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The paper presents the background of an alternative formulation of the
Navier-Stokes equation using a variable called the magnetization. Several
variants of governing equations, based on different choices of a particular
gauge transform, are discussed. The remaining part of the paper is devo-
ted to the formulation of a Lagrangian approach to 2D and 3D viscous
flows. First, the carrier of the magnetization (the magneton) is defined
and the corresponding induction law is derived. The instantaneous velo-
city field is constructed as a superposition of contributions from a large
set of magnetons and a uniform stream. An essential feature of the me-
thod is a one-time-step operator splitting, consisting in the consecutive
solution of three sub-problems: generation of the magnetization on solid
boundaries, advection-diffusion of the magnetization and stretching.
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1. Introduction

Viscous incompressible flows are usually described by the set of the Navier-
Stokes and continuity equations

∂tv + (v · ∇)v = −∇p+ ν∆v
(1.1)

∇ · v = 0

The unknowns are the velocity field v and the pressure p. The fluid density
is assumed here to be unary. It should be noted that the pressure is determined
modulo an arbitrary function of time.
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According to a well-known theorem, any vector field can be expressed as
a sum of two components. One of these components is defined as a gradient
of a scalar field, while the second one is a solenoid vector field. Thus, the
divergence-free velocity v can be written as

v =m−∇φ (1.2)

The vector field m is called, after Buttke (Chorin, 1994), the ”magnetiza-
tion”. The correspondence m → (v, φ) is unique, providing that the normal
component of the velocity v at the boundary is equal to zero, and appro-
priate regularity conditions are satisfied. On the other hand, the transform
v → (m, φ) obtained from (1.2) is not unique. This fact allows us to formulate
the governing equations in alternative forms, employing various magnetization
fields. In the paper we show a few of them, discuss their properties, formula-
te a Lagrangian numerical method for the magnetization and finally present
results of some numerical experiments.

2. The gauge transform

Using velocity representation (1.2), the Navier-Stokes equation can be writ-
ten as

∂tm+ (v · ∇)v = ν∆m+∇(∂tφ− ν∆φ− p) = 0 (2.1)

Equation (2.1) can be viewed as a particular case of a more general equation

∂tm+ (v · ∇)v = ν∆m+∇λ (2.2)

where λ denotes some scalar field called a gauge field. We will refer to any
particular selection of the gauge field λ as a gauge transform.

Let us define the subspace of solenoidal vector fields

V = {v ∈ L2(Ω) : ∇ · v = 0 in Ω, v · n = 0 at ∂Ω}

Any square integrable vector field in Ω can be written as a sum of some
element from the space V and the gradient of a certain scalar field. This
decomposition is unique and the components are orthogonal with respect to
the inner product in L2(Ω). Thus, the orthogonal projection operator can be
defined

m→ Pm ≡ v ∈ V
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and equation (2.2) can be formulated as follows

∂tm+ (Pm · ∇)Pm = ν∆m+∇λ (2.3)

Assume that some gauge field λ has been chosen and the magnetization
field obeys equation (2.3). Then the solenoidal vector field v = Pm satisfies
the governing equations of a viscous liquid motion. Indeed, the continuity
equation is fulfilled since v ∈ V . The magnetization can be expressed as
m = v + ∇φ. Insertion of this form into (2.3) yields after some algebra the
following equation

∂tv + (v · ∇)v = ν∆v +∇(λ− ∂tφ+ ν∆φ) (2.4)

Thus, the vector field v satisfies the Navier-Stokes equation, and the corre-
sponding pressure is given as

p = ∂tφ+ ν∆φ− λ+ f(t) (2.5)

It can be shown that the gauge field λ can be chosen arbitrarily. Assume
there are two different magnetization fields m1 and m2 corresponding to the
gauge fields λ1 and λ2, respectively. The field m1 can be expressed as a sum
m1 = v+∇φ1. It is immediate to verify that equation (2.3) for λ = λ2 admits
the solution m2 in the following form

m2 = v +∇φ2
Thus, the solution m2 defines the same velocity field and can be also verified
that

