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The paper deals with the derivation of the basic stability equations of bi-
layered elastic-plastic conical shells and a approximate solution to these
equations, both theoretically and by numerical procedures. The subject
of the analysis is a bilayered open conical shell under a combined load
comprising longitudinal forces and external pressure. Kirchhoff-Love’s
hypotheses hold for the layers, and use is made of constitutive relations
in the form of generalized Hooke’s law for the elastic stability analy-
sis, and the Prandtl-Reuss incremental plasticity theory for the stability
analysis in the elastic-plastic range. The stability equations are derived
using the virtual work principle, and Ritz’s method is applied to so-
lve the equations. An iterative computer algorithm has been developed
which made it possible to analyse the shells in the elastic, elastic-plastic
or totally plastic prebuckling state of stress. The numerical results are
presented in diagrams.

Key words: elasto-plasticity, stability, shell theory, geometrical nonline-
arity, critical load, stress-strain relations

1. Introduction

Multilayered thin-walled structures have many advantages as they resist
comparatively large external loads, etc. Bilayered structures are constructed
of two layers, firmly fixed together, made of different materials. They are
commonly used in chemical apparatus and equipment. In general, the two
layers fulfil different functions in the structure. The external layer (face) resists
the main load acting on the shell, and the internal layer is an anti-corrosion
lining in many cases (Zielnica, 2001a).
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Stability analysis of modern layered shell structures requires the applica-
tion of an elastic-plastic material model, which enables more realistic evalu-
ation of the structure to resist the given set of external loads. A specific practi-
cal meaning have such problems that introduce both sources of nonlinearities,
i.e. physical and geometrical. Their mutual interaction causes development
of effects which are very important in proper description of the deformation
process, and in the structural safety which is closer to reality (Zielnica, 2001b).

The subject of this paper is to derive the basic equations of stability of
bilayered open elastic-plastic conical shells and an approximate solution to
these equations, both theoretically and by numerical procedures. The subject
of the analysis is a bilayered open conical shell under a complex load in the
form of longitudinal forces and external pressure. Each layer can be made
of a material with different physical properties and different stress hardening
parameters (Ramsey, 1977). The shell consists of two thin faces with thickness
h′ and h′′, made of an isotropic and compressible material with some stress
hardening properties.

It was assumed that the contact surface between the two layers is the refe-
rence surface of the shell. An orthogonal coordinate system s, ϕ was set on this
reference surface, where the coordinates s, ϕ are situated along the main cu-
rvatures of the shell. The axis z is perpendicular to the reference surface, and
it is directed positively toward the center of the curvature. Kirchhoff-Love’s
hypotheses hold for the layers. It is assumed that radial displacements of both
layers do not depend on the variable z, and variation of the displacements
across the shell thickness is a linear one. With these assumptions it is also
admitted that we have a plane stress state in the layers. We will consider only
mechanical effects in the elastic-plastic isotropic shell. Because the basic equ-
ations of the problem are very complicated and there are great difficulties of
mathematical nature, we use constitutive relations in the form of generalized
Hooke’s law for the elastic stability analysis, and the Prandtl-Reuss incremen-
tal plasticity theory (Maciejewski and Zielnica, 1984) with Shanley concept
(Bushnell, 1982; Girgoluk, 1957) will be used for the elastic-plastic stability
analysis.

The set of stability equations expressed in displacements does not have
an exact solution. Thus, we use a strain energy approach is this work. If the
use is made of the virtual work principle we get an equation that describes
the deformed shell under compressive load. Once the approximate functions
are found for the basic components of the displacement vector, and Ritz’s
method is used to solve the problem, we get a set of three nonlinear algebraic
equations. These equations form a condition which determines the critical set
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of external loadings. Obtaining a solution to the problem is only possible by
using a special iterative algorithm enabling numerical calculations with the
use of a computer (Zielnica, 1999).

2. Basic assumptions

The following basic assumptions are accepted within this work:

• We consider an open bilayered conical shell supported freely at the edges,
and loaded by longitudinal forces and external pressure (see Fig. 1)

• Kirchhoff-Love’s hypotheses hold for particular layers of the shell

• The shell reference surface is the contact surface between the layers

• Radial displacements of particular layers do not depend on the variable z
(normal to the shell reference surface), and the change in displacements
in the layers along the thickness is linear

• Both layers are made of an isotropic material

• We accept an arbitrary, linear or nonlinear stress-strain relation, which
can be different for both layers

• Constitutive relations of the Prandtl-Reuss theory are used within the
theory of small displacements

• We follow Shanley’s concept of active loading in the shell.

