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Proposals of two models of a load lifted by cranes have been discus-
sed. Special attention has been paid to the phenomena occurring before
detachment of the load from the ground. Stick-slip motion of the load
on the foundation has been observed. One of two models presented –
the model in the form of a rigid body resting on an elastic foundation
has turned out to be more advantageous for the analysis of the lifting
process. The results of numerical computations have revealed a pheno-
menon of solution bifurcation that occurs at a slight change in values of
parameters of the model.
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1. Introduction

The load hoisting process is an interesting problem in dynamics of bodies.
The positioning of a load and anti-sway prevention are examples of practical
applications.

The task that consists in computer simulation of load motion during its
lifting from the ground in the situation when the rope direction is not vertical
can be of significance from the practical point of view. Under normal operating
conditions of a crane, this way of lifting a load is not proper, however it can take
place under certain circumstances. For instance, for rescue trucks equipped
with cranes that are used to lift auto hulks out of ditches, this kind of work is
not exceptionally rare.

When there is a necessity to shift a load with respect to the ground or
if the vertical direction of the rope cannot be maintained, the lifting process



854 J.Grabski, J. Strzałko

becomes complex. In such cases, frictional effects, rotations of the load, and
load impacts due to collisions with the ground may occur. The consideration
of these phenomena makes the algorithm and the load dynamics analysis more
complex. Thus, a rigid body seems to be a suitable load model for such a task
(cf. Strzałko and Grabski, 1998).

In the literature devoted to lifting and carrying loads, the most often mo-
del of the lifted load is a particle (e.g. Borkowski et al., 1996, Jedliński and
Grzesikiewicz, 1990; Strzałko and Grabski, 1995; Hakala and Sorsa, 1998; Ma-
czyński and Kościelny, 1999; Tomczyk and Cink, 1999; Miyata et al., 2001;
etc.), and sometimes a 2D rigid body (cf. Grabski 1998). A three-dimensional
model of a crane and a particle model of a load has been analysed by Wojna-
rowski et al. (1990), Lee (1998). In the papers by Grabski and Strzałko (1997),
Grabski (1998), Strzałko (1998), a 3D body was the model of the lifted load,
and in those cases mechanical parameters (e.g. rotation inertia of the body,
positions of the body mass centre and the rope fixture) of the lifted load could
be considered.

In the present study, two models of the load have been compared. They
differ as far as the body-ground contact modelling is concerned. In the first
case, a direct contact between the rigid body and the rigid foundation has
been assumed. In the second case, it has been assumed that the rigid body
contacts the elastic foundation.

Linearly elastic models of bodies, which are employed in contact problems
(e.g. Konderla, 1993; Wriggers and Zavarise, 1993), describe well local pheno-
mena in the contact region of flexible solids. These phenomena can serve as a
clue for the distribution of surface forces (ground reactions) acting on the load.
In the analysis of load motion, especially finite motions, the determination of
local deformations of the body and the foundation is not important.

The relationships presented in this paper, which describe the initial period
of the crane operation, i.e. rope tensioning, stick-slip motion of the load with
respect to the ground, the moment of detachment and motion of the load after
its detachment, concern systems in which the lifted load is modelled as a 3D
rigid body. In the problem solutions known to the authors, these issues are
usually neglected.

The results of numerical calculations prove quantitative and qualitative
agreement between the results obtained for both the models. However, in the
analysis of the lifting process, the model of the load in the form a rigid body
resting on an elastic foundation is more suitable. The application of this model
leads to a simpler and more effective calculation algorithm, which results from
a constant number of degrees of freedom in the system during the whole process
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of analysis. The model in which a rigid body contacts a rigid foundation is
characterised by a time-varying number of degrees of freedom of the load that
depends on the motion phase (the number of degrees of freedom during shifting
the load with respect to the ground is different from the number of degrees of
freedom during rotation of the load with respect to the edge or the corner, and
it is still different at the moment when there is no contact with the ground).

