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The paper presents stability analysis of an elastic-plastic sandwich open co-
nical shell of a circular cross section under combined external load in the
form of lateral pressure, longitudinal forces, and shear. The shell consists of
two load-carrying faces made of an isotropic, compressible work-hardening
material, and they are of different thicknesses and made of different material
properties; the core material is of a soft type and it resists transversal forces
only. It is also assumed that the shell can be deformed into plastic range
before buckling. The flexural stiffness of the faces is taken into account, the
Kirchhoff-Love hypotheses hold for the faces, and the active deformation
processes are considered. The constitutive relations used in the analysis are
those of the incremental Prandtl-Reuss plastic flow theory associated with
the Huber-Mises yield condition. The virtual work principle is the basis to
obtain the governing stability equations and the Ritz method is used to
derive differential equations of the considered problem. An iterative com-
puter algorithm was elaborated to analyse the shells both in the elastic or
elastic-plastic prebuckling state of stress.
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1. Introduction and geometric relations

Layered sandwich shells are commonly used in civil and mechanical engine-
ering and in aviation. They are characterised by light weight and present many
other advantages as thermoisolation properties, resistance to heavy loadings,
and so on. Typical sandwich structures are composed of two thin flexible car-
rying facings of equal or different thicknesses; between the faces a core, made
of a foam plastic less rigid than the faces, is stiffly placed. The subject un-
der consideration is a shallow open sandwich conical shell (see Fig. 1) loaded
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by uniformly distributed lateral pressure, longitudinal force, and shear forces
applied to the edges.

Fig. 1. Open conical sandwich shell

The shell is assumed to be simply supported at all edges. An elastic-plastic
model is chosen in the stability analysis of the considered shell. This model is
more suitable in the evaluation of the ability of the structure to resist external
loads against stability loss.

Many different concepts in geometrically non-linear stability analysis were
applied to describe specific features of the stability of elastic-plastic shells, see
Croll (1984), Weichert (1984). Open and sandwich conicals shells under axial
and lateral loads were also investigated to determine bifurcation loads and
equilibrium paths, see Kao (1980), Zielnica (1984, 1987). The review of the
most important works on the stability of elastic plastic shells is presented by
Bushnell (1982); this review is rather focused on numerical methods. Problems
of the linear and nonlinear stability of elastic-plastic conical and cylindrical
shells; problem formulation, solution methods and numerical analyses were
discussed in papers written by Maciejewski and Zielnica (1984), Zielnica (1987,
1998, 2000, 2001, 2002a,b,c), and Jaskuła and Zielnica (2001). Introduction
of geometrical nonlinearity considerably complicates the governing equations.
Even the introduction of simplifications following von Kármán’s theory enables
calculation of large elastic-plastic deflections of shells only by approximate
methods.
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In this work we consider the influence of shear forces on the stability loss
of open sandwich shells. The incremental Prandtl-Reuss plastic flow theory
is used to describe stress-strain relations for the considered shell facings. The
analysis is based on the energy minimization, where the total strain ε in the
shell can be expressed in terms of reference surface strains and changes in cu-
rvature, and these reference surface quantities can be then expressed in terms
of displacement vector components. The Ritz method is accepted in order to
derive the stability equations for the considered shell. The final form of the
stability equation, being a function of a deflection function parameter, makes
it possible to trace the equilibrium paths for the shell under consideration. An
iterative computer algorithm was elaborated which made it possible to analyse
the shells in the elastic, elastic-plastic or in totally plastic prebuckling state of
stress. The numerical examples showed the influence of principal geometrical
and physical parameters of the shell on the stability loss at large deflections.
The following assumptions, usually considered in theories of thin shells, are

also made: (a) the displacements are small compared to the length or mean
diameter of the shell, but may be of a magnitude comparable to the thickness,
(b) there are no normal stresses in the radial direction and lines originally
normal to the main (reference) surface remain so after load application, (c) the
considered shell has perfect geometry (no imperfections), (d) we assume that
there is a membrane prebuckling stress state in the shell with the following
internal forces
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1

2
q tanα

(s21
s
− s
)
−Na

s1
s

N2 = −qs tanα T = S (1.1)

The following expressions for the strains and changes in the curvature were
derived for a conical shell (see Zielnica, 1984)
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Here t− = t1 and t
+ = t2, respectively (see Fig. 2).