∇(∂tφ1 − ν∆φ1 − λ1) = ∇(∂tφ2 − ν∆φ2 − λ2)
thus the resulting pressure fields differ only by a (time-dependent) constant.
If an initial/boundary-value problem formulated for equation (2.3) permits

a unique solution, then one concludes that the magnetization fields computed
for different gauges will correspond to the equivalent velocity and pressure
fields. Thus, the choice of a particular gauge is arbitrary. Note that the non-
linear term in equation (2.3) is a bilinear one. Looking for convenient variants
of equation (2.3), we assume the following form of the gauge field λ

λ =
1

2
αv · v + βv ·m+ 1

2
γm ·m (2.6)

After elementary calculations, we find the gradient of the above expression

∇λ = α[(v · ∇)v + v × rotv] + γ[(m · ∇)m+m× rotm]
(2.7)

+ β[(v · ∇)m+ (m · ∇)v + v × rotm+m× rotv]
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In (2.7) α, β, γ are arbitrary constants. Any particular choice of these
constants defines some gauge transform, which, in turn, determines a governing
equation for the magnetization field. Having it solved one is able to find the
potential φ, and then the pressure field can be determined with the use of
(2.5).

Here is a list of some particular, possibly interesting variants of the gauge
transform and the corresponding form of the governing equation:

Case 1: α = γ = 1, β = −1

∂tm+ (v · ∇)m = ν∆m+ (m · ∇)∇φ
(2.8)

p+
1

2
v2 = f(t) + ∂tφ− ν∆φ−

1

2
m ·m+m · v

Case 2: α = 1, β = −1, γ = 0

∂tm+ (v · ∇)m = ν∆m− (∇v)⊤m
(2.9)

p+
1

2
v2 = f(t) + ∂tφ− ν∆φ+m · v

Case 3: α = 1, β = 0, γ = −1

∂tm+ (m · ∇)m = ν∆m−∇φ× rotm
(2.10)

p+
1

2
v2 = f(t) + ∂tφ− ν∆φ+

1

2
m ·m

Case 4: α = 1, β = γ = 0

∂tm− v × rotm = ν∆m
(2.11)

p+
1

2
v2 = f(t) + ∂tφ− ν∆φ

Case 5: α = β = γ = 0,

∂tm+ (v · ∇)v = ν∆m
(2.12)

p = f(t) + ∂tφ− ν∆φ
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Case 2 has been introduced by Buttke (Chorin, 1994), Russo and Smerka
(1999) analysed cases 2, 4 and 5. Summers and Chorin (1996) made use of the
equations in case 2 and formulated the Lagrangian method for particles car-
rying magnetization. Generally, the Buttke gauge seems to be most popular.
Russo and Smerka remarked that the stretching term in the first equation in
(2.9), i.e. (∇v)⊤m is similar to the vortex stretching term in the Helmholtz
equation for the vorticity. This term describes the mechanism of the deforma-
tion of vortex structures in the flow, consisting in local stretching in one space
direction and compression in the remaining two. This behavior is related to the
existence of a large positive (or negative) eigenvalue of the tensor ∇v. The
dominating eigenvalue of ∇v renders the magnetization (or vorticity) tend
to be concentrated into the form of thin filaments oriented locally along the
corresponding eigendirection.

Changing the gauge one may be able to reduce this phenomenon. It seems
that the gauge defined in case 1 is a better choice. The stretching term in this
case has the form

(m · ∇)∇φ =mH(φ)

where H(φ) is the Hessian, i.e. H(φ) = {∂xixjφ}. The trace of this matrix,
equal to the sum of the eigenvalues, is not restricted by the incompressibili-
ty condition. This fact can reduce the tendency for high concentration and
instability.

