkxl.
Assume also that the control u takes the form of a polynomial

uj = Kj0 +
n
∑

k=1

Kjkx
k +

n
∑

k,l=1

Kjklx
kl + ... (2.3)

where Kj0 , K
j
k, K

i
kl are constant coefficients.

According to the model presented by Suharido et al. (1992) and Yoshida
(1984) we minimize the following cost function

I = E
[

V0(t1) +Px(t1) + x
⊤(t1)Mx(t1) +

(2.4)

+

t1
∫

t0

(

x
⊤
Qx+ u⊤Ru+

n
∑

j,k,l=1

Qjklx
jkl + ...

)

dt
]

where
E[·] – moment vector
P – constant vector
M,Q – symmetric semi-positively determined matrices
R – positively determined matrix
Qjkl, ... – selected symmetric tensors.

The elements Kj0 ,K
j
k,K

j
kl, ... occurring in equation (2.3), can be calculated

by means of Bellmann’s equation (Fleming and Richel, 1975), which in our case
takes the form

∂V

∂t
+min
u
[L∗(V ) + L(x,u, t)] = 0 (2.5)

where
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L(x,u, t) = x⊤Qx+ u⊤Ru+
n
∑

j,k,l=1

Qjklx
jkl + ...

(2.6)

V = V0(t) + Px(t1) + x
⊤(t1)Mx(t1) +

t1
∫

t

L(x,u, t) dt

whereas L is an operator, which, according to (2.6)1, can be defined in the
following way

L∗(·) =
∂(·)

∂t
+
n
∑

i=1

(

f i +
m
∑

j=1

Biju
j
)∂(·)

∂xi
+
1

2

M
∑

k=1

(

Gk,
∂

∂x

)2

(·) (2.7)

or

L∗(·) =
∂(·)

∂t
+
n
∑

i=1

(

f i +
m
∑

j=1

Biju
j
)∂(·)

∂xi
+
1

2

M
∑

i,j=1

∂2(·)

∂xi∂xj
aij (2.8)

where

a = [aij ] =
M
∑

k=0

GkG
⊤

k

The function V will be considered in the form of Maclaurin’s series

V = V0(t) +
n
∑

i=1

Vi(t)x
i +

n
∑

i,j=1

Vij(t)x
ij +

n
∑

i,j,k=1

Vijk(t)x
ijk + ... (2.9)

where Vij, Vijk, ... are tensors symmetric with respect to their indices.

In addition, we consider the quadratic terms in the cost function given in
equation (2.4), that is Qijk = ... = 0. Furthermore, we set A

i
jk = A

i
jklm =

... = 0 and Vi = Vijk = ... = 0.

Similarly, the elements of the equal order of control (2.3) will be equated
to zero

Ki0 = K
i
jk = ... = 0 (2.10)

The remaining coefficients of Lapunov’s function (2.10) and of control function
(2.3) can be found by solving the equations for Vij, Kji, Vijk, Kjkli, ...

min
u

{(

V̇0 +
n
∑

i,j=1

V̇ijx
ij +

n
∑

i,j,k,l=1

V̇ijklx
ijkl + ...

)

+
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+
n
∑

i=1

[(

2
n
∑

j=1

Vijx
j + 4

n
∑

j,k,l=1

Vijklx
jkl + ...

)

·

·
(

n
∑

j=1

Aijx
j +

n
∑

j,k,l=1

Aijklx
jkl + ...+

m
∑

j=1

Biju
j
)]

+ (2.11)

+
1

2

n
∑

i,j=1

(

2Vij + 12
n
∑

k,l=1

Vijklx
kl + ...

)

aij +

+
m
∑

i,j=1

uiRiju
j +

n
∑

i,j=1

xiQijx
j +

n
∑

i,j,k,l=1

Qijklx
ijkl
}

= 0

Taking the differential coefficients an the left-hand side of equation (2.11)
in relation to u, and taking into account that the matrix R is symmetric, we
get

2
n
∑

i,j=1

Vijx
jBip + 4

n
∑

i,j,k,l=1

Vijklx
jklBip + ...+ 2

n
∑

j=1

Rpju
j = 0 (2.12)

for p = 1, 2, ..., n.