An interesting phenomenon that occurred during the numerical computa-
tions is bifurcation of the solution. The model of the load under consideration
is a non-linear multidimensional system with dry friction. For systems of this
sort, a slight change in the value of one parameter can result in bifurcation of
the solution in some ranges of values of parameters (cf. Kurnik, 1997). Fric-
tion coefficient value between the load and the ground has been chosen as an
active (bifurcation) parameter. The results presented in this paper illustrate
evolution of the solution at a slight change in the bifurcation parameter.

2. First model – a rigid body on a rigid foundation

The first model to be considered is a rigid body placed on an ideally rigid
foundation.

Fig. 1. Model of the load – characteristic points, systems of co-ordinates

Reaction forces between the ground and the rigid body can be presented in
various manners. In Fig. 2, the normal components of the foundation reaction
have been presented separately, and the friction forces are presented aside.
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Fig. 2. Equivalent free-body diagrams of the load: (a) on the assumption of a
continuous distribution of the reaction forces; (b) for forces concentrated in corners;

(c) in the case of the reduced loading
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A distribution of the foundation reaction components is presented for the
following cases, subsequently:

a) normal forces n(x, y) and tangent forces t(x, y) distributed on the sur-
face in a continuous way (in Fig. 2a a distribution of these forces along
the body edge is shown only);

b) concentrated forces (ND, TD, NE, TE, NF , T F , NH , TH) applied to
the body corners (Fig. 2b);

c) reduced concentrated loading acting in a given point R of the surface of
the contact between bodies (the tangent force T and the normal reaction
force N ) and the couple (T and −T ) with the moment value denoted
by MT (Fig. 2c).

2.1. Analysis of the equilibrium of the load

The presented ways of an introduction force reaction of the ground are
equivalent statically, if the following is assumed:

– for the model with distributed forces (Fig. 2a) – a linear change in the
values of normal reaction forces with respect to the ground, i.e.

n(x, y) = a0 + a1x+ a2y (2.1)

(xyz is the body local co-ordinate system) and the corresponding values
of tangent forces

t(x, y) ¬ µn(x, y) (2.2)

– for the model with forces concentrated in corners (Fig. 2b) – a linear
relationship that describes the values of normal reactions components

Ni(xi, yi) = A0 +A1xi +A2yi i = D,E,F,H (2.3)

and the friction forces applied in the same points, whose values satisfy
the following conditions

Ti ¬ µNi i = D,E,F,H (2.4)

– for the model in the form of the resultant forces T and N (Fig. 2c) and
the moment MT that follows from the reduction of friction forces to the
point R

T ¬ µN (2.5)
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The directions and senses of the friction forces are defined by the directions
of possible velocities.

The following relations hold

N = ND +NE +NF +NH =

a
∫

0

b
∫

0

n(x, y) dxdy

Tx = TDx + TEx + TFx + THx =

a
∫

0

b
∫

0

tx(x, y) dxdy

Ty = TDy + TEy + TFy + THy =

a
∫

0

b
∫

0

ty(x, y) dxdy (2.6)

T =
√

T 2x + T
2
y

MT = TDxyR − TDyxR + TExyR + TEy(xE − xR)− TFx(yF − yR) +

+TFy(xF − xR)− THx(yH − yR)− THyxR =

=

a
∫

0

b
∫

0

[tx(y − yR) + ty(x− xR)] dxdy

The forces distributed continuously are described by the quantities nD, nE,
nF and nH , which denote the values of pressure per unit area in individual
corners. An exemplary relation describing nD has the following form

nD =
7ab(G− Sz) + 6b(SzxB −GxC − SxzB) + 6a(SzyB −GyC − SyzB)

a2b2
(2.7)

The values of forces concentrated in corners (NE , NF and NH) can be
determined from formulas similar to that one for ND

ND =
3ab(G − Sz) + 2b(SzxB −GxC − SxzB) + 2a(SzyB −GyC − SyzB)

4ab
(2.8)

On the basis of the equations of equilibrium, the co-ordinates (xR, yR) of
the point R, through which the resultant reaction force N = G − Sz comes

through, and the values of the friction force T =
√

S2x + S
2
y as well as their

moment MT can be determined.