In this study, the formulation with inhomogeneous terms with respect to
the magnetization will not be analysed. Any inhomogeneous term in the go-
verning equation acts as a source of the magnetization, i.e. the magnetization
is created at points where it was previously equal to zero. It seems to be
unreasonable to formulate a Lagrangian (or particle) approach based on such
formulation. In addition, the case 4 is not convenient for numerical compu-
tations. According to Russo and Smerka (1999) this formulation suffers from
essential instability which may be difficult to overcome.

3. The carrier of the magnetization

In order to construct a numerical method based on the Lagrangian appro-
ach one should define an elemental ”source” (or particle) of the magnetization
field. It is convenient (and natural) to assume spherical symmetry of the spa-
tial distribution of the magnetization insidesuch a particle. The radius of the
particle can be finite – in such a case the magnetization differs from zero inside
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the spherical ”core” and vanishes identically outside the core. If the radius is
infinite, the magnetization fills the whole space. The spatial distribution of the
magnetization should be, however, concentrated in a relatively small neighbor-
hood of the particle center. The effect of the ”localization” can be achieved
by applying, for instance, a ”slim” Gaussian distribution.
In the remaining part of this work, we will refer to the magnetization

particles (independently on the details of their construction) as the magnetons.
The magnetization field carried by a single magneton is defined as follows

m =m0(t)g(r) (3.1)

where r denotes the distance from the magneton center and g is a regular
core function.
The vector ”charge” of the magneton is, in general, time-dependent and it

is characterized by the scaling factor m0(t).
It should be clear that the potential term in decomposition (1.2) is defined

as a solution to the following Poisson equation

∆φ = divm = (m0 · ∇)g(r) (3.2)

The function φ can be sought in the form of (m0 ·∇)Φ(r), where Φ denotes a
new unknown function. It is described by another Poisson’s equation. Indeed,
insertion of the assumed form of φ in (3.2) gives

0 = ∆φ− (m0 · ∇)g = ∆(m0 · ∇)Φ− (m0 · ∇)g = (m0 · ∇)(∆Φ− g)

Since m0 is non-zero we conclude that:
— 2D case, angular symmetry

∆Φ = g(r) ⇒ 1

r

d

dr

(

r
dΦ(r)

dr

)

= g(r) (3.3)

— 3D case, spherical symmetry

∆Φ = g(r) ⇒ 1

r2
d

dr

(

r2
dΦ(r)

dr

)

= g(r) (3.4)

Then, the derivative of Φ is given as

dΦ

dr
=































1

r

r
∫

0

ξg(ξ) dξ for 2D case

1

r2

r
∫

0

ξ2g(ξ) dξ for 3D case

(3.5)
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The gradient of the function φ is expressed as follows

∇φ = ∇[(m0 · ∇)Φ] = ∇
(m0 · r
r

dΦ

dr

)

(3.6)

Finally, the velocity field induced by the single magneton with the center at
the origin can be derived as

u=































m0

[

g(r)− 1
r3

r
∫

0

ξ2g(ξ)dξ
]

− (m0 · r)r
r2

[

g(r)− 3
r3

r
∫

0

ξ2g(ξ)dξ
]

for 3D

m0

[

g(r)− 1
r2

r
∫

0

ξg(ξ)dξ
]

− (m0 · r)r
r2

[

g(r)− 2
r2

r
∫

0

ξg(ξ)dξ
]

for 2D

(3.7)
In particular, the velocity induced at the center of the magneton is equal to

u
∣

∣

∣

r=0
=















2

3
g(0)m0 for 3D case

1

2
g(0)m0 for 2D case

(3.8)

The reader may notice that, in the case of a finite core, the velocity induced
outside the core is potential. The magneton charge can be defined as

Q =































a
∫

0

ξ2g(ξ) dξ for 3D case

a
∫

0

ξg(ξ) dξ for 2D case

(3.9)

The symbol a denotes here the radius of the core. One can easily conclude
from (3.7) that for r  a the induced velocity is given by the formulas

u =











−∇
(

Q
m0 · r
r3

)

for 3D case

−∇
(

Q
m0 · r
r2

)

for 2D case
(3.10)

The boundary of the magneton core (the radius r = a) moves due to the
self-induction with the velocity

U =















2Q

a3
m0 for 3D case

Q

a2
m0 for 2D case

(3.11)
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The spherical shape of the core is preserved during the self-induced motion.
Note that in the case when Q = 0 there is no self-induction.