The internal membrane forces in the shell are as follows

NS = hσS =
1

2
qs tanα

[(s1
s

)2
− 1
]
−Na

s1

s
h = h′ + h′′

Nϕ = hσϕ = −qs tanα TS = Tϕ = 0

(2.1)

We introduce a parameter κ which is equal to the ratio of the longitudinal-
to-transversal load

κ =
Na

qs1
(2.2)

We assume the following basic nonlinear geometrical relations:
— strains
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Fig. 1. Subject of consideration – bilayered open conical shell

— variations in curvature
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where the coefficients A0 and B0 take the values 0 or 1, respectively, in order
to control the influence of particular terms on the results.
The basic constitutive relations according to the Prandtl-Reuss plastic flow

theory are (Zielnica, 2001b)

Dǫ̇ = λDσ̇ +
1

2G
Dσ̇ ėij = λsij +

1

2G
ṡij (2.5)

where Dǫ̇ and Dσ̇ are the stress and strain ratio deviators, and λ is the stress
hardening parameter, which can be determined from the yield condition.
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An incremental form of relations (2.5) is as follows

dǫij =
1

2G

(
dσij − δij

3ν

1 + ν
dσm

)
+ 3dλ

(
σij − δijσm

)

(2.6)

σm =
1

3
σkk dλ =

1

2

dǫ
p
i

σi

We determine internal forces and moments (see Fig. 2) from the relations

δNαβ =

0∫

−h′′

δσ′′αβ dx3 +

h′∫

0

δσ′αβ dx3

(2.7)

δMαβ =

0∫

−h′′

δσ′′sx3 dx3 +

h′∫

0

δσ′sx3 dx3

where δσαβ are the variations of stress tensor components, which are deter-
mined by the reciprocal to relations (2.5). Using the respective relations and
integrating, we get the constitutive relations for the internal forces and mo-
ments for a bilayered conical shell

δN1 = C11δǫ1 + C12δǫ2 − C13δγ12 − C14δκ1 − C15δκ2 + C16δκ12

δN2 = C21δǫ1 + C22δǫ2 − C23δγ12 − C24δκ1 − C25δκ2 + C26δκ12

δT = −C31δǫ1 − C32δǫ2 + C33δγ12 + C34δκ1 + C35δκ2 − C36δκ12

δM1 = C41δǫ1 + C42δǫ2 − C43δγ12 − C44δκ1 − C45δκ2 + C46δκ12

δM2 = C51δǫ1 + C52δǫ2 − C53δγ12 − C54δκ1 − C55δκ2 + C56δκ12

δH = C61δǫ1 + C62δǫ2 − C63δγ12 − C64δκ1 − C65δκ2 +C66δκ12

(2.8)

The coefficients in the above relations can be expressed as follows

Cij =
m

n

(
B′ijh

k′ −B′′ijh
l′′
)

(2.9)

where i, j, k, l,m, n = 0, 1, ..., 6.

The coefficients of the local stiffness matrix Bij are given in Zielnica
(2001b).
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3. Stress-strain relations

We assume two basic stress-strain relations of the shell material behaviour:

(a) linear stress hardening

(b) nonlinear stress hardening.

The diagrams sigmai - ǫi for these two models are as in Fig. 2 and Fig. 3.

Fig. 2. Bilinear stress-strain relation

Fig. 3. Nonlinear stress-strain relation
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4. Mathematical model

The stability equations expressed in the displacements do not have an
exact solution. Any approximate solution, found e.g. by Galerkin’s method is
complicated because complex displacement functions have to be taken, and
approximate calculations are time consuming. In order to avoid the difficulties
the Ritz method is applied here.

The principle of stationary potential energy states that the necessary con-
dition for the equilibrium of any given state is that the variation of the total
potential energy of the considered system is equal to zero. Thus, we have the
following relation

δUp = δ(W + Lz) = 0 (4.1)

where W is the change in the strain energy stored in the shell, and Lz is the
potential energy of the external load. Equation (4.1) is correct both for the
pre- and postcritical deformation state.