During the analysis of the system, the state of equilibrium is controlled.
The system under analysis is in the state of equilibrium for
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N > 0 T < µN

|MT | < max
i
|Tx(yi − yR)− Ty(xi − xR)| i = D,E,F,H (2.9)

0 < xR < a 0 < yR < b

If the above-mentioned conditions of the equilibrium are not satisfied, a
transition to the next calculation phase takes place, namely to solving the
equations of motion of the model under analysis.

2.2. Equations of motion of the system

The motion of the body is analysed by means of the Newton-Euler equ-
ations that describe general motion of the body (displacements of the mass
center and rotations)

mpC =
∑

P
ďKC

dt
+ ω ×KC =

∑

MC (2.10)

These equations in the matrix form are presented as follows

m







ẌC
ŸC

Z̈C






=









SX

SY

SZ









+









TX

TY

N −G









(2.11)








Jξ −Jξη −Jξζ

−Jξη Jη −Jηζ

−Jξζ −Jηζ Jζ

















ω̇ξ

ω̇η

ω̇ζ









+









0 −ωζ ωη

ωζ 0 −ωξ

−ωη ωξ 0









·

·









Jξ −Jξη −Jξζ

−Jξη Jη −Jηζ

−Jξζ −Jηζ −Jζ

















ωξ

ωη

ωζ









=









0 −ζB ηB

ζB 0 −ξB

−ηB ξB 0

















Sξ

Sη

Sζ









+

+









0 −ζQ ηQ

ζQ 0 −ξQ

−ηQ ξQ 0

















Tξ

Tη

Tζ









+









0 −ζR ηR

ζR 0 −ξR

−ηR ξR 0

















Nξ

Nη

Nζ









where ẌC , ŸC , Z̈C denote the projections of the acceleration vector of the
point C on the axes of the fixed coordinate system (XY Z), ω̇ξ, ω̇η, ω̇ζ are
the projections of the angular acceleration vector of the body on the axes
attacheed to the body (ξηζ), whereas (ξB , ηB , ζB), (ξR, ηR, ζR), (ξQ, ηQ, ζQ)
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are the co-ordinates that describe the positions of B, R and Q in which the
forces S, N and T are applied, respectively.

The motion of the boom tip (modelled with a particle of the mass m0,
which is located at the end of the boom) is described by the following vector
equation

m0pA =
∑

P 0 (2.12)

It means

m0









ẌA

ŸA

Z̈A









=









kX∆XA

kY∆YA

kZ∆ZA









+









−SX

−SY

−(SZ +G0)









(2.13)

where: kX , kY , kZ denote the equivalent stiffnesses of the boom, and ∆XA,
∆YA, ∆ZA – its deformations.

Two additional equations are used in the mathematical model. In the case
of an elastic rope, the rope tension is obtained as

S = cl
[

√

(XB −XA)2 + (YB − YA)2 + (ZB − ZA)2 − l(t)
]

(2.14)

where cl is the rope stiffness and l(t) the rope length. For the model of an
inextensible rope, the geometrical constraint equation is introduced

(XB −XA)
2 + (YB − YA)

2 + (ZB − ZA)
2 − [l(t)]2 = 0 (2.15)

The number of degrees of freedom and the form of the equations of motion
of the load undergo changes during the lifting process. Both the number of
relations that describe constraints and the form of constraint equations change.
The subsequent phases of motion are solved with procedures including proper
relations for each phase.

The conditions and equations describing one phase of motion will be shown
by means of an example of the sliding of the load on the ground.