In the case of an unbounded core, one must reasonably assume that the
self-movement is equal to zero. This is equivalent to

lim
r→∞

1

r3

r
∫

0

ξ2g(ξ) dξ = 0 for 3D case

lim
r→∞

1

r2

r
∫

0

ξg(ξ) dξ = 0 for 2D case

(3.12)

Consider now the superposition of a number of magnetons with characteri-
stic vectors m0k and with the centers located at points rk. The total velocity
field is a sum of the contributions from each magneton

v =
∑

k

m0k(t)U(|r − rk|) (3.13)

In the above U denotes the matrix operator defined by induction formulas
(3.7).

In the following sections of this part of the paper, we focuse on the 3D
case. The two dimensional variant of the method can be derived analogously.

4. Lagrangian decomposition

In the rest of this paper, we will focus on those variants of the magnetiza-
tion equation, which can be cast in the following form

∂tm+ (v · ∇)m = ν∆m+ S(m) (4.1)

Equation (4.1) can be re-written using the material derivative

Dm

Dt
= ν∆m+ S(m) (4.2)

The above form describes the rate of change in time of the magnetization field
seen by an observer moving with a fluid element. This form of the governing
equation is an appropriate starting point for the formulation of a Lagrangian
method.
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Among different variants of the governing equations discussed in Section 2,
only first two cases lead to form (4.2). They differ with the shape of the
stretching terms, namely

S(m) =







(m · ∇)∇φ in case 1

(m · ∇)v in case 2
(4.3)

In the remaining part of this Section, we explain the basic elements of the
proposed numerical method.

We will use the Lagrangian decomposition of the magnetization field. First,
we write the magnetization as the sum of magnetons currently present in the
flow domain

m =
∑

k

m0kg(|r − rk|) (4.4)

The magnetons move accordingly to the fluid velocity and self-induced velocity
expressed by (3.11). The viscous effects can be simulated by random walks.

Indeed, taking the set of the stochastic differential equations

dxik = v
i
k dt+

√
2ν dW ik xik

∣

∣

∣

t=0
= xi0k (4.5)

where dW ik denotes infinitesimal increments of the Wiener processes, we ob-
tain the Fokker-Planck-Kolmogorov equation for the density of the transition
probability (Gardiner, 1990)

∂tp+ ∂xi(v
ip) = ν∆p (4.6)

The initial condition formulated for the transition probability is following

lim
t→t0
p(t, r|t0, r0) = δ(r − r0)

The solution to the homogeneous advection-diffusion problem can be expressed
as follows (Szumbarski and Styczek, 1997)

m =

∫

Ω

p(t, r|t0, r0)m0(r0) d3r0 ≈
∑

k

p(t, r|t0, r0k)4πm0k (4.7)

Following Chorin and Marsden (1997), we introduce the following fractional-
step approach. The time advancing the magnetization field at each interval
[tn, tn+1] is carried out in three consecutive sub-steps:
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Step 1. Creation of new magnetons at the boundary

At the beginning of a new time step the boundary distribution of the
magnetization should be modified in order to satisfy the assumed boundary
condition for the velocity field. Thus, we can write

m′ =m(n) +m
(n+1)
∂Ω (4.8)

where m
(n+1)
∂Ω denotes the new magnetization created in close vicinity of the

boundary at the beginning of the (n+1)th time step. This new magnetization
is such that the velocity ”induced” by the magnetization m′ defined as v′ =
Pm′ satisfies the boundary condition.
The magnetization field obtained in this sub-step can be expressed by

introducing the operator B as follows

m′ = Bm(n) ≡m(n) +m(n+1)∂Ω (4.9)

In the Lagrangian method, the magnetization m
(n+1)
∂Ω is approximated by

a certain number of new magnetons injected into the flow domain near the
boundary of an immersed body.
Detailed description of this procedure is given in the next Section.