Fig. 2. Scheme of cross-section deformation

The core of the shell resists transversal shear only, thus the strains are
determined according to the following expressions
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Here, the superscripts + and − denote the upper and the lower faces,
respectively, and t = (t1 + t2)/2 is mean thickness of the faces.
The displacement vector components are as follows:

— the outer face for −(t1 + c/2) ¬ z ¬ −c/2
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— the inner face for c/2 ¬ z ¬ (t2 + c/2)
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— the core for −c/2 ¬ z ¬ c/2
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2. Stress-strain relations

In the plastic flow theory the stresses and stress increments are related
with the strain increments by the constitutive flow rule and yield condition,
generalized in the case of stress hardening. The basic equations of this theory
of plasticity are as follows

Dε̇ = λDσ +
1

2G
Dσ̇ ėij = λsij +

1

2G
ṡij (2.1)

In Eqs (2.1) Dε̇ and Dσ̇ are the deviators of the strain and stress rates,
λ is a parameter of stress hardening, which can be determined from the yield
condition. Here, we assume the Huber-Mises yield condition. If we neglect
the yield condition and put λ = 0 in Eqs (2.1) we can describe the elastic
region with these equations. When only a part of the shell undergoes plastic
deformation we can obtain an equation for the elastic-plastic boundary, either
from the condition λ = 0 (from a solution for the plastic region), or from the
condition σi = σY (in elastic region). The increments of the plastic strains
can be represented in the form

dεij =
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)
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If we assume the exponential stress-strain curve of the shell material in the
general form σi = E(o)εξi , we can determine the secant Es and tangent Et
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stress hardening moduli
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where k1 and ks are coefficients representing the prebuckling membrane stres-
ses in the shell (see Zielnica, 2001), parameter ζ = (ξ − 1)/ξ, E is the elastic
modulus; σi and σY are the effective stress and yield stress, respectively.

The resultant middle surface forces and moments in the shell are defined
as follows
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It should be pointed out that these expressions reflect the fact that the shell
thickness is small compared to the radius. If we solve Eqs (2.2) with respect
to the stresses and then integratie according to (2.4), we get the following
expressions for the resultant forces and moments developed by buckling in the
faces

δN11 = b11δε11 + b12δε22 − b13δγ12

δN22 = b21δε11 + b22δε22 − b23δγ12

δT = −b31δε11 − b32δε22 + b33δγ12

δM1 = −d11δκ1 − d12δκ2 + d13δκ12

δM2 = −d21δκ1 − d22δκ2 + d23δκ12

δH = d31δκ1 + d32δκ2 − d33δκ12

(2.5)

where the coefficients of the local stiffness matrices bij and dij are as follows
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The over barred symbols are the relative prebuckling stresses related with the
effective stress σi

σs =
σs
σi

σϕ =
σϕ
σi

τ sϕ =
τsϕ
σi

Et =
dσi
dεi

(2.7)

As we can see, the constitutive relations are functions of the tangent modulus
Et in the plastic flow theory. Also, the coefficients in the constitutive relations
are variable, and they depend on the external loadings acting on the considered
shell (see Fig. 1).

3. The potential energy and solution to the problem

The given system of the stability equations, expressed by the displace-
ments, does not have an exact solution. Any approximate solution, found e.g.
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by an orthogonalization method is complicated because appropriate calcula-
tions are time consuming. The necessity of satisfying the kinematic and static
boundary conditions leads to the assumption of approximate functions in a
very complicated form. In order to avoid the above mentioned difficulties the
Ritz method is applied.

