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This paper aims to examine the electro-kinetic flow through nano-channels. The equations
governing the fluid flow in a one dimensional channel are derived from the Poisson-Nernst-
Planck theory. The boundary conditions for the governing equations are obtained from
the electrochemical equilibrium requirements. The coupled equations are transformed into
a single differential equation. The transformed equation is solved by He’s homotopy per-
turbation method and an exact solution is achieved. The validity of results is verified by
comparing with existing numerical results. The results are presented for velocity profiles,
electrical potential distributions, mole fraction of cation and anion distributions and other
physical properties. The results demonstrate reasonable agreement with those provided by
other numerical methods and good accuracy of the obtained analytical solutions.
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Nomenclature

φ∗ – electrical potential [V]
φ – dimensionless electrical potential [–]
φ0 – potential scale, φ = RT/F
r∗ – vector of location [nm]
εr – dielectric constant, εr = 8.854 · 10−12 C/(Vm)
ε0 – permittivity of free space [–]
ρi – number density, ρi = NAci [number/m

3]
NA – Avogadro number, NA = 6.022 · 1023
zi – valence of ion [–]
ci – concentration of ion [mole/m3]
c – total concentration, c =

∑

ci + csolvent
Xi – mole fraction of ion, Xi = ci/c
I – ionic strength, I =

∑

zic
2
i

T – temperature [K]
F – Faraday constant, F = 96485.3415 C/mole
k – Boltzmann constant k = 1.38065 · 1023 j/k
R – universal ideal gas constant, R = 8.3144 j/(mole k)

λ – Debye length, λ = F−1
√
εERTI−1

u∗ – velocity [m/s]
u0 – average electro-osmotic velocity [m/s]
u – dimensionless velocity
µ – viscosity [Kg/(ms)]
Di – Diffusion coefficient [–]
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Re – Reynolds number, Re = ρu0H/µ
Sc – Schmidt number, Sc = µ/ρDi
x∗, y∗, z∗ – Cartesian coordinate
x, y, z – dimensionless Cartesian coordinate

Subscripts: − – anion, + – cation.

1. Introduction

Miniaturization has been one of the swiftest revolutions in the scientific and industrial world
during last century. The term “micro and nano fluidics” was invented about 40 years ago when
micro-fabricated fluid systems were developed at Stanford (gas chromatography) and at IBM (ink
jet printer nozzles) (Zheng, 2003). Micro and nano fluidics, the study of fluid flow in micrometer
or nanometer sized devices, is one of the disciplines on which the operation of MEMS-NEMS
depends. In recent years, scientists have studied the transport of fluids through micro and
nano channels, analyzed aqueous solutions with a number of electrolytes, and calculated electric
fields, flow fields and ion distributions. The derived differential equations are strongly nonlinear
and coupled. Results of solving those nonlinear equations can help scientists to deeply know the
described process. The solutions of these nonlinear equations are normally obtained by using, for
example, traditional finite difference methods. In numerical methods, stability and convergence
should be considered to avoid divergence or inappropriate results. It is often so hard to gain an
analytical solution for these kinds of problems which include nonlinear terms. In recent decades,
analytical solutions have developed for nonlinear differential equations. One of these methods is
the Homotopy Perturbation Method (HPM).
The homotopy perturbation method was introduced by Ji-Huan He for the first time (1999,

2000a,b, 2001, 2003, 2006, 2009). This method has been used by many authors such as Ganji
and Sadighi (2006,2007), Ganji et al. (2007a,b) and the corresponding ones included in authors’
references (Ariel et al., 2006; Ariel, 2010; Biazar and Ghazvini, 2007; Ghorbani and Saber-
Nadjafi, 2007; Gorji, et al., 2007; Tari et al., 2007; Yusufoglu, 2007). These papers are published
to handle a wide variety of scientific and engineering applications such as linear and nonlinear,
homogeneous and inhomogeneous as well, because this method continuously transforms a diffi-
cult problem into a simplest form, which is solvable. It has been shown by many authors that
these methods provide improvements over existing numerical techniques. These methods give
successive approximations of high accuracy of solutions.
The aim of this paper is to analytically study the electro-kinetic flow in a nano-channel.