The term in (4.1) related with the strain energy is equal to the sum of the
strain energy of particular layers

W =W ′ +W ′′ (4.2)

where W ′ is the strain energy accumulated in the external layer, W ′′ is the
strain energy accumulated in the internal layer of the bilayered conical shell

L = −q sinα

∫∫

A

ws ds dϕ−
1

2
Nas1 sinα

∫∫

A

(∂w
∂s

)2
ds dϕ (4.3)

The strain energy of the internal forces and moments developed by stability
loss for the shell element hds r dϕ is as follows

δW = δN1ǫ1 + δN2ǫ2 + δTγ12 + δM1κ1 + δM2κ2 + δHκ12 (4.4)

When constitutive relations (2.8) are introduced into the above equation, we
can represent the right hand side of this equation in the form of the total
variation

δW = δ
[1
2
(C11ǫ

2
1 + 2C12ǫ1ǫ2 + C22ǫ

2
2 + C33γ

2
12 −

(4.5)

−C44κ
2
1 − 2C45κ1κ2 − C55κ

2
2 + 2C66δκ

2
12)
]
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The term Lz is the potential energy of the external loads, and it is given by

Lz = −q sinα

s2∫

s1

β∫

0

ws ds dϕ−
1

2
Nas1 sinα

s2∫

s1

β∫

0

(∂w
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)2
ds dϕ (4.6)

If we use Eqs. (2.8) and (2.9) and integrate over the whole surface of the
considered shell, we get the following expression for the strain energy

Up =W + Lz =
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The base functions are assumed in the form

w(s, ϕ) = A1r
2(s) sin(kψ) sin(tϕ)

u(s, ϕ) = A2r
2(s) cos(kψ) sin(tϕ)

v(s, ϕ) = A3r
2(s) sin(kψ) cos(tϕ)

(4.8)

where A1, A2, A3 are free parameters to be determined, and

k =
mπ

l
t =

nπ

β
ψ = s− s1

l = s2 − s1 r(s) = s sinα

Here m and n are parameters. Approximate functions (4.8) satisfy the kine-
matic boundary conditions of the simply supported shell edges

w
∣∣∣s=s0
s=s1
= 0 w

∣∣∣ ϕ=0
ϕ=β
= 0

u
∣∣∣ ϕ=0
ϕ=β
= 0 v

∣∣∣s=s0
s=s1
= 0

(4.9)

Once the expression for the total potential energy of the shell is determined,
and the displacements u, v, w are expressed by displacement functions (4.8),
following (4.1) we get

δUp =
k∑

i=1

δUp

∂Ai
δAi = 0 i = 1, 2, ..., k (4.10)
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Keeping in mind that the variation of the parameters δAi in (4.10) is arbitrary,
the following condition has to be satisfied

∂Up

∂Ai
= 0 (4.11)

It is relatively easy to integrate analytically the functions in (4.11) over the
variable ϕ. The integrals are as follows

I1 =

β∫

0

sin2(tϕ) dϕ I2 =

ϕ∫

0

sin(tϕ) dϕ

I3 =

β∫

0

cos(tϕ) dϕ ... I6 =

β∫

0

cos4(tϕ) dϕ ...

I9 =

β∫

0

sin2(tϕ) cos(tϕ) dϕ ... I12 =

β∫

0

sin4(tϕ) dϕ

(4.12)

It is not possible to procede with analytical integration over the variable s
because this variable exists among all the local stiffnes matrix elements C11,
C12, C21, C22, C33. Thus, numerical integration will be realised. To simplify
the apropriate relations, the following notation will be used

D1 = s sin
2 kψ D2 = s

2 sin2(kψ)

D3 = sin
2(kψ) D4 = s

3 sin2(kψ) ....

D11 = s
2 sin(kψ) cos(kψ) ... D31 = s

4 sin(kψ) cos2(kψ)

D32 = sin(kψ) ... D37 = s
9 cos4(kψ) ...

D41 = s
7 sin(kψ) cos2(kψ)

(4.13)

Carrying out the prescribed transformations according to (4.11), we get a
nonlinear and nonhomogeneous set of algebraical equations with respect to
the free parameters Ai. The equations represent the actual critical set of the
external loadings acting on the shell being in an elastic-plastic state of stress

(a11 +Naã11)A1 + a12A2 + a13A3 =

= b11A
2
1 + b12A

3
1 + b13A1A2 + b14A1A3 + qb15

a21A1 + a22A2 + a23A3 = b21A
2
1 (4.14)

a31A1 + a32A2 + a33A3 = b13A
2
1
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The coefficients aij , bij have a very complex form, and the following expres-
sions are implemented in these coefficients

s2∫

s1

Cij(s)Dn(s) ds (4.15)

Here, the quantities Cij are the elements of the local stiffness matrix, and Dn
are given by (2.9).
Further simplifications of the formulas required in the numerical calcula-

tions introduce a function that is very valuable in the numerical procedure

Vm,n(s) =

s2∫

s1

Fm(s)Dn(s) ds
m = 1, ..., 9
n = 1, ..., 41

(4.16)