2.3. The sliding of the load

If the following conditions are fulfilled

Zi = 0 i = D,E,F,H

T = µN N > 0
0 < xR < a

0 < yR < b

(2.16)

the body slides along the ground – plane motion of the body occurs.
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The equations of motion are obtained on the basis of relations (2.11), after
the following substitutions: ωζ = ψ̇, Z̈C = 0, ωξ = 0, ωη = 0, ω̇ξ = 0, ω̇η = 0,
ϑ = 0, ϕ = 0, (and also: Nη = Nξ = 0, Nζ = N , Tζ = 0).
The resulting system of algebraic and differential equations should be sup-

plemented with additional kinematics relationships which define the constra-
ints imposed on the directions of friction forces

Viξ = ẊC cosψ + ẎC sinψ + ψ̇ηi i = D,E,F,H
(2.17)

Viη = ẎC cosψ − ẊC sinψ + ψ̇ξi i = D,E,F,H

The components of friction forces, applied in individual corners, are determi-
ned then as

Tiξ = −µNi
Viξ

√

V 2iξ + V
2
iξ

i = D,E,F,H

(2.18)

Tiη = −µNi
Viη

√

V 2iη + V
2
iη

i = D,E,F,H

and their sum, according to (2.6)2,3, yields the resultant friction force com-
ponents Tξ, Tη. The coordinates of the point Q, where the resultant friction
force is applied, can be described by means of the following relations, thus

ξQ =
1

Tη
(TηDξD + TηEξE + TηF ξF + TηHξH)

ηQ =
1

Tξ
(TξDηD + TξEηE + TξFηF + TξHηH) (2.19)

ζQ = −ZC

The derived equations allow for determination of the quantities being sought:
XC(t), YC(t), ψ(t) and N(t), Tξ(t), Tη(t), ξN (t), ηN (t), ξQ(t), ηQ(t) during
the load sliding on the ground.
An example of the solution, in which the quoted relations are used, is

shown in Fig. 3. The motion of the load is forced by a change in the rope
length l(t) = l0− vlt. The calculations have been carried out for the following
data:

– load dimensions: a = 2.5m, b = 6.0m, c = 2.5m

– co-ordinates of the point A of the rope xA = [3.0, 4.0, 10.0]

– load density ρ = 1000 kg/m3

– coefficient of friction between the load and the ground µ = 0.25.
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Fig. 3. Results of simulation of the load sliding

The placing of the connection point of the rope and container in the con-
tainer corner causes that the load slides along the ground in the first phase of
motion.

In the case when conditions (2.16) are not satisfied, and thus motion of the
load is not plane, other solution paths are foreseen in the algorithm. A choice
of the solution path is made automatically.

3. Second model – a rigid body on an elastic foundation

The second model under consideration is a rigid body that contacts an
elastic foundation. This contact is made by elastic and damping elements,
whose directions remain vertical (parallel to the axis Z), Fig. 4.

It is assumed that the reaction forces of the ground are in this case con-
centrated forces applied to the corners of the body ND, TD, NE , TE, NF ,
TF , NH , TH . For negative vertical displacements of the corners Zi < Z0, the
normal forces ND, NE, NF , NH are assumed according to the relation

Ni(xi, yi) = kZi + hŻi i = D,E,F,H (3.1)
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Fig. 4. Model of the load placed on the elastic foundation

whereas for positive distances of the corners from the foundation surface
Zi > Z0, zero normal forces are assumed

Ni(xi, yi) = 0 i = D,E,F,H (3.2)

The symbol k denotes the stiffness of the elastic elements introduced, h refers
to the coefficient of damping of the damping elements. The values of both the
coefficients are selected by means of a numerical experiment.
The friction forces acting in the corners of the body have the values

Ti = µNi i = D,E,F,H (3.3)

whereas their directions are determined by the corner velocity directions1.

3.1. Analysis of the equilibrium of the load

The model equipped with springs and damping elements remains in the
equilibrium only in the case when the force the rope acts with is equal to zero.
The friction forces are equal to zero under such a loading. An increase in the
loading caused by the rope results in small displacements of the system and
in an appearance of frictional effects.
The state in which the load rests on the ground – for a non-zero loading

generated by the rope – cannot be realised in such a model. When a loading

1The zero corner vertical velocity, which means Ti < µNi (i = D,E, F,H), violates
the calculation procedure, as the number of degrees of freedom of the system changes
in this case. The procedure indicates this situation. In the calculations carried out,
such an instance did not occur.
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occurs, small displacements occur as well. A proper selection of the coeffi-
cients of elasticity and damping of the foundation allows for reducing these
displacements to magnitudes that are insignificant from the practical point of
view.