The results are compared with numerical outcomes presented in pervious works. However, an
analytical expression is more convenient for engineering calculations and is also the obvious
starting point for a better understanding.

2. Homotopy perturbation method

To explain this method, let us consider the following function

A(u)− f(r) = 0 r ∈ Ω (2.1)

with the boundary conditions

B
(

u,
∂u

∂n

)

= 0 r ∈ Γ (2.2)

where A, B, f(r) and Γ are a general differential operator, a boundary operator, a known
analytical function and the boundary of the domain Ω, respectively.
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Generally speaking, the operator A can be divided into a linear part L and a nonlinear
part N(u). Equation (2.1) can therefore be written as

L(u) +N(u)− f(r) = 0 (2.3)

By the homotopy technique, we construct a homotopy u(r, p) : Ω × [0, 1]→ R. This satisfies

H(v, p) = (1− p)[L(v)− L(u0)] + p[A(v) − f(r)] = 0 p ∈ [0, 1] r ∈ Ω (2.4)

or

H(v, p) = L(v)− L(u0) + pL(u0) + p[N(v)− f(r)] = 0 (2.5)

where p ∈ [0, 1] is an embedding parameter, while u0 is the initial approximation of Eq. (2.1),
which satisfies the boundary conditions. Obviously, from Eqs. (2.4) and (2.5) we will have

H(v, 0) = L(v) − L(u0) = 0 H(v, 1) = A(v) − f(r) = 0 (2.6)

The changing process of p from zero to unity is just that of v(r, p) from u0 to u(r). In topology,
this is called deformation, while L(v)− L(u0) and A(v) − f(r) are called homotopy.
According to the HPM, we can first use the embedding parameter p as a “small parameter”,

and assume that the solutions to Eqs. (2.4), (2.5) can be written as a power series in p

v = v0 + pv1 + p
2v2 + . . . (2.7)

Setting p = 1 yields in the approximate solution to Eq. (2.4)

u = lim
p→1
v = v0 + v1 + v2 + . . . (2.8)

The combination of the perturbation method and the homotopy method is called the HPM,
which eliminates the drawbacks of traditional perturbation methods while keeping all its advan-
tage.

Series (2.8) is convergent for most cases. However, the rate of convergence depends on the
nonlinear operator A(v). Moreover, He (1999) made the following suggestions:

• The second derivative of N(v) with respect to v must be small because the parameter
may be relatively large, i.e. p→ 1.
• The norm of L−1(∂N/∂V must be smaller than one so that the series converges.

3. Mathematical model

Water is an efficient solvent for most polar molecules and electrolytes, although it does not
dissolve many organic substances. Many experiments discussed in this work are done using
aqueous solution; however, the model is also effective for other solvents. It is also assumed
that the solution in nano-channels is incompressible, which is generally accepted because of
the properties of liquids. Furthermore, the electro-osmotic flow in nano-channels is a laminar
flow, because the Reynolds number (Re) in this case will be very small. According to Poisson’s
equation

∇2φ∗(r∗) = − 1
εrε0
ρE(r

∗) = − 1
εrε0
e
∑

i

ziρi(r
∗) (3.1)
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The potential scales φ0 and εe were defined as

φ0 =
KT

e
=
RT

F
εe = ε0εr (3.2)

The dimensionless form of governing equations can be gained by applying the following para-
meters

φ =
φ∗

φ0
x =
x∗

L
y =
y∗

h
z =
z∗

W
(3.3)

Subsequently, we have

ε21
∂2φ

∂x2
+
∂2φ

∂y2
+ ε22
∂2φ

∂z2
= −FCh

2

εeφ0

∑

i

ziXi = −
β

ε2

∑

i

ziXi (3.4)

where

ε1 =
H

L
ε2 =

h

W
ε =
λ

h
β =
c

I
λ =
1

F

√

εeRT

I

For the steady state, the mass transport and momentum equations in the dimensionless form
for an electro-chemical system are obtained as follows

∇2Xi + zi∇ · (Xi∇φ)− ReSc∇ · (Xiu) = 0

Re(v · ∇)v = −∇P − Fcφ0hziXi
µu0

∇φ+∇2v
(3.5)