Now, be making use of the above equations, the coefficients in the stability
equation of the considered bilayered shell are as follows

a11 = g
3h2I1V2,4 −

−g5I1(4V4,1 + 16k
2V4,23 + k

4V4,8 + 16kV4,11 − 4k
2V4,4 − 8k

3V4,13)−

−g5I1(8V8,1 + 20kV8,11 − 4k
2V8,4 + 8k

2V8,23 − 2k
3V8,13)−

−t2g3I1(−4V8,1 − 8kV8,11 + 2k
2V8,4)− g

5I1(4V5,1 + 4kV5,11 + k
2V5,23)−

−t4gI1V5,1 + t
2g3I4(8V6,1 + 8kV6,11 + 2k

2V6,23) + 2t
2g3I4V6,1 −

−t2g3I4(8V6,1 + 4kV6,11)− t
2g3I1(4V5,1 + 2kV5,11) ....

ã11 = −Nas1g
5I1(4V9,2 + 4kV9,12 + k

2V9,24) ... (4.17)

b11 = g
6hI11(6V7,7 + 6kV7,16 + 1.5k

2V7,17)− 1.5t
2g4hI7V2,7 ...

b15 = qg
3I2V9,34

where g = sinα, h = cosα.
It is worth to notice that only two of these coefficients (ã11, b15) comprise

the external loads Na and q. The other coefficients depend on the geometri-
cal and physical parameters, and on the parameters m and n in deflection
functions (4.8).
The set of equations (4.13) resolved with respect to the parameter A1 (i.e.

the parameter of the deflection function w) takes the final form

q =
ẽ1A1 + ẽ2A

2
1 + ẽ3A

3
1

ẽ4κA1 + ẽ5
(4.18)

with
Na = κqs1 (4.19)
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where

ẽ1 = a11 + a12
a23a31 − a21a33
a22a33 − a23a32

− a13
(a31
a33
+
a32

a33

a23a31 − a21a33
a22a33 − a23a32

)

...
(4.20)

ẽ4 =
ã11

qκ
= −

ã11s1

Na
= −s21 sinαI1(4V9,2 + 4kV9,12 + k

2V9,24)

ẽ5 =
b15

q
= sin3 αI2V9,34

5. Solution procedure

The coefficients ẽi in the stability equations are variable, and they de-
pend on unknown functions in which the external load is included. Thus, this
equation is a transcendental one. Appropriate numerical calculations will be
conducted iteratively with the help of special algorithm. A simplified block dia-
gram of the algorithm is presented in Fig. 4. The procedure includes controlling
the yield condition on every step of external load increment, which makes it
possible to analyse the shells being in a different state of yielding or even fully
elastic shells where the yield stress is not reached at the critical loads. The
objective of the following numerical calculations is the analysis of postcritical
equilibrium paths for an arbitrary combination of lateral-to-longitudinal loads,
and also the study of the influence of geometrical and physical parameters on
the critical load and form of stability loss.
The procedure required in the determination process of the upper (q+, N+a )

and lower (q−, N−a ) critical loads is as follow:

• We assume geometrical and material data for the considered shell

• We assume a definite value of the coefficient κ

• We adopt a series of values for the parameters m, and n (number of
half-waves in the longitudinal and circumferential directions)

• We assume, starting from zero, a sequence of increasing values A1 for
fixed m and n

• We determine the maximum deflection for the respective A1 from Eq.
(4.8)1, and the resulting loadings q (Eq. (4.18)), and Na (Eq. (4.19))

• In the system of coordinates (q, w̃) or (Na, w̃) we obtain a two-parameter
family of the curves q(w̃,m, n) or Na(w̃,m, n)
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Fig. 4. Simplified block diagram of the algorithm for numerical calculation
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• From the family of curves we chose the points of less values of q or Na
with specified values of the variable w̃, and we obtain a curve which
constitutes the solution.

The local maximum and minimum of the curve determine the ”upper”
(q+, N+a ) and the lower (q

−, N−a ) critical loads, respectively.

As it has been already said, the equation of elastic-plastic stability is a
transcendental function, where the local stiffnes matrix coefficients Bij and
the integrated functions depend on the load q, thus the function q = f(w̃)
cannot be determined directly.

The analysis of the shell in a elastic-plastic or fully plastic state of stress
starts from a control value of the initial load qp(n) based on the values qp(n−1),
qp(n−2) from previous steps of the iteriation process. This enables determina-
tion of the coefficients of the local stiffness matrix Bij and obtaining of the
stability equation with the known coefficients q = f(qp), where the deflection
exists as a parameter and f(qp) is the right-hand side of the stability equation.