The conditions for the equilibrium in a classical buckling problem can
be obtained from the variation of the total potential energy ΠT . In order
to obtain the stability conditions from the variation relations, the principle
of a stationary potential energy will be invoked, with the sandwich conical
shell considered to be in a state of neutral equilibrium. Since the principle
of the stationary potential energy states that the necessary condition of the
equilibrium of any given state is that the variation of the total potential energy
of the considered system is equal to zero, we have the following relation

δΠT = δ(WT + L) = 0 (3.1)

Here WT is a change in the strain energy stored within the shell. The second
term L represents the potential energy of the external loads. Equation (3.1)
with its nature has a form of equilibrium equations in variational sense, and it
is correct both for the pre- and postcritical deformation state. Instead of exact
expressions for the displacements ui we introduce approximate functions with
coefficients Ai. These coefficients must be chosen in such a way that they fit
as far as possible to real displacements. The equation

δΠT =
k∑

i=1

ΠT ,Ai δAi = 0 (3.2)

is satisfied for an arbitrary value of the variation of parameters δAi, where
i = 1, 2, ..., k. Thus, we have

∂ΠT
∂Ai
= 0 (3.3)

The total potential energy of the shell is obtained by summing up the particu-
lar terms related with three layers: W+T (outer layer), W

−

T (inner layer) and
WC (core) with the potential energy of the external loads L, i.e.

ΠT =WT + L =W
+
T +W

−

T +W
C + L (3.4)

The first terms in Eq. (3.4) related with strain energy are
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The term L is the potential energy of the external loads, and it is given by
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Now, we substitute the local stiffness matrix coefficients bij (2.6) into Eqs
(2.5), then we substitute these expressions into (3.5). Thus, using Eqs (1.1)-
(1.6), we get a general form of the total potential energy ΠT for the deformed
shell expressed in terms of the displacements u, v and w. Once the geometry,
material constants, and load conditions are specified, we chose the displace-
ment functions w, u and v in the following form
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2 sin(kψ) sin(pϕ+ aγs)
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Here m, and 2n are parameters, equal to the number of halfwaves during
buckling developed in the longitudinal and circumferential direction, respecti-
vely; ai are multipliers that will take values 0 or 1 in numerical calculations in
order to check the influence of the γ parameter on the buckling loads. Appro-
ximate functions (3.7) satisfy the kinematic boundary conditions of the simply
supported shell edges

w
∣∣∣s=s1
s=s2
= 0 w

∣∣∣ ϕ=0
ϕ=β
= 0 uα

∣∣∣ ϕ=0
ϕ=β
= 0

va
∣∣∣s=s1
s=s2
= 0 uβ

∣∣∣ ϕ=0
ϕ=β
= 0 vβ

∣∣∣s=s1
s=s2
= 0

(3.8)

We substitute approximate functions (3.7) into Eqs (1.2) and (3.5). Then,
we substitute Eqs (3.5) and (3.6) into the total potential energy expression
(3.4), and we obtain a complex functional of the form
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Then, following relations (3.3), we differentiate the total potential energy ΠT
with respect to the coefficients Ai, i.e.

ΠT ,Ai = 0 i = 1, 2, ..., 5 (3.10)

Thus, we get a system of nonlinear algebraic equations written in the following
general form, where the unknowns are the parameters of the displacement
functions Ai

(f11 + f̃11)A1 + f12A2 + f13A3 + f14A4 + f15A5 =

= g11A
2
1 + g12A

3
1 + g13A1A2 + g14A1A3 + g15A4 + g16A5 + g17

f21A1 + f22A2 + f23A3 + f24A4 + f25A5 = g21A
2
1

f31A1 + f32A2 + f33A3 + f34A4 + f35A5 = g31A
2
1 (3.11)

f41A1 + f42A2 + f43A3 + f44A4 + f45A5 = g41A
2
1

f51A1 + f52A2 + f53A3 + f54A4 + f55A5 = g51A
2
1

The coefficients fij and gij in nonlinear system of equations (3.11) are
functions of the variable s (see below), and they depend on the geometrical
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and material parameters and also on the state of stress (elastic or elastic-
plastic). The general form of these coefficients is as follows

f11 = 2 sin
3 α cos2 αJ1Ũ4,4 +
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2

24

{
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g16 = 2g51 = p sin
3 α cosα
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J3 sin

2 α(4V2,5 + 4kV2,14 + k
2V2,15) +

+p2J8(6V3,5 + kV3,14 − k
2V3,15)

]
, ...