For a one-dimensional channel demonstrated in Fig. 1

ε1 =
H

L
≪ 1 ε2 =

H

W
≪ 1 Re≪ 1

Therefore, the derivatives respected to the x and z directions were neglected so Eqs. (3.4) and
(3.5) reduce to

d2φ

dy2
= − β
ε2

∑

i

Xi
d2Xi
dy2
+ zi
d

dy

(

Xi
dφ

dy

)

= 0
d2U

dy2
= − β
ε2

∑

i

Xi (3.6)

Fig. 1. Geometry of one dimensional channel; W ≫ h, L≫ h

In the nano-channel illustrated in Fig. 1, if the electrolyte consists of monovalent cation and
monovalent anion, such as sodium chloride, governing Eqs. (3.6) are gained as follows

d2φ

dy2
= − β
ε2
(X+ −X−)

d2u

dy2
= − β
ε2
(X+ −X−)

d

dy

(dX+
dy
+X+

dφ

dy

)

= 0
d

dy

(dX−
dy
−X−

dφ

dy

)

= 0

(3.7)

The boundary conditions for described equations, Eqs. (3.7) are

φ(0) = φ(1) = 0 u(0) = u(1) = 0

X−(0) = X−(1) = X
0
−

X+(0) = X+(1) = X
0
+

(3.8)
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4. Equation reduction

Equations (3.7)1,2 are similar in the expression and boundary conditions. Therefore, we only
consider Eqs. (3.7)1 to (3.7)4 for solution. From Eqs. (3.6)3 and (3.7)1 we have

dX+
dy
+X+

dφ

dy
= a =⇒

1
∫

0

dφ

dy
dy =

1
∫

0

1

X+

(

a− dX+
dy

)

dy

=⇒ φ(1) − φ(0) = a
1
∫

0

dy

X+
− ln X+(1)
X+(0)

dX−
dy
−X−

dφ

dy
= b =⇒

1
∫

0

dφ

dy
dy =

1
∫

0

1

X−

(

−b+ dX−
dy

)

dy

=⇒ φ(1) − φ(0) = −b
1
∫

0

dy

X−
+ ln
X−(1)

X−(0)

(4.1)

With combining boundary conditions (3.8)1,2 with the equations above, we have

a

1
∫

0

dy

X+
= 0 =⇒ A = 0 b

1
∫

0

dy

X−
= 0 =⇒ b = 0 (4.2)

So Eqs. (3.6)3 and (3.7)1 could be rewritten in the following forms

dX+
dy
+X+

dφ

dy
= 0 =⇒

y
∫

0

dφ = −
X+
∫

X0
+

dX+
X+
=⇒ φ(y) = − ln X+

X0+

dX−
dy
−X−

dφ

dy
= 0 =⇒

y
∫

0

dφ =

X+
∫

X0
+

dX−
X−
=⇒ φ(y) = ln X−

X0
−

ln
X−
X0
−

= − ln X+
X0+
=⇒ X+(y)X−(y) = X0+X0−

(4.3)

Finally, substitute Eqs. (4.3) into (3.7)1, which leads to

X−
d2X−
dy2

−
(dX−
dy

)2

+
X0+X

0
−
β

ε2
X− −

β

ε2
X3
−
= 0 (4.4)

The above ordinary differential equation governs the mole fraction of onion distribution. We
applied the HPM on Eq. (4.4) to achieve an analytical solution.

5. Application of homotopy perturbation method

We consider Eq. (4.4) with a monovalent electrolyte such as NaCl, and T = 25◦C, h = 20 nm,
X0+ = 0.00276, X

0
−
= 0.00254, therefore: λ = 0.8 nm, ε = λ/h = 0.04, I = 294.68mole/m3,

β = 188.679.
According to the HPM, we can construct homotopy of Eq. (4.4) as follows

H(u, P ) = (1− p)
[(

X−(y)
d2X−(y)

dy2
− β
ε2
X−(y)

3
)

−
(

X−0(y)
d2X−0(y)

dy2
− β
ε2
X−0(y)

3
)]

+ p
[(

X−(y)
d2X−(y)

dy2
− β
ε2
X−(y)

3
)

+
X0+X

0
−
β

ε2
X−(y)−

(dX−(y)

dy

)2]