Step 2. Advection-diffusion

In this sub-step, the magnetization is modified due to the transport by
advection and diffusion. It means that all magnetons are moved to their new
locations accordingly to the Itô equations

dri′ = v
′
i′ dt+

√
2ν dW i′ (4.10)

The lower subscript i′ refers to all magnetons, including new magnetons in-
jected near the boundary. Stochastic equations (4.10) are to be integrated
over the time interval [tn, tn+1] using some numerical integration scheme. The
length of the interval is τ = tn+1 − tn. Consequently, we obtain modified
magnetization field. One can summarize this operation as follows

m′(r) =
∑

i′∈I′

m0i′g(|r − ri′ |)⇒m′′(r) =
∑

i′∈I′′

m0i′g(|r − ri′ −∆ri′ |) (4.11)

In expression (4.11), the vector function mi′ describes the magnetization di-
stribution induced by the i′th magneton. It should be remarked that the range
I ′′ of the second summation might be different than the range I ′ of the first
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summation. This is so because a certain number of the magnetons always
”diffuses” across the boundary beyond the computational domain.

The instantaneous magnetization field m′′ resulting from the advection-
diffusion sub-step can be expressed by introducing another operator

m′′ = Ξ1τm
′ (4.12)

Step 3. Stretching

In the last sub-step, one should account for the stretching term in magneti-
zation equation (4.1). Hence, the following (deterministic) differential equation

∂tm = S(m) (4.13)

should be integrated over the time interval [tn, tn+1] with the initial condition
m(tn) =m

′′. In effect, one obtains the final distribution of the magnetization
at the time instant tn+1. Again, the operator notation can be used

m(n+1) = Ξ2τm
′′ (4.14)

The composition of the three operators introduced above defines completely
the evolution of the magnetization field during one time step, namely

m(n+1) = Ξ2τ Ξ
1
τBm

(n) (4.15)

The above formula can be used to obtain an approximate solution at the time
instant t = t0+T (here t0 denotes the initial time). Indeed, fixing the number
of time steps n, we can set τ = T/n and using recursively (4.15), we arrive at

m
∣

∣

∣

t0+T
≈ (Ξ2τ Ξ1τ B)nm

∣

∣

∣

t0
(4.16)

The convergence of the splitting approach with is guaranteed by the Lie-
Trotter formula (see Chorin and Marsden, 1997), which in our case can be
written as follows

m
∣

∣

∣

t0+T
= (Ξ2T/n Ξ

1
T/nB)

nm
∣

∣

∣

t0
(4.17)

being actually the limit form of (4.16).
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5. Velocity decomposition and boundary conditions

Consider a flow past a rigid body. The flow domain is unbounded and the
stream at infinity is assumed homogeneous

v
∣

∣

∣

∞
= U∞ (5.1)

On the surface of the body, the velocity field vanishes, i.e.

v
∣

∣

∣

A
= 0 (5.2)

We express the velocity field in the flow domain as a sum of the contributions
induced by two ensembles of the magnetons. The first ensemble contains the
magnetons created at earlier time steps and remaining in the flow domain at
the considered time instant – these magnetons will be referred to as ”old”
magnetons. The second ensemble is formed with the magnetons created in the
flow domain at the current instant of time, i.e. with ”new” magnetons. Thus,
the complete velocity field can be written as follows

v = U∞ +
∑

k

m00kU(|r − r0k|) +
M
∑

k=1

mn0kU(|r − rnk |) (5.3)