Substituting equation (2.3) into equations (2.11) and (2.12) we get an
equation for ui, this control being the optimal one ui∗, with quantities V
and x corresponding to the quantities V ∗ and x∗ for the control u∗ (for
convenience the asterisk will be omitted in the following study).

Thus, we get

{(

V̇0 +
n
∑

i,j=1

V̇ijx
ij +

n
∑

i,j,k,l=1

V̇ijklx
ijkl + ...

)

+

+
n
∑

i=1

[(

2
n
∑

j=1

Vijx
j + 4

n
∑

j,k,l=1

Vijklx
jkl + ...

)

·

·
(

n
∑

j=1

Aijx
j +

n
∑

j,k,l=1

Aijklx
jkl + ...+

+
m
∑

j=1

Bij

(

n
∑

l=1

Kjl x
l +

n
∑

l,p,q=1

Kjlpqx
lpq + ...

))]

+

(2.13)

+
1

2

n
∑

i,j=1

(

2Vij + 12
n
∑

k,l=1

Vijklx
kl + ...

)

aij+
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+
n
∑

i,j=1

(

n
∑

l=1

Kjl x
l +

n
∑

l,p,q=1

Kjlpqx
lpq + ...

)

Rij ·

·
(

n
∑

l=1

Kjl x
l +

n
∑

l,p,q=1

Kjlpqx
lpq + ...

)

+

+
n
∑

i,j=1

Qijx
ij +

n
∑

i,j,k,l=1

Qijklx
ijkl + ...

}

= 0

Substituting equation (2.3) into (2.12) we have

2
n
∑

i,j=1

Vijx
jBip + 4

n
∑

i,j,k,l=1

Vijklx
jklBip + ...+

(2.14)

+2
n
∑

j=1

Rpj
(

n
∑

l=1

Kilx
l +

n
∑

l,p,q=1

Kilpqx
lpq + ...

)

= 0

for p = 1, 2, ..., n.

When we take into account the symmetric operator sym[·] and when we
repeat such a procedure, we can obtain the required conditions to ensure the
optimality in equation (2.4). These conditions, expressed by a set of differential
equations concerning the coefficients Vij , Vijk, ... are to be found by subsequent
equating of expressions of the zero order, the second order, the fourth order
and so on, and by taking into account the fact that xji = xij

V̇0 +
n
∑

i,j=1

V̇ijaij = 0

sym
[

V̇ij + 2
n
∑

l=1

VliA
l
j + 6

n
∑

k,l=1

Vijklakl +Qij +
n
∑

k,l=1

RklK
k
i K
l
j +

+2
n
∑

k,l=1

VklB
k
l K
l
j

]

= 0

sym
[

V̇ijkl + 2
n
∑

p=1

VpiA
p
jkl + 4

n
∑

p=1

Vpijk
(

Apl +
n
∑

q=1

BpqK
q
l

)

+

(2.15)

+15
n
∑

p,q=1

Vpqijklapq +
n
∑

p,q=1

KpijRpqK
q
kl +Qijkl

]

= 0



Optimal control of a Duffing oscillator... 441

sym
[

V̇ij + 2
n
∑

l=1

VliA
l
j + 6

n
∑

k,l=1

Vijklakl +Qij +

+
n
∑

k,l=1

Rkl
(

n
∑

p1,q1=1

R−1kp1Vq1iB
q1
p1

)(

n
∑

p2,q2=1

R−1lp2Vq2iB
q2
p2

)

−

−2
n
∑

k,l=1

VklB
k
l

(

n
∑

p,r=1

R−1lp VrjB
r
p

)]

= 0

3. Duffing’s oscillator

We consider a stochastic model of Duffing’s oscillator described by the Itô
vector stochastic differential equation

dx1 = x2 dt

(3.1)

dx2 = (−ω
2
0x1 − 2hx2 − εx

3
1 − bu) dt +

+ (−ω20x1 − εx
3
1)δ1 dξ1 + δ2x2dξ2 + δ0dξ0

where ω20, h, ε, b and σ are constant parameters, ξ1, ξ2, ξ3 are mutually
independent standard Wiener processes.