= 0

(5.1)
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Substituting X− = X−0 + PX−1 + P
2X02 + . . . into Eq. (5.1) and rearranging the resultant

equation based on powers of P -terms, we have

P 0 :
[(

X−0(y)
d2X−0(y)

dy2
− β
ε2
X−0(y)

3
)

−
(

X−0(y)
d2X−0(y)

dy2
− β
ε2
X−0(y)

3
)]

= 0

X−0(0) = X−0(1) = X
0
−
= 0.00254

(5.2)

P 1 : X−0(y)
d2X−1(y)

dy2
− 3.53773125 · 105X−0(y)2X−1(y) +

d2X−0
dy2
X−1(y)

−
(dX−0
dy

)2

+
d2X−0
dy2
X−0(y) + 0.8266498688X−0 (y)− 1.179243750 · 105X−0(y)3 = 0

(5.3)
X−1(0) = X−1(1) = 0.0

P 2 :
d2X−2(y)

dy2
X−0(y) +

d2X−1(y)

dy2
.X−1(y) +

d2X−0(y)

dy2
.X−2(y)

− 2dX−0(y)
dy

dX−1(y)

dy
− 3.537731250 · 105X−0(y)2X−2(y)

− 3.537731250 · 105X−0(y)X−1(y)2 + 0.8266498688X−1 (y) = 0
X−2(0) = X−2(1) = 0.0

(5.4)

P 3 :
d2X−3(y)

dy2
X−0(y) +

d2X−2(y)

dy2
X−1(y) +

d2X−1(y)

dy2
X−2(y) +

d2X−0(y)

dy2
X−3(y)

− 2dX−0(y)
dy

dX−2(y)

dy
−
(dX−1(y)

dy

)2

− 3.537731250 · 105X−0(y)2X−3(y)

− 7.07546250 · 105X−0(y)X−1(y)X−2(y) + 0.8266498688X−2 (y)
− 1.17924375 · 105X−1(y)3 = 0

X−2(0) = X−2(1) = 0.0

(5.5)

X−(y) can be written as follows by solving Eqs (5.2) to (5.5)

X−0 = 0.00254

X−1(y) = −7.021198794 · 10−18e29.97638633Y − 0.00007328084019e−29.97638633Y

+ 0.00007328084019

X−2(y) = −2.340399598 · 10−18e29.97638633Y − 0.00002442694673e−29.97638633Y

+ 0.00002442694673

X−3(y) = −7.106629101 · 10−19e29.97638633Y − 0.00007417248346e−29.97638633Y

+ 0.00007417248346

(5.6)

In the same manner, the rest of components was found using the Maple package.
According to the HPM, we can conclude that

X−(y) = lim
p→1
X−(y) = X−0(y) +X−1(y) +X−2(y) + . . . (5.7)

Therefore, substituting the values of X−0(y), X−1(y), X−2(y) etc. from Eqs. (5.6) into Eq. (5.7),
yields

X−(y) = −1.026419033·10−17e29.97638633Y −0.0001071282146e−29.97638633Y +0.002647128214
(5.8)
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Substituting Eq. (5.8) into Eqs. (4.3)1,2, we found

X+(y) = 7.01 · 10−6
(

−1.026419033 · 10−17e29.97638633Y − 0.0001071282146e−29.97638633Y

+ 0.002647128214
)−1

φ(y) = u(y) = ln
[(

−1.026419033 · 10−17e29.97638633Y − 0.0001071282146e−29.97638633Y

+ 0.002647128214
)

0.00254−1
]

(5.9)

The shear stress is provided by derivation of Eq. (5.9)2

τ(y) =
−1.211351711 · 10−13e29.97638633Y + 1.264297932e−29.97638633Y

−4.041019814 · 10−15e29.97638633Y − 0.0421764244e−29.97638633Y + 1.042176462
(5.10)

6. Results and discussion

The procedure adopted in this paper for the current investigation of the electro-dynamic problem
in a nano-channel can be described as follows:

By using some mathematical calculations, the coupled differential equations, Eqs. (3.7), are
reduced to Eq. (4.4). Equation (4.4) with the boundary conditions, Eq. (3.8)3, is solved by using
the HPM. The detailed procedural steps are follows:

• Firstly, the anion mole fraction distribution is computed by solving Eq. (4.4) given with
the boundary conditions, Eq. (3.8)3.