Here k and p are the buckling mode parameters in displacement functions
(3.7), Ji are the integral expresssions of the variable ϕ; Ũk,l, Vkl are the
integral expressions of the variable s of the following general form, which will
be evaluated by numerical integration

Ũk,l = Ũk,l(s) =

s2∫

s1

Fk(s)Cl(s) ds (3.13)

The other coefficients in (3.11) have a form similar to the above expressions.
For the sake of brevity we introduce a function g being a combination of the
coefficients fij and gij

g(x, y, r) =
5∑

i=2

[
x1(i+r)

( 4∑

j=1

(−1)i+jy(j+1)1dij
)]

(3.14)

where the expressions dij , i = 2, 3, 4, 5, j = 1, 2, 3, 4, are the minors of the
determinant W1 that is determined by the operation of deleting the ith column
and jth row

W1 =
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f22 f23 f24 f25

f32 f33 f34 f34

f42 f43 f44 f45
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When we solve the set of nonlinear algebraic equations (3.11) with respect to
the deflection function parameter A1, we obtain the final stability equation in
the following form

q(m,n,γ) =
{(
f11 +W

−1
1 g(f, f, 0)

)
A1 +

+
[
−g11 −W

−1
1

(
g(f, g, 0) + g(g, f, 1)

)]
A21 +

(3.16)

+
(
−g12 +W

−1
1 g(g, g, 1)

)
A31

}
×

×
[
s21J1 sin

5 α(4Ũ5,2 + 4kŨ5,12 + k
2Ũ5,24)κA1 + κ1A1 + sin

3 αJ4Ũ5,3
]−1

The final form of stability equation (3.16), being a function of the deflection
function parameter, makes it possible to trace the equilibrium paths for the
elastic-plastic open sandwich conical shell under consideration, and to test
different forms of the stability loss.

4. Numerical calculations and concluding remarks

Because the analysed problem considers two types of nonlinearities, both
physical and geometrical, and large amount of calculations is to be made in
order to determine the equilibrium paths for the elastic-plastic problem, a
special computer algorithm has been developed. Numerical calculations were
carried out to analyse the postcritical equilibrium paths for arbitrary combi-
nations of the shear force and lateral-to-longitudinal load. In the analysis of
stability equation (3.16), which is a transcendental one (local stiffness matrix
coefficients (2.6) depend on the external load acting on the shell), aiming at
the determination of the ”upper” (q∗+;N

∗
a+;S

∗
+) and ”lower” (q

∗
−;N

∗
a−;S

∗
−)

critical load, we procede according to the following steps:

(i) we assume geometrical and material data for the shell and fixed ratios of
the lateral pressure and shear force to the longitudinal loads κ = qs1/Na,
κ1 = S/Na

(ii) we adopt a series of values for the parameters m, n and γ

(iii) for a series of increasing values of A1 we calculate the respective maxi-
mum deflection w and loads q, (S,Na)

(iv) in the system of coordinates (w, q) or (w,Na) we draw a two-parameter
family of the curves q(w;m,n) or Na(w;m,n)
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(v) from the family of curves we choose the points of less values of q (or Na)
with specified values of the variable w, and we obtain a curve which
constitutes the solution

(vi) the local maximum and minimum of the curve determine the ”upper”
(q∗+;N

∗
a+) and the ”lower” (q

∗
−;N

∗
a−) critical loads, respectively.

The starting point in the analysis of the shell being partially or totally
in the plastic region a certain value of the initial load qi(QI) is assumed to
be on the equilibrium path, basing on the value from the previous step qi−1.
Thus, the local stiffness matrix coefficients bij , see (2.6), can be determined,
and stability equation (3.16) is now an equation with known coefficients where
the deflection w∗ = w/H (H = t1 + t2 +2c) is the parameter. Finally, such a
value is accepted for QI, which satisfies the condition |Q − QI| < εi, where
εi is the parameter of the assumed calculation accuracy. A linear interpolation
rule (regula falsi) has been assumed to find the initial load. To determine the
integrals in the stability equation, the Simpson rule of numerical integration
has been adopted.