Assuming that the control is a state feedback in the form of odd order
polynomials i.e.

u =
∑

q=1,3,5,...

q
∑

i=0

(

q
i

)

kq−i ix
q−i
1 x

i
2 (3.2)

where kij are constant coefficients which are designed to minimize the quadra-
tic cost function

I = lim
T→∞

1

T
E
[

∞
∫

0

(

q1x
2
1(s) + q2x

2
2(s) + ru

2(s)
)

ds
]

(3.3)

where q1, q2 and r are weight coefficients.
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3.1. Main results

To obtain the control force in equation (3.2), which minimizes the cost
function in equation (3.3) constrained by the system of equations (3.1), one
has to solve the following Bellman’s equation (Fleming and Richel, 1975)

∂V

∂t
+min
u
[L∗(V ) + L(x, u)] = 0 (3.4)

where V = V (x, t) is the Lyapunov function proposed in the form

V (x, t) = α00 +
∑

p=2,4,6,...

p
∑

i=0

(

p
i

)

αp−i ix
p−i
1 x

i
2

(3.5)

L(x, t) = q1x
2
1 + q2x

2
2 + ru

2

L∗(·) is an infinitesimal operator defined by

L∗(·) = x2
∂(·)

∂x1
+ (−ω20x1 − 2hx2 − εx

3
1 − bu)

∂(·)

∂x2
+

(3.6)

+
1

2

[

δ20 + δ
2
1(−ω

2
0x1 + εx

3
1)
2 + δ22x

2
2

]∂2(·)

∂x22

For simplicity, we consider three cases: when n = 1 and p = 2, n = 3 and
p = 4, n = 5 and p = 6. Substituting quantities (3.5) and (3.6) into equation
(3.4) we minimize the obtained equation with respect to u. Then, we obtain
the linear algebraic relationships between coefficients kij and αij

k10 = a1α11 k01 = a1α02 k30 = 2a1α31

k21 = 2a1α22 k12 = 2a1α13 k03 = 2a1α04

k50 = 3a1α51 k41 = 3a1α42 k32 = 3a1α33

k23 = 3a1α24 k14 = 3a1α15 k05 = 3a1α06

(3.7)

where a1 = b/r.
Substituting quantities (3.5)-(3.7) into equation

∂V

∂t
+ L∗(V ) + L(x, u) = 0 (3.8)

and averaging with respect to the stationary measure generated by the out-
put process (solution to equation (3.1)) and equating the coefficients of even
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order polynomials to zero we find the nonlinear differential equations for the
coefficients αij , i+ j = p, i, j = 0, 1, ..., p, p = 2, 4, 6, ...

α̇ij(t) = Fij(α00, α10, ..., α06, ω
2
0 , h, ε, b, σ, q1, q2, r) (3.9)

In a general case, when both external and parametric excitations are conside-
red i.e. δ0 6= 0, δ1 6= 0 and δ2 6= 0 the stationary solutions to equations (3.9)
αij(∞) determine the optimal stationary coefficients kij = kij(∞), i+ j = q,
i, j = 0, 1, ..., q, q = 1, 3, 5, ... by relations (3.7). To find the optimal costs we
have to substitute the feedback control u defined by (3.3), (3.7) and αij(∞)
into the cost function I in equation (3.3). After averaging we find that the
cost function I depends on the stationary coefficients kij and stationary mo-
ments of the output process x = [x1, x2]

⊤ i.e. the quantities E[xp11 x
p2
2 ] where

p1 + p2 = 2, 4, 6, ... . These stationary moments can be found (approximately)
from moment equations for the original system (3.1) where u is defined by
(3.3), (3.7) and αij(∞) where, for instance, the cumulant closure technique
is applied. This can be treated as a general procedure. In a particular case
when only linear parametric excitations are considered i.e. δ0 6= 0, δ1 = 0 and
δ2 = 0, then the general procedure of the determination of the optimal con-
trol and minimal cost function reduces significantly. It has the form described
below.