3.2. Motion analysis

The application of the load model in the form of a rigid body placed on an
elastic foundation allows the avoiding of the necessity of analysing the system
with a time-varying number of degrees of freedom. Instead of the limitations
imposed by analytically described constraints on the relations between certain
co-ordinates, some limitations in the form of reaction forces of the ground have
been introduced. It turns out that the selection of these forces is rather simple.
Such an approach simplifies considerably the process of numerical solution of
the load motion issue. The number of degrees of freedom of the system and
the form of equations do not change during the problem solving.

The equations of motion of the model under discussion have been generated
by computer. Lagrange’s equations of the second kind have been employed
for this purpose. The assumed method requires only determination of the
kinetic energy of the system, the generalised forces acting on the system and
the initial conditions. The remaining procedures are made by computer. The
kinetic energy of the system under analysis is described by the formula

T =
1

2
q̇⊤1Mq̇1 + q̇

⊤

2 R
⊤

1 JR1q̇2 +
1

2
q̇⊤1 R

⊤MWR1q̇2 (3.4)

where: q1 = [XC , YC , ZC ]
⊤ and q2 = [ϕ,ψ, ϑ]

⊤ denote the generalised co-
ordinates of the load; M, J are the matrices of masses and moments of inertia
of the load; R1, R stand for the matrices of transformations of the co-ordinates;
W refers to the antisymmetric matrix of the co-ordinates of the mass centre
of the load (of the point C) in the body co-ordinate system ξηζ.

4. Calculation results and conclusions

The Mathematica and Matlab software packages were used in the analysis
and calculations carried out for the models of the load under consideration.
The Mathematica was used to generate the equations of motion, whereas the
numerical calculations were conducted with the Matlab.

The results of the calculations allow for drawing a few conclusions.
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4.1. Comparison of the results for different models of the system

In Fig. 5 and Fig. 6 the results of calculations for both load models are
presented, i.e.: a rigid body placed on an ideally rigid foundation and a body
placed on an elastic foundation. The plots include time histories of the co-
ordinates describing the location of the mass centre of the load (Fig. 5) and
the reaction forces from the ground at the contact point with the body (Fig. 6a)
and the force acting in the rope (Fig. 6b). The obtained results for both models
are slightly different.

The calculations were carried out for the following data:

– container dimensions: a = 2.5m, b = 6.0m, c = 2.5m

– mean density of the container material ρ = 1000.0 kg/m3

– properties of the foundation: coefficient of friction 0.15, coefficient of
elasticity k = 1.5 · 107N/m, coefficient of viscous damping h = 0.2 ·
106 Ns/m – in the case of the elastic foundation model

– properties of the rope: coefficient of elasticity cl = 1.5 · 10
7 N/m, coeffi-

cient of viscous damping bl = 1.3 · 10
4Ns/m

– hoisting speed vl = 0.04m/s.

Fig. 5. Comparison of the results obtained for different models of the load – the
displacements of the mass centre of the load (co-ordinates x and z)
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Fig. 6. Comparison of the results for different models of the load – the rope tension
force S and the ground reaction force R

4.2. Calculation results for the model of a load placed on an elastic fo-
undation

The calculations were carried out for the following data:

– container dimensions: a = 2.5m, b = 6.0m, c = 2.5m

– mean density of the container material ρ = 850.0 kg/m3

– properties of the foundation: coefficient of elasticity k = 1.5 · 107N/m,
coefficient of viscous damping h = 2.0 · 106Ns/m

– properties of the rope: coefficient of elasticity cl = 1.4 · 10
7 N/m, coeffi-

cient of viscous damping bl = 0.4 · 10
6Ns/m

– rope hoisting speed vl = 0.3m/s.