It has been assumed that the shell material for the faces was an
aluminium alloy with the following material constants: Young’s modulus
E = 7.1 · 104MPa, tangent modulus Et = 0.95 · 10

4MPa, yield stress
σY = 380MPa, ν = 0.3. The core material was an industrial foam plastic
”Moltopren” with Es = 53MPa, Gs = 27MPa, νs = 0. The other basic geo-
metrical parameters were as follows: shell thickness H = 12mm, face thickness
t1 = t2 = 0.001m, 2c = 0.01mm, distance from the apex to the upper base
s1 = 10m, shell length along the generatrix l = 0.7m, apex angle α = 10

◦,
shell angle β = 16◦.

The other variable parameters are shown in the diagrams.

Figures 3-5 show the nonlinear equilibrium paths for the analysed shell.
The diagram shown in Fig. 3 presents the numerical results in the form of cu-
rves representing the longitudinal load Na as a function of the deflection w

∗

for different ratios of the shear force S to Na. It was assumed here that the
lateral pressure q equals 0. It can be seen from the diagram that both upper
and lower critical loads decrease when the ratio S/Na increases. Moreover,
the difference between the upper and lower critical loads drops if the ratio
S/Na increases. Fig. 4 is a diagram enabling the evaluation of the influence
of different ratios of the shear force S to the lateral pressure q on the equ-
librium paths and the values of critical loads. It was accepted there that the
longitudinal force Na equals 0. The same tendency in the relation between the
upper and lower critical loads was observed in the diagram as in the previous
case. Finally, Fig. 5 presents the equilibrium paths Na − w

∗ for different face
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Fig. 3. Equilibrium paths for different shear/longitudinal force ratios

Fig. 4. Equilibrium paths for different shear/lateral pressure ratios

thicknesses t to total shell thickness H. As it could be expected, greater shell
face thicknesses, enlarge the upper and lower critical loads. Generally, it can
be stated that the number of waves during buckling was m = 1 and n = 1 in
most of the analysed cases.
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Fig. 5. Equilibrium paths for different shell thicknesses of the shell

The results presented in the paper can be valuable for engineering practice.
The analysis and numerical calaculations point out the ways for the determi-
nation of values of the basic shell parameters preventing the system from the
instabilities observed in open elastic-plastic sandwich conical shells.
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Nieliniowa stateczność sprężysto-plastycznej powłoki stożkowej przy

złożonym obciążeniu

Streszczenie

W pracy przedstawiono analizę stateczności sprężysto-plastycznej otwartej powło-
ki stożkowej pod wpływem złożonego obciążenia w postaci siły podłużnej, ciśnienia
poprzecznego i sił tnących. Powłoka składa się z dwóch warstw nośnych wykonanych
z różnych materiałów wykazujących umocnienie i mających różną grubość. Warstwa
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wypełniąca jest typu lekkiego i zakłada się, że przenosi wyłącznie siły ścinające. Za-
kłada się również, że pod wpływem sił zewnętrznych powłoka może przejść częściowo
lub całkowicie w stan plastyczny. Uwzględnia się sztywność zginania warstw nośnych,
ważność hipotez Kirchhoffa-Lova i przyjmuje się koncepcję wzrastającego obciążenia
Shanleya. Analizę oparto na teorii plastycznego płynięcia Prandtla-Reussa stowarzy-
szonej z warunkiem uplastycznienia Hubera-Misesa. Podstawowe równania statecz-
ności wyprowadzono z zasady prac wirtualnych, a do ich rozwiązania wykorzystano
metodę Ritza. Dla analizy i obliczeń numerycznych opracowano specjalny algorytm
iteracyjny, który umożliwia obliczenia stateczności dla powłok częściowo lub całkowi-
cie uplastycznionych, a nawet dla powłok sprężystych.
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