• Secondly, the electric potential, the velocity and the cation mole fraction distribution are
solved by using equations (4.3)2 and (4.3)3, respectively.

The shear stress is solved by derivation of velocity distribution. In this work, we found that
the product of anion mole fraction into cation mole fraction at any point is constant. The
comparisons are shown in Figs. 2 and 3 and Table 1, are in very good agreement with the
solutions presented by Zheng (2003).

Fig. 2. The comparison between the FDM by Zheng (2003) and HPM solutions for X
−
(y) (a) and

for X+(y) (b)
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Fig. 3. The comparison between the FDM by Zheng (2003) and HPM solutions for φ(y) and u(y) (a)
and for τ(y) (b)

Table 1. The comparison between the FDM by Zheng (2003) and HPM solutions

y
X−(y) X+(y) φ(y) and u(y)

FDM HPM FDM HPM FDM HPM

0 0.0025400000 0.0025400000 0.0027600000 0.002759842 0.0000000 −2.36224E-10
0.1 0.0026383916 0.0026417820 0.0026571803 0.0026533119 0.0379657845 0.0392896102

0.2 0.0026469254 0.0026468614 0.0026485279 0.0026484197 0.0411937238 0.0412104844

0.3 0.0026476253 0.0026471148 0.0026477585 0.0026481661 0.0414572920 0.0413062486

0.4 0.0026476661 0.0026471275 0.0026476733 0.0026481534 0.0414721722 0.0413110268

0.5 0.0026476635 0.0026471281 0.0026476606 0.0026481528 0.0414709923 0.0413112534

0.6 0.0026476661 0.0026471275 0.0026476733 0.0026481534 0.0414721722 0.0413110268

0.7 0.0026476253 0.0026471148 0.0026477585 0.0026481661 0.0414572920 0.0413062486

0.8 0.0026469254 0.0026468614 0.0026485279 0.0026484197 0.0411937238 0.0412104844

0.9 0.0026383916 0.0026417820 0.0026571803 0.0026533119 0.0379657845 0.0392896102

1.0 0.0025400000 0.0025400000 0.0027600000 0.002759842 0.0000000 −2.4733E-10

7. Conclusion

In this paper, we successfully applied the homotopy perturbation method to solve a nonlinear
differential equation with given boundary conditions for a nano-channel and showed graphical
results of velocity, electric potential and ion mole fraction. The results were compared with the
numerical solution available in the literature using the FDM, and a very good agreement was
observed. The outcomes prove the effectiveness and accuracy of the HPM. The current work
presents a new application of the HPM which could be used for similar problems in a wide range
of engineering situations. The key-factor of this paper is based on analytical solution of electro-
kinetic problems in a nano-channel. Although these results obviously show that the product
of anion mole fraction into cation mole fraction at any point is constant and also in the bulk
of the channel, the mole fractions of cations and anions are the same, which implies that the
electrolytic solution is neutral in the bulk, and the concentration difference between cation and
anion species reaches its maximum at the wall.
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Analityczne rozwiązania uzyskane perturbacyjną metodą homotopii He’go dla

elektrokinetycznego przepływu przez nano-struktury

Streszczenie

Celem pracy jest przedstawienie wyników badań nad elektrokinetycznym przepływem cieczy przez
nano-kanały. Równania opisujące przepływ w jednowymiarowym kanale wyprowadzono na podstawie
teorii Poissona-Nernsta-Plancka. Warunki brzegowe uzyskano po spełnieniu wymogów równowagi elek-
trochemicznej układu. Sprzężone równania przepływu przekształcono do postaci pojedynczego równania
różniczkowego. Następnie rozwiązano go za pomocą perturbacyjnej metody homotopii He’go, otrzymując
wyrażenie analityczne i dokładne. Poprawność rezultatów sprawdzono, porównując je z istniejącymi wy-
nikami symulacji numerycznych. Zaprezentowano profile prędkości przepływu, rozkłady potencjału elek-
trycznego, molowe udziały frakcji anionów i kationów oraz inne parametry fizyczne układu. Wszystkie
wyniki wykazały dobrą zgodność z obliczeniami opartymi na innych metodach badawczych, co potwier-
dziło dokładność otrzymanych rozwiązań analitycznych.
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