Motion of the load (the analysed container was eccentrically loaded) is
presented graphically in Fig. 7.
In Fig. 8 the time histories of friction forces in four points of the container –

ground contact are shown. Differences in the time at which individual corners
detach from the ground can be seen on these diagrams (the detachment of the
corner from the ground is manifested by zero values of the normal force and
the friction force at this point). It can be also observed that one of the corners
(point F ) impacts against the ground after detachment.
The directions along which the friction forces act and the trajectories of

four corners of the load can be seen in Fig. 9.
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Fig. 7. Results of simulations of motion of the lifted container

Fig. 8. Results of simulations of motion of the lifted container – values of the friction
forces
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Fig. 9. Results of simulations of motion of the lifted container – directions of the
friction forces

Fig. 10. Comparison of time histories of the co-ordinate x for various coefficients of
friction

4.3. Bifurcation of solutions

The calculations carried out for various parameters of the system revealed
bifurcation of solutions that appeared during these calculations. For certain
ranges of the parameters, a bifurcation of the solution takes place at a slight
change in the value of one parameter. The results shown in Fig. 10b illustrate
bifurcation of the solution that occurs at a slight change in the value of the
coefficient of friction between the load and the foundation.
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Figure 11 shows the time histories of the co-ordinates y and ϕ for different
values of the coefficient of friction (within the range 0.363 ¬ µ ¬ 0.365). For
the value µ ∼= 0.3635, a distinct change in the character of the time history of
the solution occurs. The remaining co-ordinates behave in a similar way – the
time histories of ϑ and ψ can be seen in Fig. 12.

Fig. 11. Bifurcation of the solution (co-ordinates y and ϕ) resulting from a change
in the coefficient of friction µ

Fig. 12. Bifurcation of the solution (co-ordinates ϑ and ψ) resulting from a change
in the coefficient of friction µ

4.4. Conclusions

For the three-dimensional model of the crane and the load in the form of a
body, the algorithm that aims at the analysis of the load dynamics must take
into account:

– the rope and system tensioning during which the lifted load remains still
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– the beginning of motion (it can be translation, rotation around the body
edge, rotation around one of the corners)

– complete detachment of the lifted load from the foundation

– possibility of accidental impacts of the load against the ground

– general motion of the lifted load (including active or passive rope-affected
constraints).

The global behaviour (motion) of the load contacting the ground can be
described in such a way that the deformations of the load itself can be neglec-
ted.
The physical models of the load discussed in this study, it means: a rigid

body located on a rigid foundation and a rigid body interacting with a founda-
tion characterised by elastic and damping properties, proposed to be used in
simulations of the lifting of the load from the ground, seem to be suitable for
the purpose. The models used are accurate enough for the analysis of motion
of the load.
The Mathematica package used in the above-mentioned calculations allows

one to solve the task effectively, although it requires individual consideration
of each phase of the lifting of the load from the ground. Its advantage lies in
the possibility of obtaining many formulas in an analytical form.
The application of the Matlab package offers the possibility of numerical

analysis of the whole lifting process, as well as of the transporting and lowering
the lifted load, independent of the sequence of such phenomena as detachment,
rotations, impacts, and sliding.
The calculations made for various values of the parameters of the model al-

lowed for determination of the change in the character of the solution (solution
bifurcation) in certain regions of the assumed values of these parameters.
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Streszczenie

W pracy zostały omówione propozycje modeli przeznaczonych do wykorzystania
w analizie dynamiki ładunku podnoszonego przez dźwignice. Szczególna uwaga zosta-
ła zwrócona na zjawiska zachodzące przed oderwaniem ładunku od podłoża. Spośród
dwóch przedstawionych modeli ładunku bardziej przydatny do analizy procesu pod-
noszenia okazał się model w postaci sztywnej bryły i sprężystego podłoża. Wyniki
otrzymane z przeprowadzonych obliczeń numerycznych ujawniły zjawisko bifurkacji
rozwiązania przy niewielkiej zmianie wartości parametrów modelu.
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