Basing on the difference |q− qp| a new (corrected) value qp is taken in the
next load step, and the calculations are repeated until the condition |q−qp| <
ǫp is satisfied, where ǫp is a parameter of the assumed calculation accuracy.

6. Basic data and numerical examples

The calculations are made for an open bilayered conical shell under longi-
tudinal forces and lateral pressure. The basic geometrical and material data
admitted in numerical calculations are as follows:

L = 1.0m rs = 1.4m wu = 2

tt = 0.001m cc = 0.001m κ = 1000

Ett = Ecc = 71900MPa α = 45◦ β = 35◦

Ec = Et = 10000MPa ν = 0.3 Re = 70MPa

m = n = 1 A0 = 1 B0 = 1

where
L – shell generatrix length
rs – mean radius of the shell
wu – ratio of the maximum shell deflection to the total shell thickness
tt – thickness of the external layer of the shell
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cc – thickness of the internal layer of the shell
κ – ratio of the longitudinal force Na to lateral pressure q
α – alpha angle
β – beta angle
ν – Poisson’s coefficient of the shell layers
Ec – modulus of linear stress hardening of the external shell layer

material
Et – modulus of linear stress hardening of the internal shell layer

material
Re – yield stress
Ett – Young’s modulus of the external layer
Ecc – Young’s modulus of the internal layer
m – half-wave number along the shell generatrix
n – wave number in the circumferential direction
A0, B0 – feature constants in geometrical relations.

Numerical results in the form of the external force (longitudinal or lateral)
versus shell deflection, representing nonlinear equilibrium paths, are shown in
Figures 5-7.

Fig. 5. Equilibrium paths; pressure q versus deflection w̃
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Fig. 6. Equilibrium paths; pressure q versus deflection w̃

Fig. 7. Longitudinal force Na versus deflection w̃
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7. Conclusions

The nonlinear equilibrium paths of the analyzed shells are shown in Fig. 5 -
Fig. 7. They show the results of analysis of the influence of the load ratio
coefficient κ on the critical loads and forms of postcritical equilibrium paths.
The parameter κ represents the ratio of the longitudinal force Na over the
lateral pressure q. It can be seen that the coefficient κ has a substantial
influence on the form of postcritical equilibrium of the shell. For small values
of the parameter κ, where the lateral pressure dominates, the curves q(w̃)
exhibit a change in the curvature sign. Moreover:

• Instability region appears at a certain value of the coefficient κ ≈ 10
where q+ ≈ q−. This region expands when the coefficient κ increases,
as it begins consecutively at smaller deflections.

• Critical loads q+/− decrease, and the difference between the upper q+

and lower q− critical load increases nonlinearly up to the maximum
value at κ ≈ 100. Then, the difference decreases.

• Critical longitudinal forces N
+/−
a increase when the κ coefficient in-

creases. When κ increases in the region from 100 to 108 the load q+

decreases several times, whereas the longitudinal force N+a increases in-
considerably from 0.8 up to 1.2MPa.

• Above κ = 105 the equilibrium paths do not substantially differ from
the limit curve that corresponds to the case when the longitudinal force
itself acts on the shell (κ = ∞). Thus, we can conclude that if the
shell is loaded almost exclusively by the longitudinal force, the change
in the lateral pressure does not substantially influence the form of the
equilibrium paths.

The above given results are quite general and can be used, among others
to test the results obtained on the basis of the finite element method. Also,
the results can be helpful for the optimal design of bilayered shell structures.
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Stateczność sprężysto-plastycznych powłok stożkowych

Streszczenie

Tematem pracy jest wyprowadzenie podstawowych równań stateczności dwuwar-
stwowych otwartych sprężysto-plastycznych powłok stożkowych i przybliżone rozwią-
zanie tych równań w sposób analityczny i numeryczny. Przedmiotem analizy jest swo-
bodnie podparta dwuwarstwowa powłoka w kształcie wycinka stożka poddana działa-
niu obciążenia złożonego w postaci sił podłużnych i ciśnienia poprzecznego. Równania
stateczności wyprowadzono na podstawie zasady minimum energii potencjalnej po-
włoki, a do rozwiązania zastosowano metodę Ritza. Wyniki numeryczne otrzymano za
pomocą specjalnie zbudowanej iteracyjnej procedury numerycznej z wykorzystaniem
komputera.

Manuscript received December 2, 2002; accepted for print March 11, 2003