It is assumed that all parameters m00k and r
0
k characterising the current ”char-

ge” and position of all old magnetons are known. On the other hand, the pa-
rameters mn0k and r

n
k of the new magnetons are unknown and have to be

determined at each time step of the flow simulation. We assume that the new
magnetons will be generated near the body surface A.
The surface A is divided into M small parts A1, A2, .., AM , and the kth

new magneton is placed over Ak, with its center located at a small distance
above the surface. The positions rnk , k = 1, ..,M of the ”generation points” are
then defined and the only remaining unknowns are the characteristic vectors
mn0k, k = 1, ..,M .
In can be concluded from (3.10) that m0U(r) → 0 as r → ∞, and thus,

asymptotic condition (5.1) is satisfied. Using boundary condition (5.2) one
writes for r ∈ A

M
∑

k=1

mn0kU(|r − rnk |) = −U∞ −
∑

k

m00kU(|r − r0k|) (5.4)

Let eα
∣

∣

∣

Ai
, α = 1, 2, 3 denote the triple of the versors at a certain collocation

point within the surface segment Ai. A possible choice is the triple consisting
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of the normal and two different tangent versors at each collocation point, or
simply the three versors of the global Cartesian reference frame. Computing
the scalar product of the last equation with three versors at each collocation
point, we obtain (α = 1, 2, 3)

M
∑

k=1

mn0kU(|rAi − rnk |)eα
∣

∣

∣

Ai
= −U∞eα

∣

∣

∣

Ai
−
∑

k

m00kU(|r − r0k|)eα
∣

∣

∣

Ai
(5.5)

where rAi denotes the position of a collocation point belonging to the seg-
ment Ai. Consequently, we have a linear algebraic system of 3M equations. If
the shape of the surface and other geometrical parameters are fixed in time,
the matrix of the system is fixed as well and it can be evaluated (and possibly
LU-factorized) once and forever.

Solution to the linear system yields complete information about new gene-
ration of the magnetons, and thus about the complete velocity and vorticity
fields at a given instant of time. The velocity field satisfies the boundary con-
dition at the chosen array of the collocation points.

It should be remarked that alternative approaches to the boundary condi-
tions are also possible. One can consider an integral-type rather than point-
wise enforcement of the boundary condition on the surface. Such an approach
would consist in integration of the tangent velocity along two different (possi-
bly perpendicular) line segments located within the surface element Ai, and
demanding these integrals to be equal to zero. The normal component of the
velocity is set to zero at the collocation point, as previously.

6. Advection-diffusion and stretching

The advection-diffusion operator working over one time step has been al-
ready mentioned. It describes a one-time-step advancing of the magnetization
field. Let us summarize the essential steps defining this operator. Having com-
plete knowledge of the magnetons created up to a given instant, we construct
a ”magnetization layer”, which is adjacent to the boundary and consists of
the newly born magnetons. These new magnetons are created at fixed loca-
tions but their vector ”charges” are initially unknown. They are chosen so
that the boundary condition for the velocity field is satisfied. At this point
one has to solve the linear system of 3M equation, where M denotes the
number of the newly generated magnetons. After that, the magnetization field
is completely defined and all magnetons are moved to their new locations by
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performing one-time-step integration of stochastic differential equations (4.2).
The instantaneous velocity of the jth magneton is expressed as

vj = U∞ +
2Q

a3j
m0j +

∑

k 6=j

m0kU(|rj − rk|) (6.1)

i.e. as the sum of the free-stream velocity, self-induced velocity (3.11) and the
velocity induced by other magnetons in the flow domain. The change of the
positional vector rj of the magneton during one time step is determined by
numerical integration of Itô differential equations (4.10). As an example, one
can consider the Euler integration scheme leading to the following formula

∆rj = vj∆t+
√
2ντ N (0, 1)j (6.2)

In the above, τ denotes the length of the time step and N (0, 1)j denotes the
random vector, the components of which are independent random variables
with the standard Gaussian distribution. More sophisticated, higher-order in-
tegration schemes are also available. The reader should refer to Kloeden and
Platen (1999) for more details.