Simplified procedure:

Step 1. We find the stationary solutions for αij , i+ j = 2, i, j = 0, 1, 2 from
the system of equations (3.9) which is closed.

Step 2. From equalities (3.7) we find the coefficients kij , i+ j = 1, i, j = 0, 1
and we substitute them into the moment equations.

Step 3. We find the stationary moments E[xixj], i+ j = 2, i, j = 0, 1, 2.

Step 4. Using the stationary solutions αij , kij and E[xixj] obtained in steps
1 to 3, similarly we find the stationary solutions for αij , i + j = 4,
i, j = 0, 1, 2, 3, 4 from system (3.9), kij , i + j = 3, i, j = 0, 1, 2, 3 from
system (3.7) and E[xixjxkxl], i+j+ l+k = 4, i, j, l, k = 0, 1, 2, 3, 4 from
the moment equations.

Step 5. Using the stationary solutions αij, kij , E[xixj] and E[xixjxkxl] ob-
tained in steps 1 to 4, similarly we find the stationary solutions for αij,
i+j = 6, i, j = 0, 1, ..., 6 from system (3.9), kij , i+j = 5, i, j = 0, 1, ..., 5
from system (3.7) and E[xixjxlxkxpxq], i + j + l + k + p + q = 6,
i, j, l, k, p, q = 0, 1, ..., 6 from the moment equations.
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Step 6. We calculate the stationary value of criterion (3.3) i.e. the integral
given by (2.4). The advantage of this procedure, when compared with
the general one, lies is in finding the stationary solutions to system of
equations (3.9) and moment equations. In the general procedure the-
se equations are coupled and have to be solved together while in the
simplified procedure they can be solved separately.

We illustrate this approach by the following example.

3.2. Example

We consider the Duffing oscillator for the following parameters ω20 = 1,
h = 0.01, δ0 6= 0, δ1 = 0, δ2 = 0, q1 = 100, q2 = 10, r = 1.
The plot of I versus parameters t, ε and δ0 is given in Fig. 1, Fig. 2 and

Fig. 3, respectively. The diagrams enable one to compare the first-order and
higher order controls.

Fig. 1. Cost function I versus coefficient t

3.3. Final conclusions

The minimization of the cost function I, (3.3), has been analysed for three
approximations of the control function, viz. approximation of the 1st order (li-
near approximation), 3rd order and 5th order. The obtained numerical results
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Fig. 2. Cost function I versus coefficient α

Fig. 3. Cost function I versus coefficient δ0
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indicate that the approximation of the 5th order is the closest to the solutions
of statistical linearization described in Socha (2000).

The method of series involving systems with one degree of freedom pre-
sented in this paper provides good and interesting results at a rather low
expenditure of labour, but in the case of systems with a larger number of
degrees of freedom this method proves to be ineffective due to a considerable
number of calculations to be done. Yet, the numerical results remain satis-
factory when compared with other methods of the statistical linearization, as
indicated in the master thesis by Nowoświat (1999).
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Optymalne sterownie parametrycznym i zewnętrznie wzbudzonym

oscylatorem Duffinga

Streszczenie

W pracy zaproponowano metodę perturbacji dla sterowania układów dynamicz-
nych z wymuszeniami o charakterze białych szumów Gaussowskich i kryteriami
w przestrzeni funkcji gęstości prawdopodobieństw. Przy wyznaczaniu współczynników
sterowania, jak również współczynników funkcji Lapunowa, korzysta się z równania
Bellmana. Tak wyznaczone współczynniki niezbędne są do minimalizacji funkcji kosz-
tów I. Szczegółową analizę i obliczenia numeryczne wykonano za pomocą procedur
Rungego-Kutty.
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