It should be noted that due to the presence of the random component
in equation (6.2), the magnetons can penetrate the surface and jump into
the body interior. This is a manifestation (on the ”kinetic” level) of the dif-
fusion of the magnetization through the boundaries. The magnetons beyond
the flow domain can be removed from the simulation or they can be reflected
back. Kinetic equations (6.2), together with the removal or reflection approach,
complete the description of the advection-diffusion operator Ξ1τ .

The last operator is defined by a stretching equation. We re-write it in the
following form

∂tm
α = −mβ∂xαvβ (6.3)

in case 2, or as

∂tm
α = mβ∂xα,xβφ (6.4)

in case 1.

Both matrix operators appearing in the right-hand sides of (6.3) and (6.4)
are known. We substitute here the Lagrangian decomposition and solve equ-
ation (6.3) or (6.4) for each magneton. This approach is justified by the follo-
wing fact. If for a given matrix operator Bαβ and vectors mk, k = 1, 2, ..,M
one has

∂tm
α
k = Bαβm

β
k (6.5)
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then, as a result of the formal linearity with respect to m, the basic equation
holds. Inserting the expression for mαk we write

g(|r − rk|)
dmα0k
dt
=







−mβ0kg(|r − rk|)∂xαvβ

mβ0kg(|r − rk|)∂xα,xβφ
(6.6)

Integrating the above equation over the support of the core function g we get

4π
dmα0k
dt
= B0αβm

β
0k (6.7)

where the matrix operator depends on rk only and has the following form

B0αβ =

∫

ρ¬a

{

vβ(rk + ρ)

−∂xβφ(rk + ρ)

}

dg(ρ)

dρ

xα
ρ
dΩρ (6.8)

In the derivation of (6.8) the equality g(a)=0 and the integration by parts
have been employed.

As we see, the stretching is described by the system of 3N ordinary dif-
ferential equations with constant coefficients. Its dimension is equal to the
tripled number of all magnetons present in the flow domain at a given instant
of time. Thus, its dimension is large and can be excessively large for long flow
simulations.

7. Final remarks

The Lagrangian approach to the velocity-vorticity formulation known as
the Vortex Blobs Method (see Protas (2000) for exhaustive list of references)
allows solving many interesting problems. In the vortex method, the formula-
tion involves only kinematic quantities: the velocity and vorticity. Once these
fields are determined, the pressure can be recovered (protas et al., 2000). As a
physical quantity, the pressure must be a univalued function of time and spa-
ce variables. This fact brings a fundamental condition constraining the total
charge of the vorticity, being nontrivial for flows in multi-connected domains.
It is essential that the implementation of this condition gives an effect of stabi-
lization of a numerical process (see Błażewicz and Styczek, 1993; Szumbarski
and Styczek, 1999; Protas, 2000), which otherwise tends to generate physically
absurd ”solutions”.
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The existence of an additional condition of global nature is one of the main
differences between the vortex and the magnetization methods. The pressure
recovery does not require any further restriction of the magnetization because
it is based on explicit formula (2.5) (in the vortex method it is based on a
formula for the pressure gradient).
There exists, however, a numerical evidence, which seems to indicate that

some kind of (yet unknown) stabilizing condition is indeed necessary. Russo
and Smerka (1999) and Summers and Chorin (1996) presented a sample of
numerical computations. They encountered unstable behavior rendering im-
possible sensible long-time simulations of flow evolution. These observations
are in agreement with the results obtained by the authors, discussed in Sec-
tion 2 of this paper.
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Streszczenie

W artykule przedstawione jest sformułowanie problemu granicznego dla równań
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(zwane magnetonami) poruszają się w indukowanym polu prędkości, wykonują ruch
losowy odpowiadający dyfuzji i podlegają przekształceniu w sposób opisany członem
źródłowym (tzw. stretching). Warunek brzegowy formułowany na opływanym ciele
jest realizowany przez tworzenie w każdej chwili nowych cząstek ulokowanych w bli-
skim otoczeniu powierzchni ciała.
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